analysis.calculus.fderiv.prod ⟷ Mathlib.Analysis.Calculus.FDeriv.Prod

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

feat(geometry/manifold): lemmas from the sphere eversion project (#18877)
  • Also adds a new library note comp_of_eq lemmas about how (I think) we should better formulate composition lemmas of properties of functions.
  • About the library note comp_of_eq lemmas: exactly the same problems happen in Lean 4.
  • renamings
smooth_iff_proj_smooth -> smooth_prod_iff
differentiable_at.fderiv_within_prod -> differentiable_within_at.fderiv_within_prod
  • We add a path_connected_space instance of the tangent space. This instance is sufficient to compile sphere-eversion, without any normed_space instances on the tangent space (which are not the canonical structure on the tangent space).
  • From the sphere eversion project
Diff
@@ -97,7 +97,7 @@ lemma differentiable_at.fderiv_prod
   fderiv π•œ (Ξ»x:E, (f₁ x, fβ‚‚ x)) x = (fderiv π•œ f₁ x).prod (fderiv π•œ fβ‚‚ x) :=
 (hf₁.has_fderiv_at.prod hfβ‚‚.has_fderiv_at).fderiv
 
-lemma differentiable_at.fderiv_within_prod
+lemma differentiable_within_at.fderiv_within_prod
   (hf₁ : differentiable_within_at π•œ f₁ s x) (hfβ‚‚ : differentiable_within_at π•œ fβ‚‚ s x)
   (hxs : unique_diff_within_at π•œ s x) :
   fderiv_within π•œ (Ξ»x:E, (f₁ x, fβ‚‚ x)) s x =

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(first ported)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2019 Jeremy Avigad. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
 -/
-import Analysis.Calculus.Fderiv.Linear
-import Analysis.Calculus.Fderiv.Comp
+import Analysis.Calculus.FDeriv.Linear
+import Analysis.Calculus.FDeriv.Comp
 
 #align_import analysis.calculus.fderiv.prod from "leanprover-community/mathlib"@"e354e865255654389cc46e6032160238df2e0f40"
 
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2019 Jeremy Avigad. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
 -/
-import Mathbin.Analysis.Calculus.Fderiv.Linear
-import Mathbin.Analysis.Calculus.Fderiv.Comp
+import Analysis.Calculus.Fderiv.Linear
+import Analysis.Calculus.Fderiv.Comp
 
 #align_import analysis.calculus.fderiv.prod from "leanprover-community/mathlib"@"e354e865255654389cc46e6032160238df2e0f40"
 
Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2019 Jeremy Avigad. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
-
-! This file was ported from Lean 3 source module analysis.calculus.fderiv.prod
-! leanprover-community/mathlib commit e354e865255654389cc46e6032160238df2e0f40
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.Calculus.Fderiv.Linear
 import Mathbin.Analysis.Calculus.Fderiv.Comp
 
+#align_import analysis.calculus.fderiv.prod from "leanprover-community/mathlib"@"e354e865255654389cc46e6032160238df2e0f40"
+
 /-!
 # Derivative of the cartesian product of functions
 
Diff
@@ -64,73 +64,97 @@ section Prod
 
 variable {fβ‚‚ : E β†’ G} {fβ‚‚' : E β†’L[π•œ] G}
 
+#print HasStrictFDerivAt.prod /-
 protected theorem HasStrictFDerivAt.prod (hf₁ : HasStrictFDerivAt f₁ f₁' x)
     (hfβ‚‚ : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x :=
   hf₁.prodLeft hfβ‚‚
 #align has_strict_fderiv_at.prod HasStrictFDerivAt.prod
+-/
 
+#print HasFDerivAtFilter.prod /-
 theorem HasFDerivAtFilter.prod (hf₁ : HasFDerivAtFilter f₁ f₁' x L)
     (hfβ‚‚ : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
     HasFDerivAtFilter (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x L :=
   hf₁.prodLeft hfβ‚‚
 #align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
+-/
 
+#print HasFDerivWithinAt.prod /-
 theorem HasFDerivWithinAt.prod (hf₁ : HasFDerivWithinAt f₁ f₁' s x)
     (hfβ‚‚ : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') s x :=
   hf₁.Prod hfβ‚‚
 #align has_fderiv_within_at.prod HasFDerivWithinAt.prod
+-/
 
+#print HasFDerivAt.prod /-
 theorem HasFDerivAt.prod (hf₁ : HasFDerivAt f₁ f₁' x) (hfβ‚‚ : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x :=
   hf₁.Prod hfβ‚‚
 #align has_fderiv_at.prod HasFDerivAt.prod
+-/
 
+#print hasFDerivAt_prod_mk_left /-
 theorem hasFDerivAt_prod_mk_left (eβ‚€ : E) (fβ‚€ : F) :
     HasFDerivAt (fun e : E => (e, fβ‚€)) (inl π•œ E F) eβ‚€ :=
   (hasFDerivAt_id eβ‚€).Prod (hasFDerivAt_const fβ‚€ eβ‚€)
 #align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_left
+-/
 
+#print hasFDerivAt_prod_mk_right /-
 theorem hasFDerivAt_prod_mk_right (eβ‚€ : E) (fβ‚€ : F) :
     HasFDerivAt (fun f : F => (eβ‚€, f)) (inr π•œ E F) fβ‚€ :=
   (hasFDerivAt_const eβ‚€ fβ‚€).Prod (hasFDerivAt_id fβ‚€)
 #align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_right
+-/
 
+#print DifferentiableWithinAt.prod /-
 theorem DifferentiableWithinAt.prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
     (hfβ‚‚ : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s x :=
   (hf₁.HasFDerivWithinAt.Prod hfβ‚‚.HasFDerivWithinAt).DifferentiableWithinAt
 #align differentiable_within_at.prod DifferentiableWithinAt.prod
+-/
 
+#print DifferentiableAt.prod /-
 @[simp]
 theorem DifferentiableAt.prod (hf₁ : DifferentiableAt π•œ f₁ x) (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x : E => (f₁ x, fβ‚‚ x)) x :=
   (hf₁.HasFDerivAt.Prod hfβ‚‚.HasFDerivAt).DifferentiableAt
 #align differentiable_at.prod DifferentiableAt.prod
+-/
 
+#print DifferentiableOn.prod /-
 theorem DifferentiableOn.prod (hf₁ : DifferentiableOn π•œ f₁ s) (hfβ‚‚ : DifferentiableOn π•œ fβ‚‚ s) :
     DifferentiableOn π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s := fun x hx =>
   DifferentiableWithinAt.prod (hf₁ x hx) (hfβ‚‚ x hx)
 #align differentiable_on.prod DifferentiableOn.prod
+-/
 
+#print Differentiable.prod /-
 @[simp]
 theorem Differentiable.prod (hf₁ : Differentiable π•œ f₁) (hfβ‚‚ : Differentiable π•œ fβ‚‚) :
     Differentiable π•œ fun x : E => (f₁ x, fβ‚‚ x) := fun x => DifferentiableAt.prod (hf₁ x) (hfβ‚‚ x)
 #align differentiable.prod Differentiable.prod
+-/
 
+#print DifferentiableAt.fderiv_prod /-
 theorem DifferentiableAt.fderiv_prod (hf₁ : DifferentiableAt π•œ f₁ x)
     (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x : E => (f₁ x, fβ‚‚ x)) x = (fderiv π•œ f₁ x).Prod (fderiv π•œ fβ‚‚ x) :=
   (hf₁.HasFDerivAt.Prod hfβ‚‚.HasFDerivAt).fderiv
 #align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
+-/
 
+#print DifferentiableWithinAt.fderivWithin_prod /-
 theorem DifferentiableWithinAt.fderivWithin_prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
     (hfβ‚‚ : DifferentiableWithinAt π•œ fβ‚‚ s x) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s x =
       (fderivWithin π•œ f₁ s x).Prod (fderivWithin π•œ fβ‚‚ s x) :=
   (hf₁.HasFDerivWithinAt.Prod hfβ‚‚.HasFDerivWithinAt).fderivWithin hxs
 #align differentiable_within_at.fderiv_within_prod DifferentiableWithinAt.fderivWithin_prod
+-/
 
 end Prod
 
@@ -138,14 +162,18 @@ section Fst
 
 variable {fβ‚‚ : E β†’ F Γ— G} {fβ‚‚' : E β†’L[π•œ] F Γ— G} {p : E Γ— F}
 
+#print hasStrictFDerivAt_fst /-
 theorem hasStrictFDerivAt_fst : HasStrictFDerivAt (@Prod.fst E F) (fst π•œ E F) p :=
   (fst π•œ E F).HasStrictFDerivAt
 #align has_strict_fderiv_at_fst hasStrictFDerivAt_fst
+-/
 
+#print HasStrictFDerivAt.fst /-
 protected theorem HasStrictFDerivAt.fst (h : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
   hasStrictFDerivAt_fst.comp x h
 #align has_strict_fderiv_at.fst HasStrictFDerivAt.fst
+-/
 
 #print hasFDerivAtFilter_fst /-
 theorem hasFDerivAtFilter_fst {L : Filter (E Γ— F)} :
@@ -154,19 +182,25 @@ theorem hasFDerivAtFilter_fst {L : Filter (E Γ— F)} :
 #align has_fderiv_at_filter_fst hasFDerivAtFilter_fst
 -/
 
+#print HasFDerivAtFilter.fst /-
 protected theorem HasFDerivAtFilter.fst (h : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
     HasFDerivAtFilter (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x L :=
   hasFDerivAtFilter_fst.comp x h tendsto_map
 #align has_fderiv_at_filter.fst HasFDerivAtFilter.fst
+-/
 
+#print hasFDerivAt_fst /-
 theorem hasFDerivAt_fst : HasFDerivAt (@Prod.fst E F) (fst π•œ E F) p :=
   hasFDerivAtFilter_fst
 #align has_fderiv_at_fst hasFDerivAt_fst
+-/
 
+#print HasFDerivAt.fst /-
 protected theorem HasFDerivAt.fst (h : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
   h.fst
 #align has_fderiv_at.fst HasFDerivAt.fst
+-/
 
 #print hasFDerivWithinAt_fst /-
 theorem hasFDerivWithinAt_fst {s : Set (E Γ— F)} :
@@ -175,30 +209,40 @@ theorem hasFDerivWithinAt_fst {s : Set (E Γ— F)} :
 #align has_fderiv_within_at_fst hasFDerivWithinAt_fst
 -/
 
+#print HasFDerivWithinAt.fst /-
 protected theorem HasFDerivWithinAt.fst (h : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') s x :=
   h.fst
 #align has_fderiv_within_at.fst HasFDerivWithinAt.fst
+-/
 
+#print differentiableAt_fst /-
 theorem differentiableAt_fst : DifferentiableAt π•œ Prod.fst p :=
   hasFDerivAt_fst.DifferentiableAt
 #align differentiable_at_fst differentiableAt_fst
+-/
 
+#print DifferentiableAt.fst /-
 @[simp]
 protected theorem DifferentiableAt.fst (h : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x => (fβ‚‚ x).1) x :=
   differentiableAt_fst.comp x h
 #align differentiable_at.fst DifferentiableAt.fst
+-/
 
+#print differentiable_fst /-
 theorem differentiable_fst : Differentiable π•œ (Prod.fst : E Γ— F β†’ E) := fun x =>
   differentiableAt_fst
 #align differentiable_fst differentiable_fst
+-/
 
+#print Differentiable.fst /-
 @[simp]
 protected theorem Differentiable.fst (h : Differentiable π•œ fβ‚‚) :
     Differentiable π•œ fun x => (fβ‚‚ x).1 :=
   differentiable_fst.comp h
 #align differentiable.fst Differentiable.fst
+-/
 
 #print differentiableWithinAt_fst /-
 theorem differentiableWithinAt_fst {s : Set (E Γ— F)} : DifferentiableWithinAt π•œ Prod.fst s p :=
@@ -206,10 +250,12 @@ theorem differentiableWithinAt_fst {s : Set (E Γ— F)} : DifferentiableWithinAt 
 #align differentiable_within_at_fst differentiableWithinAt_fst
 -/
 
+#print DifferentiableWithinAt.fst /-
 protected theorem DifferentiableWithinAt.fst (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x => (fβ‚‚ x).1) s x :=
   differentiableAt_fst.comp_differentiableWithinAt x h
 #align differentiable_within_at.fst DifferentiableWithinAt.fst
+-/
 
 #print differentiableOn_fst /-
 theorem differentiableOn_fst {s : Set (E Γ— F)} : DifferentiableOn π•œ Prod.fst s :=
@@ -217,29 +263,39 @@ theorem differentiableOn_fst {s : Set (E Γ— F)} : DifferentiableOn π•œ Prod.fst
 #align differentiable_on_fst differentiableOn_fst
 -/
 
+#print DifferentiableOn.fst /-
 protected theorem DifferentiableOn.fst (h : DifferentiableOn π•œ fβ‚‚ s) :
     DifferentiableOn π•œ (fun x => (fβ‚‚ x).1) s :=
   differentiable_fst.comp_differentiableOn h
 #align differentiable_on.fst DifferentiableOn.fst
+-/
 
+#print fderiv_fst /-
 theorem fderiv_fst : fderiv π•œ Prod.fst p = fst π•œ E F :=
   hasFDerivAt_fst.fderiv
 #align fderiv_fst fderiv_fst
+-/
 
+#print fderiv.fst /-
 theorem fderiv.fst (h : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x => (fβ‚‚ x).1) x = (fst π•œ F G).comp (fderiv π•œ fβ‚‚ x) :=
   h.HasFDerivAt.fst.fderiv
 #align fderiv.fst fderiv.fst
+-/
 
+#print fderivWithin_fst /-
 theorem fderivWithin_fst {s : Set (E Γ— F)} (hs : UniqueDiffWithinAt π•œ s p) :
     fderivWithin π•œ Prod.fst s p = fst π•œ E F :=
   hasFDerivWithinAt_fst.fderivWithin hs
 #align fderiv_within_fst fderivWithin_fst
+-/
 
+#print fderivWithin.fst /-
 theorem fderivWithin.fst (hs : UniqueDiffWithinAt π•œ s x) (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     fderivWithin π•œ (fun x => (fβ‚‚ x).1) s x = (fst π•œ F G).comp (fderivWithin π•œ fβ‚‚ s x) :=
   h.HasFDerivWithinAt.fst.fderivWithin hs
 #align fderiv_within.fst fderivWithin.fst
+-/
 
 end Fst
 
@@ -247,14 +303,18 @@ section Snd
 
 variable {fβ‚‚ : E β†’ F Γ— G} {fβ‚‚' : E β†’L[π•œ] F Γ— G} {p : E Γ— F}
 
+#print hasStrictFDerivAt_snd /-
 theorem hasStrictFDerivAt_snd : HasStrictFDerivAt (@Prod.snd E F) (snd π•œ E F) p :=
   (snd π•œ E F).HasStrictFDerivAt
 #align has_strict_fderiv_at_snd hasStrictFDerivAt_snd
+-/
 
+#print HasStrictFDerivAt.snd /-
 protected theorem HasStrictFDerivAt.snd (h : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
   hasStrictFDerivAt_snd.comp x h
 #align has_strict_fderiv_at.snd HasStrictFDerivAt.snd
+-/
 
 #print hasFDerivAtFilter_snd /-
 theorem hasFDerivAtFilter_snd {L : Filter (E Γ— F)} :
@@ -263,19 +323,25 @@ theorem hasFDerivAtFilter_snd {L : Filter (E Γ— F)} :
 #align has_fderiv_at_filter_snd hasFDerivAtFilter_snd
 -/
 
+#print HasFDerivAtFilter.snd /-
 protected theorem HasFDerivAtFilter.snd (h : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
     HasFDerivAtFilter (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x L :=
   hasFDerivAtFilter_snd.comp x h tendsto_map
 #align has_fderiv_at_filter.snd HasFDerivAtFilter.snd
+-/
 
+#print hasFDerivAt_snd /-
 theorem hasFDerivAt_snd : HasFDerivAt (@Prod.snd E F) (snd π•œ E F) p :=
   hasFDerivAtFilter_snd
 #align has_fderiv_at_snd hasFDerivAt_snd
+-/
 
+#print HasFDerivAt.snd /-
 protected theorem HasFDerivAt.snd (h : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
   h.snd
 #align has_fderiv_at.snd HasFDerivAt.snd
+-/
 
 #print hasFDerivWithinAt_snd /-
 theorem hasFDerivWithinAt_snd {s : Set (E Γ— F)} :
@@ -284,30 +350,40 @@ theorem hasFDerivWithinAt_snd {s : Set (E Γ— F)} :
 #align has_fderiv_within_at_snd hasFDerivWithinAt_snd
 -/
 
+#print HasFDerivWithinAt.snd /-
 protected theorem HasFDerivWithinAt.snd (h : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') s x :=
   h.snd
 #align has_fderiv_within_at.snd HasFDerivWithinAt.snd
+-/
 
+#print differentiableAt_snd /-
 theorem differentiableAt_snd : DifferentiableAt π•œ Prod.snd p :=
   hasFDerivAt_snd.DifferentiableAt
 #align differentiable_at_snd differentiableAt_snd
+-/
 
+#print DifferentiableAt.snd /-
 @[simp]
 protected theorem DifferentiableAt.snd (h : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x => (fβ‚‚ x).2) x :=
   differentiableAt_snd.comp x h
 #align differentiable_at.snd DifferentiableAt.snd
+-/
 
+#print differentiable_snd /-
 theorem differentiable_snd : Differentiable π•œ (Prod.snd : E Γ— F β†’ F) := fun x =>
   differentiableAt_snd
 #align differentiable_snd differentiable_snd
+-/
 
+#print Differentiable.snd /-
 @[simp]
 protected theorem Differentiable.snd (h : Differentiable π•œ fβ‚‚) :
     Differentiable π•œ fun x => (fβ‚‚ x).2 :=
   differentiable_snd.comp h
 #align differentiable.snd Differentiable.snd
+-/
 
 #print differentiableWithinAt_snd /-
 theorem differentiableWithinAt_snd {s : Set (E Γ— F)} : DifferentiableWithinAt π•œ Prod.snd s p :=
@@ -315,10 +391,12 @@ theorem differentiableWithinAt_snd {s : Set (E Γ— F)} : DifferentiableWithinAt 
 #align differentiable_within_at_snd differentiableWithinAt_snd
 -/
 
+#print DifferentiableWithinAt.snd /-
 protected theorem DifferentiableWithinAt.snd (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x => (fβ‚‚ x).2) s x :=
   differentiableAt_snd.comp_differentiableWithinAt x h
 #align differentiable_within_at.snd DifferentiableWithinAt.snd
+-/
 
 #print differentiableOn_snd /-
 theorem differentiableOn_snd {s : Set (E Γ— F)} : DifferentiableOn π•œ Prod.snd s :=
@@ -326,29 +404,39 @@ theorem differentiableOn_snd {s : Set (E Γ— F)} : DifferentiableOn π•œ Prod.snd
 #align differentiable_on_snd differentiableOn_snd
 -/
 
+#print DifferentiableOn.snd /-
 protected theorem DifferentiableOn.snd (h : DifferentiableOn π•œ fβ‚‚ s) :
     DifferentiableOn π•œ (fun x => (fβ‚‚ x).2) s :=
   differentiable_snd.comp_differentiableOn h
 #align differentiable_on.snd DifferentiableOn.snd
+-/
 
+#print fderiv_snd /-
 theorem fderiv_snd : fderiv π•œ Prod.snd p = snd π•œ E F :=
   hasFDerivAt_snd.fderiv
 #align fderiv_snd fderiv_snd
+-/
 
+#print fderiv.snd /-
 theorem fderiv.snd (h : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x => (fβ‚‚ x).2) x = (snd π•œ F G).comp (fderiv π•œ fβ‚‚ x) :=
   h.HasFDerivAt.snd.fderiv
 #align fderiv.snd fderiv.snd
+-/
 
+#print fderivWithin_snd /-
 theorem fderivWithin_snd {s : Set (E Γ— F)} (hs : UniqueDiffWithinAt π•œ s p) :
     fderivWithin π•œ Prod.snd s p = snd π•œ E F :=
   hasFDerivWithinAt_snd.fderivWithin hs
 #align fderiv_within_snd fderivWithin_snd
+-/
 
+#print fderivWithin.snd /-
 theorem fderivWithin.snd (hs : UniqueDiffWithinAt π•œ s x) (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     fderivWithin π•œ (fun x => (fβ‚‚ x).2) s x = (snd π•œ F G).comp (fderivWithin π•œ fβ‚‚ s x) :=
   h.HasFDerivWithinAt.snd.fderivWithin hs
 #align fderiv_within.snd fderivWithin.snd
+-/
 
 end Snd
 
@@ -356,21 +444,27 @@ section Prod_map
 
 variable {fβ‚‚ : G β†’ G'} {fβ‚‚' : G β†’L[π•œ] G'} {y : G} (p : E Γ— G)
 
+#print HasStrictFDerivAt.prodMap /-
 protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
     (hfβ‚‚ : HasStrictFDerivAt fβ‚‚ fβ‚‚' p.2) : HasStrictFDerivAt (Prod.map f fβ‚‚) (f'.Prod_map fβ‚‚') p :=
   (hf.comp p hasStrictFDerivAt_fst).Prod (hfβ‚‚.comp p hasStrictFDerivAt_snd)
 #align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMap
+-/
 
+#print HasFDerivAt.prodMap /-
 protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ‚‚ : HasFDerivAt fβ‚‚ fβ‚‚' p.2) :
     HasFDerivAt (Prod.map f fβ‚‚) (f'.Prod_map fβ‚‚') p :=
   (hf.comp p hasFDerivAt_fst).Prod (hfβ‚‚.comp p hasFDerivAt_snd)
 #align has_fderiv_at.prod_map HasFDerivAt.prodMap
+-/
 
+#print DifferentiableAt.prod_map /-
 @[simp]
 protected theorem DifferentiableAt.prod_map (hf : DifferentiableAt π•œ f p.1)
     (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ p.2) : DifferentiableAt π•œ (fun p : E Γ— G => (f p.1, fβ‚‚ p.2)) p :=
   (hf.comp p differentiableAt_fst).Prod (hfβ‚‚.comp p differentiableAt_snd)
 #align differentiable_at.prod_map DifferentiableAt.prod_map
+-/
 
 end Prod_map
 
@@ -395,6 +489,7 @@ variable {ΞΉ : Type _} [Fintype ΞΉ] {F' : ΞΉ β†’ Type _} [βˆ€ i, NormedAddCommGr
   [βˆ€ i, NormedSpace π•œ (F' i)] {Ο† : βˆ€ i, E β†’ F' i} {Ο†' : βˆ€ i, E β†’L[π•œ] F' i} {Ξ¦ : E β†’ βˆ€ i, F' i}
   {Ξ¦' : E β†’L[π•œ] βˆ€ i, F' i}
 
+#print hasStrictFDerivAt_pi' /-
 @[simp]
 theorem hasStrictFDerivAt_pi' :
     HasStrictFDerivAt Ξ¦ Ξ¦' x ↔ βˆ€ i, HasStrictFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
@@ -402,14 +497,18 @@ theorem hasStrictFDerivAt_pi' :
   simp only [HasStrictFDerivAt, ContinuousLinearMap.coe_pi]
   exact is_o_pi
 #align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
+-/
 
+#print hasStrictFDerivAt_pi /-
 @[simp]
 theorem hasStrictFDerivAt_pi :
     HasStrictFDerivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
       βˆ€ i, HasStrictFDerivAt (Ο† i) (Ο†' i) x :=
   hasStrictFDerivAt_pi'
 #align has_strict_fderiv_at_pi hasStrictFDerivAt_pi
+-/
 
+#print hasFDerivAtFilter_pi' /-
 @[simp]
 theorem hasFDerivAtFilter_pi' :
     HasFDerivAtFilter Ξ¦ Ξ¦' x L ↔ βˆ€ i, HasFDerivAtFilter (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x L :=
@@ -417,70 +516,93 @@ theorem hasFDerivAtFilter_pi' :
   simp only [HasFDerivAtFilter, ContinuousLinearMap.coe_pi]
   exact is_o_pi
 #align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'
+-/
 
+#print hasFDerivAtFilter_pi /-
 theorem hasFDerivAtFilter_pi :
     HasFDerivAtFilter (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x L ↔
       βˆ€ i, HasFDerivAtFilter (Ο† i) (Ο†' i) x L :=
   hasFDerivAtFilter_pi'
 #align has_fderiv_at_filter_pi hasFDerivAtFilter_pi
+-/
 
+#print hasFDerivAt_pi' /-
 @[simp]
 theorem hasFDerivAt_pi' :
     HasFDerivAt Ξ¦ Ξ¦' x ↔ βˆ€ i, HasFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
   hasFDerivAtFilter_pi'
 #align has_fderiv_at_pi' hasFDerivAt_pi'
+-/
 
+#print hasFDerivAt_pi /-
 theorem hasFDerivAt_pi :
     HasFDerivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
       βˆ€ i, HasFDerivAt (Ο† i) (Ο†' i) x :=
   hasFDerivAtFilter_pi
 #align has_fderiv_at_pi hasFDerivAt_pi
+-/
 
+#print hasFDerivWithinAt_pi' /-
 @[simp]
 theorem hasFDerivWithinAt_pi' :
     HasFDerivWithinAt Ξ¦ Ξ¦' s x ↔ βˆ€ i, HasFDerivWithinAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') s x :=
   hasFDerivAtFilter_pi'
 #align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'
+-/
 
+#print hasFDerivWithinAt_pi /-
 theorem hasFDerivWithinAt_pi :
     HasFDerivWithinAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') s x ↔
       βˆ€ i, HasFDerivWithinAt (Ο† i) (Ο†' i) s x :=
   hasFDerivAtFilter_pi
 #align has_fderiv_within_at_pi hasFDerivWithinAt_pi
+-/
 
+#print differentiableWithinAt_pi /-
 @[simp]
 theorem differentiableWithinAt_pi :
     DifferentiableWithinAt π•œ Ξ¦ s x ↔ βˆ€ i, DifferentiableWithinAt π•œ (fun x => Ξ¦ x i) s x :=
   ⟨fun h i => (hasFDerivWithinAt_pi'.1 h.HasFDerivWithinAt i).DifferentiableWithinAt, fun h =>
     (hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).DifferentiableWithinAt⟩
 #align differentiable_within_at_pi differentiableWithinAt_pi
+-/
 
+#print differentiableAt_pi /-
 @[simp]
 theorem differentiableAt_pi : DifferentiableAt π•œ Ξ¦ x ↔ βˆ€ i, DifferentiableAt π•œ (fun x => Ξ¦ x i) x :=
   ⟨fun h i => (hasFDerivAt_pi'.1 h.HasFDerivAt i).DifferentiableAt, fun h =>
     (hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).DifferentiableAt⟩
 #align differentiable_at_pi differentiableAt_pi
+-/
 
+#print differentiableOn_pi /-
 theorem differentiableOn_pi : DifferentiableOn π•œ Ξ¦ s ↔ βˆ€ i, DifferentiableOn π•œ (fun x => Ξ¦ x i) s :=
   ⟨fun h i x hx => differentiableWithinAt_pi.1 (h x hx) i, fun h x hx =>
     differentiableWithinAt_pi.2 fun i => h i x hx⟩
 #align differentiable_on_pi differentiableOn_pi
+-/
 
+#print differentiable_pi /-
 theorem differentiable_pi : Differentiable π•œ Ξ¦ ↔ βˆ€ i, Differentiable π•œ fun x => Ξ¦ x i :=
   ⟨fun h i x => differentiableAt_pi.1 (h x) i, fun h x => differentiableAt_pi.2 fun i => h i x⟩
 #align differentiable_pi differentiable_pi
+-/
 
+#print fderivWithin_pi /-
 -- TODO: find out which version (`Ο†` or `Ξ¦`) works better with `rw`/`simp`
 theorem fderivWithin_pi (h : βˆ€ i, DifferentiableWithinAt π•œ (Ο† i) s x)
     (hs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (fun x i => Ο† i x) s x = pi fun i => fderivWithin π•œ (Ο† i) s x :=
   (hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).fderivWithin hs
 #align fderiv_within_pi fderivWithin_pi
+-/
 
+#print fderiv_pi /-
 theorem fderiv_pi (h : βˆ€ i, DifferentiableAt π•œ (Ο† i) x) :
     fderiv π•œ (fun x i => Ο† i x) x = pi fun i => fderiv π•œ (Ο† i) x :=
   (hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).fderiv
 #align fderiv_pi fderiv_pi
+-/
 
 end Pi
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
 
 ! This file was ported from Lean 3 source module analysis.calculus.fderiv.prod
-! leanprover-community/mathlib commit 38df578a6450a8c5142b3727e3ae894c2300cae0
+! leanprover-community/mathlib commit e354e865255654389cc46e6032160238df2e0f40
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -125,12 +125,12 @@ theorem DifferentiableAt.fderiv_prod (hf₁ : DifferentiableAt π•œ f₁ x)
   (hf₁.HasFDerivAt.Prod hfβ‚‚.HasFDerivAt).fderiv
 #align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
 
-theorem DifferentiableAt.fderivWithin_prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
+theorem DifferentiableWithinAt.fderivWithin_prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
     (hfβ‚‚ : DifferentiableWithinAt π•œ fβ‚‚ s x) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s x =
       (fderivWithin π•œ f₁ s x).Prod (fderivWithin π•œ fβ‚‚ s x) :=
   (hf₁.HasFDerivWithinAt.Prod hfβ‚‚.HasFDerivWithinAt).fderivWithin hxs
-#align differentiable_at.fderiv_within_prod DifferentiableAt.fderivWithin_prod
+#align differentiable_within_at.fderiv_within_prod DifferentiableWithinAt.fderivWithin_prod
 
 end Prod
 
Diff
@@ -27,7 +27,7 @@ cartesian products of functions, and functions into Pi-types.
 
 open Filter Asymptotics ContinuousLinearMap Set Metric
 
-open Topology Classical NNReal Filter Asymptotics ENNReal
+open scoped Topology Classical NNReal Filter Asymptotics ENNReal
 
 noncomputable section
 
Diff
@@ -64,121 +64,67 @@ section Prod
 
 variable {fβ‚‚ : E β†’ G} {fβ‚‚' : E β†’L[π•œ] G}
 
-/- warning: has_strict_fderiv_at.prod -> HasStrictFDerivAt.prod is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.prod HasStrictFDerivAt.prodβ‚“'. -/
 protected theorem HasStrictFDerivAt.prod (hf₁ : HasStrictFDerivAt f₁ f₁' x)
     (hfβ‚‚ : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x :=
   hf₁.prodLeft hfβ‚‚
 #align has_strict_fderiv_at.prod HasStrictFDerivAt.prod
 
-/- warning: has_fderiv_at_filter.prod -> HasFDerivAtFilter.prod is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.prod HasFDerivAtFilter.prodβ‚“'. -/
 theorem HasFDerivAtFilter.prod (hf₁ : HasFDerivAtFilter f₁ f₁' x L)
     (hfβ‚‚ : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
     HasFDerivAtFilter (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x L :=
   hf₁.prodLeft hfβ‚‚
 #align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
 
-/- warning: has_fderiv_within_at.prod -> HasFDerivWithinAt.prod is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.prod HasFDerivWithinAt.prodβ‚“'. -/
 theorem HasFDerivWithinAt.prod (hf₁ : HasFDerivWithinAt f₁ f₁' s x)
     (hfβ‚‚ : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') s x :=
   hf₁.Prod hfβ‚‚
 #align has_fderiv_within_at.prod HasFDerivWithinAt.prod
 
-/- warning: has_fderiv_at.prod -> HasFDerivAt.prod is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.prod HasFDerivAt.prodβ‚“'. -/
 theorem HasFDerivAt.prod (hf₁ : HasFDerivAt f₁ f₁' x) (hfβ‚‚ : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x :=
   hf₁.Prod hfβ‚‚
 #align has_fderiv_at.prod HasFDerivAt.prod
 
-/- warning: has_fderiv_at_prod_mk_left -> hasFDerivAt_prod_mk_left is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (eβ‚€ : E) (fβ‚€ : F), HasFDerivAt.{u1, u2, max u2 u3} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (fun (e : E) => Prod.mk.{u2, u3} E F e fβ‚€) (ContinuousLinearMap.inl.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) eβ‚€
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (eβ‚€ : E) (fβ‚€ : F), HasFDerivAt.{u3, u2, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (fun (e : E) => Prod.mk.{u2, u1} E F e fβ‚€) (ContinuousLinearMap.inl.{u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) eβ‚€
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_leftβ‚“'. -/
 theorem hasFDerivAt_prod_mk_left (eβ‚€ : E) (fβ‚€ : F) :
     HasFDerivAt (fun e : E => (e, fβ‚€)) (inl π•œ E F) eβ‚€ :=
   (hasFDerivAt_id eβ‚€).Prod (hasFDerivAt_const fβ‚€ eβ‚€)
 #align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_left
 
-/- warning: has_fderiv_at_prod_mk_right -> hasFDerivAt_prod_mk_right is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (eβ‚€ : E) (fβ‚€ : F), HasFDerivAt.{u1, u3, max u2 u3} π•œ _inst_1 F _inst_4 _inst_5 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (fun (f : F) => Prod.mk.{u2, u3} E F eβ‚€ f) (ContinuousLinearMap.inr.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) fβ‚€
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u3, u2} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] (eβ‚€ : E) (fβ‚€ : F), HasFDerivAt.{u3, u2, max u2 u1} π•œ _inst_1 F _inst_4 _inst_5 (Prod.{u1, u2} E F) (Prod.normedAddCommGroup.{u1, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u1, u2} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (fun (f : F) => Prod.mk.{u1, u2} E F eβ‚€ f) (ContinuousLinearMap.inr.{u3, u1, u2} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u2} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) fβ‚€
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_rightβ‚“'. -/
 theorem hasFDerivAt_prod_mk_right (eβ‚€ : E) (fβ‚€ : F) :
     HasFDerivAt (fun f : F => (eβ‚€, f)) (inr π•œ E F) fβ‚€ :=
   (hasFDerivAt_const eβ‚€ fβ‚€).Prod (hasFDerivAt_id fβ‚€)
 #align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_right
 
-/- warning: differentiable_within_at.prod -> DifferentiableWithinAt.prod is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> G}, (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) -> (DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s x) -> (DifferentiableWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> G}, (DifferentiableWithinAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) -> (DifferentiableWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s x) -> (DifferentiableWithinAt.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.prod DifferentiableWithinAt.prodβ‚“'. -/
 theorem DifferentiableWithinAt.prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
     (hfβ‚‚ : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s x :=
   (hf₁.HasFDerivWithinAt.Prod hfβ‚‚.HasFDerivWithinAt).DifferentiableWithinAt
 #align differentiable_within_at.prod DifferentiableWithinAt.prod
 
-/- warning: differentiable_at.prod -> DifferentiableAt.prod is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {x : E} {fβ‚‚ : E -> G}, (DifferentiableAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) -> (DifferentiableAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ x) -> (DifferentiableAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {x : E} {fβ‚‚ : E -> G}, (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) -> (DifferentiableAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ x) -> (DifferentiableAt.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.prod DifferentiableAt.prodβ‚“'. -/
 @[simp]
 theorem DifferentiableAt.prod (hf₁ : DifferentiableAt π•œ f₁ x) (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x : E => (f₁ x, fβ‚‚ x)) x :=
   (hf₁.HasFDerivAt.Prod hfβ‚‚.HasFDerivAt).DifferentiableAt
 #align differentiable_at.prod DifferentiableAt.prod
 
-/- warning: differentiable_on.prod -> DifferentiableOn.prod is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {s : Set.{u2} E} {fβ‚‚ : E -> G}, (DifferentiableOn.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s) -> (DifferentiableOn.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s) -> (DifferentiableOn.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) s)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {s : Set.{u3} E} {fβ‚‚ : E -> G}, (DifferentiableOn.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s) -> (DifferentiableOn.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s) -> (DifferentiableOn.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.prod DifferentiableOn.prodβ‚“'. -/
 theorem DifferentiableOn.prod (hf₁ : DifferentiableOn π•œ f₁ s) (hfβ‚‚ : DifferentiableOn π•œ fβ‚‚ s) :
     DifferentiableOn π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s := fun x hx =>
   DifferentiableWithinAt.prod (hf₁ x hx) (hfβ‚‚ x hx)
 #align differentiable_on.prod DifferentiableOn.prod
 
-/- warning: differentiable.prod -> Differentiable.prod is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {fβ‚‚ : E -> G}, (Differentiable.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁) -> (Differentiable.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚) -> (Differentiable.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {fβ‚‚ : E -> G}, (Differentiable.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁) -> (Differentiable.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚) -> (Differentiable.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)))
-Case conversion may be inaccurate. Consider using '#align differentiable.prod Differentiable.prodβ‚“'. -/
 @[simp]
 theorem Differentiable.prod (hf₁ : Differentiable π•œ f₁) (hfβ‚‚ : Differentiable π•œ fβ‚‚) :
     Differentiable π•œ fun x : E => (f₁ x, fβ‚‚ x) := fun x => DifferentiableAt.prod (hf₁ x) (hfβ‚‚ x)
 #align differentiable.prod Differentiable.prod
 
-/- warning: differentiable_at.fderiv_prod -> DifferentiableAt.fderiv_prod is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prodβ‚“'. -/
 theorem DifferentiableAt.fderiv_prod (hf₁ : DifferentiableAt π•œ f₁ x)
     (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x : E => (f₁ x, fβ‚‚ x)) x = (fderiv π•œ f₁ x).Prod (fderiv π•œ fβ‚‚ x) :=
   (hf₁.HasFDerivAt.Prod hfβ‚‚.HasFDerivAt).fderiv
 #align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
 
-/- warning: differentiable_at.fderiv_within_prod -> DifferentiableAt.fderivWithin_prod is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_within_prod DifferentiableAt.fderivWithin_prodβ‚“'. -/
 theorem DifferentiableAt.fderivWithin_prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
     (hfβ‚‚ : DifferentiableWithinAt π•œ fβ‚‚ s x) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s x =
@@ -192,19 +138,10 @@ section Fst
 
 variable {fβ‚‚ : E β†’ F Γ— G} {fβ‚‚' : E β†’L[π•œ] F Γ— G} {p : E Γ— F}
 
-/- warning: has_strict_fderiv_at_fst -> hasStrictFDerivAt_fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasStrictFDerivAt.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) (ContinuousLinearMap.fst.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasStrictFDerivAt.{u3, max u2 u1, u2} π•œ _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u1} E F) (ContinuousLinearMap.fst.{u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_fst hasStrictFDerivAt_fstβ‚“'. -/
 theorem hasStrictFDerivAt_fst : HasStrictFDerivAt (@Prod.fst E F) (fst π•œ E F) p :=
   (fst π•œ E F).HasStrictFDerivAt
 #align has_strict_fderiv_at_fst hasStrictFDerivAt_fst
 
-/- warning: has_strict_fderiv_at.fst -> HasStrictFDerivAt.fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.fst HasStrictFDerivAt.fstβ‚“'. -/
 protected theorem HasStrictFDerivAt.fst (h : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
   hasStrictFDerivAt_fst.comp x h
@@ -217,27 +154,15 @@ theorem hasFDerivAtFilter_fst {L : Filter (E Γ— F)} :
 #align has_fderiv_at_filter_fst hasFDerivAtFilter_fst
 -/
 
-/- warning: has_fderiv_at_filter.fst -> HasFDerivAtFilter.fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.fst HasFDerivAtFilter.fstβ‚“'. -/
 protected theorem HasFDerivAtFilter.fst (h : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
     HasFDerivAtFilter (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x L :=
   hasFDerivAtFilter_fst.comp x h tendsto_map
 #align has_fderiv_at_filter.fst HasFDerivAtFilter.fst
 
-/- warning: has_fderiv_at_fst -> hasFDerivAt_fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasFDerivAt.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) (ContinuousLinearMap.fst.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasFDerivAt.{u3, max u2 u1, u2} π•œ _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u1} E F) (ContinuousLinearMap.fst.{u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_fst hasFDerivAt_fstβ‚“'. -/
 theorem hasFDerivAt_fst : HasFDerivAt (@Prod.fst E F) (fst π•œ E F) p :=
   hasFDerivAtFilter_fst
 #align has_fderiv_at_fst hasFDerivAt_fst
 
-/- warning: has_fderiv_at.fst -> HasFDerivAt.fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.fst HasFDerivAt.fstβ‚“'. -/
 protected theorem HasFDerivAt.fst (h : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
   h.fst
@@ -250,52 +175,25 @@ theorem hasFDerivWithinAt_fst {s : Set (E Γ— F)} :
 #align has_fderiv_within_at_fst hasFDerivWithinAt_fst
 -/
 
-/- warning: has_fderiv_within_at.fst -> HasFDerivWithinAt.fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.fst HasFDerivWithinAt.fstβ‚“'. -/
 protected theorem HasFDerivWithinAt.fst (h : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') s x :=
   h.fst
 #align has_fderiv_within_at.fst HasFDerivWithinAt.fst
 
-/- warning: differentiable_at_fst -> differentiableAt_fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, DifferentiableAt.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) p
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u3, u2} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u1, u2} E F}, DifferentiableAt.{u3, max u2 u1, u1} π•œ _inst_1 (Prod.{u1, u2} E F) (Prod.normedAddCommGroup.{u1, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u1, u2} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u1, u2} E F) p
-Case conversion may be inaccurate. Consider using '#align differentiable_at_fst differentiableAt_fstβ‚“'. -/
 theorem differentiableAt_fst : DifferentiableAt π•œ Prod.fst p :=
   hasFDerivAt_fst.DifferentiableAt
 #align differentiable_at_fst differentiableAt_fst
 
-/- warning: differentiable_at.fst -> DifferentiableAt.fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ x) -> (DifferentiableAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ x) -> (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.fst DifferentiableAt.fstβ‚“'. -/
 @[simp]
 protected theorem DifferentiableAt.fst (h : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x => (fβ‚‚ x).1) x :=
   differentiableAt_fst.comp x h
 #align differentiable_at.fst DifferentiableAt.fst
 
-/- warning: differentiable_fst -> differentiable_fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)], Differentiable.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F)
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)], Differentiable.{u3, max u2 u1, u2} π•œ _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u1} E F)
-Case conversion may be inaccurate. Consider using '#align differentiable_fst differentiable_fstβ‚“'. -/
 theorem differentiable_fst : Differentiable π•œ (Prod.fst : E Γ— F β†’ E) := fun x =>
   differentiableAt_fst
 #align differentiable_fst differentiable_fst
 
-/- warning: differentiable.fst -> Differentiable.fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (Differentiable.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚) -> (Differentiable.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (Differentiable.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚) -> (Differentiable.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)))
-Case conversion may be inaccurate. Consider using '#align differentiable.fst Differentiable.fstβ‚“'. -/
 @[simp]
 protected theorem Differentiable.fst (h : Differentiable π•œ fβ‚‚) :
     Differentiable π•œ fun x => (fβ‚‚ x).1 :=
@@ -308,12 +206,6 @@ theorem differentiableWithinAt_fst {s : Set (E Γ— F)} : DifferentiableWithinAt 
 #align differentiable_within_at_fst differentiableWithinAt_fst
 -/
 
-/- warning: differentiable_within_at.fst -> DifferentiableWithinAt.fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s x) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s x) -> (DifferentiableWithinAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.fst DifferentiableWithinAt.fstβ‚“'. -/
 protected theorem DifferentiableWithinAt.fst (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x => (fβ‚‚ x).1) s x :=
   differentiableAt_fst.comp_differentiableWithinAt x h
@@ -325,46 +217,25 @@ theorem differentiableOn_fst {s : Set (E Γ— F)} : DifferentiableOn π•œ Prod.fst
 #align differentiable_on_fst differentiableOn_fst
 -/
 
-/- warning: differentiable_on.fst -> DifferentiableOn.fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableOn.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s) -> (DifferentiableOn.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) s)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableOn.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s) -> (DifferentiableOn.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.fst DifferentiableOn.fstβ‚“'. -/
 protected theorem DifferentiableOn.fst (h : DifferentiableOn π•œ fβ‚‚ s) :
     DifferentiableOn π•œ (fun x => (fβ‚‚ x).1) s :=
   differentiable_fst.comp_differentiableOn h
 #align differentiable_on.fst DifferentiableOn.fst
 
-/- warning: fderiv_fst -> fderiv_fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, Eq.{max (succ (max u2 u3)) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, max u2 u3} π•œ (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderiv.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) p) (ContinuousLinearMap.fst.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u3, u2} E F}, Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u3, u2} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u3, u2} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u3, u2} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u1, max u2 u3} π•œ (Prod.{u3, u2} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u3, u2} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3)) (fderiv.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u3, u2} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u3, u2} E F) p) (ContinuousLinearMap.fst.{u1, u3, u2} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))
-Case conversion may be inaccurate. Consider using '#align fderiv_fst fderiv_fstβ‚“'. -/
 theorem fderiv_fst : fderiv π•œ Prod.fst p = fst π•œ E F :=
   hasFDerivAt_fst.fderiv
 #align fderiv_fst fderiv_fst
 
-/- warning: fderiv.fst -> fderiv.fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv.fst fderiv.fstβ‚“'. -/
 theorem fderiv.fst (h : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x => (fβ‚‚ x).1) x = (fst π•œ F G).comp (fderiv π•œ fβ‚‚ x) :=
   h.HasFDerivAt.fst.fderiv
 #align fderiv.fst fderiv.fst
 
-/- warning: fderiv_within_fst -> fderivWithin_fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_fst fderivWithin_fstβ‚“'. -/
 theorem fderivWithin_fst {s : Set (E Γ— F)} (hs : UniqueDiffWithinAt π•œ s p) :
     fderivWithin π•œ Prod.fst s p = fst π•œ E F :=
   hasFDerivWithinAt_fst.fderivWithin hs
 #align fderiv_within_fst fderivWithin_fst
 
-/- warning: fderiv_within.fst -> fderivWithin.fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within.fst fderivWithin.fstβ‚“'. -/
 theorem fderivWithin.fst (hs : UniqueDiffWithinAt π•œ s x) (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     fderivWithin π•œ (fun x => (fβ‚‚ x).1) s x = (fst π•œ F G).comp (fderivWithin π•œ fβ‚‚ s x) :=
   h.HasFDerivWithinAt.fst.fderivWithin hs
@@ -376,19 +247,10 @@ section Snd
 
 variable {fβ‚‚ : E β†’ F Γ— G} {fβ‚‚' : E β†’L[π•œ] F Γ— G} {p : E Γ— F}
 
-/- warning: has_strict_fderiv_at_snd -> hasStrictFDerivAt_snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasStrictFDerivAt.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) (ContinuousLinearMap.snd.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasStrictFDerivAt.{u3, max u2 u1, u1} π•œ _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u1} E F) (ContinuousLinearMap.snd.{u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_snd hasStrictFDerivAt_sndβ‚“'. -/
 theorem hasStrictFDerivAt_snd : HasStrictFDerivAt (@Prod.snd E F) (snd π•œ E F) p :=
   (snd π•œ E F).HasStrictFDerivAt
 #align has_strict_fderiv_at_snd hasStrictFDerivAt_snd
 
-/- warning: has_strict_fderiv_at.snd -> HasStrictFDerivAt.snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.snd HasStrictFDerivAt.sndβ‚“'. -/
 protected theorem HasStrictFDerivAt.snd (h : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
   hasStrictFDerivAt_snd.comp x h
@@ -401,27 +263,15 @@ theorem hasFDerivAtFilter_snd {L : Filter (E Γ— F)} :
 #align has_fderiv_at_filter_snd hasFDerivAtFilter_snd
 -/
 
-/- warning: has_fderiv_at_filter.snd -> HasFDerivAtFilter.snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.snd HasFDerivAtFilter.sndβ‚“'. -/
 protected theorem HasFDerivAtFilter.snd (h : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
     HasFDerivAtFilter (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x L :=
   hasFDerivAtFilter_snd.comp x h tendsto_map
 #align has_fderiv_at_filter.snd HasFDerivAtFilter.snd
 
-/- warning: has_fderiv_at_snd -> hasFDerivAt_snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasFDerivAt.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) (ContinuousLinearMap.snd.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasFDerivAt.{u3, max u2 u1, u1} π•œ _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u1} E F) (ContinuousLinearMap.snd.{u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_snd hasFDerivAt_sndβ‚“'. -/
 theorem hasFDerivAt_snd : HasFDerivAt (@Prod.snd E F) (snd π•œ E F) p :=
   hasFDerivAtFilter_snd
 #align has_fderiv_at_snd hasFDerivAt_snd
 
-/- warning: has_fderiv_at.snd -> HasFDerivAt.snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.snd HasFDerivAt.sndβ‚“'. -/
 protected theorem HasFDerivAt.snd (h : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
   h.snd
@@ -434,52 +284,25 @@ theorem hasFDerivWithinAt_snd {s : Set (E Γ— F)} :
 #align has_fderiv_within_at_snd hasFDerivWithinAt_snd
 -/
 
-/- warning: has_fderiv_within_at.snd -> HasFDerivWithinAt.snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.snd HasFDerivWithinAt.sndβ‚“'. -/
 protected theorem HasFDerivWithinAt.snd (h : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') s x :=
   h.snd
 #align has_fderiv_within_at.snd HasFDerivWithinAt.snd
 
-/- warning: differentiable_at_snd -> differentiableAt_snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, DifferentiableAt.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) p
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u3, u2} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u1, u2} E F}, DifferentiableAt.{u3, max u2 u1, u2} π•œ _inst_1 (Prod.{u1, u2} E F) (Prod.normedAddCommGroup.{u1, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u1, u2} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u1, u2} E F) p
-Case conversion may be inaccurate. Consider using '#align differentiable_at_snd differentiableAt_sndβ‚“'. -/
 theorem differentiableAt_snd : DifferentiableAt π•œ Prod.snd p :=
   hasFDerivAt_snd.DifferentiableAt
 #align differentiable_at_snd differentiableAt_snd
 
-/- warning: differentiable_at.snd -> DifferentiableAt.snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ x) -> (DifferentiableAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ x) -> (DifferentiableAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.snd DifferentiableAt.sndβ‚“'. -/
 @[simp]
 protected theorem DifferentiableAt.snd (h : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x => (fβ‚‚ x).2) x :=
   differentiableAt_snd.comp x h
 #align differentiable_at.snd DifferentiableAt.snd
 
-/- warning: differentiable_snd -> differentiable_snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)], Differentiable.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F)
-but is expected to have type
-  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)], Differentiable.{u3, max u2 u1, u1} π•œ _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u1} E F)
-Case conversion may be inaccurate. Consider using '#align differentiable_snd differentiable_sndβ‚“'. -/
 theorem differentiable_snd : Differentiable π•œ (Prod.snd : E Γ— F β†’ F) := fun x =>
   differentiableAt_snd
 #align differentiable_snd differentiable_snd
 
-/- warning: differentiable.snd -> Differentiable.snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (Differentiable.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚) -> (Differentiable.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (Differentiable.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚) -> (Differentiable.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)))
-Case conversion may be inaccurate. Consider using '#align differentiable.snd Differentiable.sndβ‚“'. -/
 @[simp]
 protected theorem Differentiable.snd (h : Differentiable π•œ fβ‚‚) :
     Differentiable π•œ fun x => (fβ‚‚ x).2 :=
@@ -492,12 +315,6 @@ theorem differentiableWithinAt_snd {s : Set (E Γ— F)} : DifferentiableWithinAt 
 #align differentiable_within_at_snd differentiableWithinAt_snd
 -/
 
-/- warning: differentiable_within_at.snd -> DifferentiableWithinAt.snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s x) -> (DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s x) -> (DifferentiableWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.snd DifferentiableWithinAt.sndβ‚“'. -/
 protected theorem DifferentiableWithinAt.snd (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x => (fβ‚‚ x).2) s x :=
   differentiableAt_snd.comp_differentiableWithinAt x h
@@ -509,46 +326,25 @@ theorem differentiableOn_snd {s : Set (E Γ— F)} : DifferentiableOn π•œ Prod.snd
 #align differentiable_on_snd differentiableOn_snd
 -/
 
-/- warning: differentiable_on.snd -> DifferentiableOn.snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableOn.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s) -> (DifferentiableOn.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) s)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableOn.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s) -> (DifferentiableOn.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.snd DifferentiableOn.sndβ‚“'. -/
 protected theorem DifferentiableOn.snd (h : DifferentiableOn π•œ fβ‚‚ s) :
     DifferentiableOn π•œ (fun x => (fβ‚‚ x).2) s :=
   differentiable_snd.comp_differentiableOn h
 #align differentiable_on.snd DifferentiableOn.snd
 
-/- warning: fderiv_snd -> fderiv_snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, Eq.{max (succ (max u2 u3)) (succ u3)} (ContinuousLinearMap.{u1, u1, max u2 u3, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, max u2 u3} π•œ (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) p) (ContinuousLinearMap.snd.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u3, u2} E F}, Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u3, u2} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u3, u2} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u3, u2} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, max u2 u3} π•œ (Prod.{u3, u2} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u3, u2} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u3, u2} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u3, u2} E F) p) (ContinuousLinearMap.snd.{u1, u3, u2} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))
-Case conversion may be inaccurate. Consider using '#align fderiv_snd fderiv_sndβ‚“'. -/
 theorem fderiv_snd : fderiv π•œ Prod.snd p = snd π•œ E F :=
   hasFDerivAt_snd.fderiv
 #align fderiv_snd fderiv_snd
 
-/- warning: fderiv.snd -> fderiv.snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv.snd fderiv.sndβ‚“'. -/
 theorem fderiv.snd (h : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x => (fβ‚‚ x).2) x = (snd π•œ F G).comp (fderiv π•œ fβ‚‚ x) :=
   h.HasFDerivAt.snd.fderiv
 #align fderiv.snd fderiv.snd
 
-/- warning: fderiv_within_snd -> fderivWithin_snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_snd fderivWithin_sndβ‚“'. -/
 theorem fderivWithin_snd {s : Set (E Γ— F)} (hs : UniqueDiffWithinAt π•œ s p) :
     fderivWithin π•œ Prod.snd s p = snd π•œ E F :=
   hasFDerivWithinAt_snd.fderivWithin hs
 #align fderiv_within_snd fderivWithin_snd
 
-/- warning: fderiv_within.snd -> fderivWithin.snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within.snd fderivWithin.sndβ‚“'. -/
 theorem fderivWithin.snd (hs : UniqueDiffWithinAt π•œ s x) (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     fderivWithin π•œ (fun x => (fβ‚‚ x).2) s x = (snd π•œ F G).comp (fderivWithin π•œ fβ‚‚ s x) :=
   h.HasFDerivWithinAt.snd.fderivWithin hs
@@ -560,25 +356,16 @@ section Prod_map
 
 variable {fβ‚‚ : G β†’ G'} {fβ‚‚' : G β†’L[π•œ] G'} {y : G} (p : E Γ— G)
 
-/- warning: has_strict_fderiv_at.prod_map -> HasStrictFDerivAt.prodMap is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMapβ‚“'. -/
 protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
     (hfβ‚‚ : HasStrictFDerivAt fβ‚‚ fβ‚‚' p.2) : HasStrictFDerivAt (Prod.map f fβ‚‚) (f'.Prod_map fβ‚‚') p :=
   (hf.comp p hasStrictFDerivAt_fst).Prod (hfβ‚‚.comp p hasStrictFDerivAt_snd)
 #align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMap
 
-/- warning: has_fderiv_at.prod_map -> HasFDerivAt.prodMap is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.prod_map HasFDerivAt.prodMapβ‚“'. -/
 protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ‚‚ : HasFDerivAt fβ‚‚ fβ‚‚' p.2) :
     HasFDerivAt (Prod.map f fβ‚‚) (f'.Prod_map fβ‚‚') p :=
   (hf.comp p hasFDerivAt_fst).Prod (hfβ‚‚.comp p hasFDerivAt_snd)
 #align has_fderiv_at.prod_map HasFDerivAt.prodMap
 
-/- warning: differentiable_at.prod_map -> DifferentiableAt.prod_map is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align differentiable_at.prod_map DifferentiableAt.prod_mapβ‚“'. -/
 @[simp]
 protected theorem DifferentiableAt.prod_map (hf : DifferentiableAt π•œ f p.1)
     (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ p.2) : DifferentiableAt π•œ (fun p : E Γ— G => (f p.1, fβ‚‚ p.2)) p :=
@@ -608,9 +395,6 @@ variable {ΞΉ : Type _} [Fintype ΞΉ] {F' : ΞΉ β†’ Type _} [βˆ€ i, NormedAddCommGr
   [βˆ€ i, NormedSpace π•œ (F' i)] {Ο† : βˆ€ i, E β†’ F' i} {Ο†' : βˆ€ i, E β†’L[π•œ] F' i} {Ξ¦ : E β†’ βˆ€ i, F' i}
   {Ξ¦' : E β†’L[π•œ] βˆ€ i, F' i}
 
-/- warning: has_strict_fderiv_at_pi' -> hasStrictFDerivAt_pi' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'β‚“'. -/
 @[simp]
 theorem hasStrictFDerivAt_pi' :
     HasStrictFDerivAt Ξ¦ Ξ¦' x ↔ βˆ€ i, HasStrictFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
@@ -619,9 +403,6 @@ theorem hasStrictFDerivAt_pi' :
   exact is_o_pi
 #align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
 
-/- warning: has_strict_fderiv_at_pi -> hasStrictFDerivAt_pi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_pi hasStrictFDerivAt_piβ‚“'. -/
 @[simp]
 theorem hasStrictFDerivAt_pi :
     HasStrictFDerivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
@@ -629,9 +410,6 @@ theorem hasStrictFDerivAt_pi :
   hasStrictFDerivAt_pi'
 #align has_strict_fderiv_at_pi hasStrictFDerivAt_pi
 
-/- warning: has_fderiv_at_filter_pi' -> hasFDerivAtFilter_pi' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'β‚“'. -/
 @[simp]
 theorem hasFDerivAtFilter_pi' :
     HasFDerivAtFilter Ξ¦ Ξ¦' x L ↔ βˆ€ i, HasFDerivAtFilter (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x L :=
@@ -640,57 +418,36 @@ theorem hasFDerivAtFilter_pi' :
   exact is_o_pi
 #align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'
 
-/- warning: has_fderiv_at_filter_pi -> hasFDerivAtFilter_pi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_pi hasFDerivAtFilter_piβ‚“'. -/
 theorem hasFDerivAtFilter_pi :
     HasFDerivAtFilter (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x L ↔
       βˆ€ i, HasFDerivAtFilter (Ο† i) (Ο†' i) x L :=
   hasFDerivAtFilter_pi'
 #align has_fderiv_at_filter_pi hasFDerivAtFilter_pi
 
-/- warning: has_fderiv_at_pi' -> hasFDerivAt_pi' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_pi' hasFDerivAt_pi'β‚“'. -/
 @[simp]
 theorem hasFDerivAt_pi' :
     HasFDerivAt Ξ¦ Ξ¦' x ↔ βˆ€ i, HasFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
   hasFDerivAtFilter_pi'
 #align has_fderiv_at_pi' hasFDerivAt_pi'
 
-/- warning: has_fderiv_at_pi -> hasFDerivAt_pi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_pi hasFDerivAt_piβ‚“'. -/
 theorem hasFDerivAt_pi :
     HasFDerivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
       βˆ€ i, HasFDerivAt (Ο† i) (Ο†' i) x :=
   hasFDerivAtFilter_pi
 #align has_fderiv_at_pi hasFDerivAt_pi
 
-/- warning: has_fderiv_within_at_pi' -> hasFDerivWithinAt_pi' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'β‚“'. -/
 @[simp]
 theorem hasFDerivWithinAt_pi' :
     HasFDerivWithinAt Ξ¦ Ξ¦' s x ↔ βˆ€ i, HasFDerivWithinAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') s x :=
   hasFDerivAtFilter_pi'
 #align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'
 
-/- warning: has_fderiv_within_at_pi -> hasFDerivWithinAt_pi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_pi hasFDerivWithinAt_piβ‚“'. -/
 theorem hasFDerivWithinAt_pi :
     HasFDerivWithinAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') s x ↔
       βˆ€ i, HasFDerivWithinAt (Ο† i) (Ο†' i) s x :=
   hasFDerivAtFilter_pi
 #align has_fderiv_within_at_pi hasFDerivWithinAt_pi
 
-/- warning: differentiable_within_at_pi -> differentiableWithinAt_pi is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s x) (forall (i : ΞΉ), DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s x) (forall (i : ΞΉ), DifferentiableWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at_pi differentiableWithinAt_piβ‚“'. -/
 @[simp]
 theorem differentiableWithinAt_pi :
     DifferentiableWithinAt π•œ Ξ¦ s x ↔ βˆ€ i, DifferentiableWithinAt π•œ (fun x => Ξ¦ x i) s x :=
@@ -698,42 +455,21 @@ theorem differentiableWithinAt_pi :
     (hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).DifferentiableWithinAt⟩
 #align differentiable_within_at_pi differentiableWithinAt_pi
 
-/- warning: differentiable_at_pi -> differentiableAt_pi is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ x) (forall (i : ΞΉ), DifferentiableAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ x) (forall (i : ΞΉ), DifferentiableAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at_pi differentiableAt_piβ‚“'. -/
 @[simp]
 theorem differentiableAt_pi : DifferentiableAt π•œ Ξ¦ x ↔ βˆ€ i, DifferentiableAt π•œ (fun x => Ξ¦ x i) x :=
   ⟨fun h i => (hasFDerivAt_pi'.1 h.HasFDerivAt i).DifferentiableAt, fun h =>
     (hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).DifferentiableAt⟩
 #align differentiable_at_pi differentiableAt_pi
 
-/- warning: differentiable_on_pi -> differentiableOn_pi is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableOn.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s) (forall (i : ΞΉ), DifferentiableOn.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableOn.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s) (forall (i : ΞΉ), DifferentiableOn.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on_pi differentiableOn_piβ‚“'. -/
 theorem differentiableOn_pi : DifferentiableOn π•œ Ξ¦ s ↔ βˆ€ i, DifferentiableOn π•œ (fun x => Ξ¦ x i) s :=
   ⟨fun h i x hx => differentiableWithinAt_pi.1 (h x hx) i, fun h x hx =>
     differentiableWithinAt_pi.2 fun i => h i x hx⟩
 #align differentiable_on_pi differentiableOn_pi
 
-/- warning: differentiable_pi -> differentiable_pi is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (Differentiable.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦) (forall (i : ΞΉ), Differentiable.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (Differentiable.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦) (forall (i : ΞΉ), Differentiable.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i))
-Case conversion may be inaccurate. Consider using '#align differentiable_pi differentiable_piβ‚“'. -/
 theorem differentiable_pi : Differentiable π•œ Ξ¦ ↔ βˆ€ i, Differentiable π•œ fun x => Ξ¦ x i :=
   ⟨fun h i x => differentiableAt_pi.1 (h x) i, fun h x => differentiableAt_pi.2 fun i => h i x⟩
 #align differentiable_pi differentiable_pi
 
-/- warning: fderiv_within_pi -> fderivWithin_pi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_pi fderivWithin_piβ‚“'. -/
 -- TODO: find out which version (`Ο†` or `Ξ¦`) works better with `rw`/`simp`
 theorem fderivWithin_pi (h : βˆ€ i, DifferentiableWithinAt π•œ (Ο† i) s x)
     (hs : UniqueDiffWithinAt π•œ s x) :
@@ -741,9 +477,6 @@ theorem fderivWithin_pi (h : βˆ€ i, DifferentiableWithinAt π•œ (Ο† i) s x)
   (hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).fderivWithin hs
 #align fderiv_within_pi fderivWithin_pi
 
-/- warning: fderiv_pi -> fderiv_pi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_pi fderiv_piβ‚“'. -/
 theorem fderiv_pi (h : βˆ€ i, DifferentiableAt π•œ (Ο† i) x) :
     fderiv π•œ (fun x i => Ο† i x) x = pi fun i => fderiv π•œ (Ο† i) x :=
   (hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).fderiv
Diff
@@ -65,10 +65,7 @@ section Prod
 variable {fβ‚‚ : E β†’ G} {fβ‚‚' : E β†’L[π•œ] G}
 
 /- warning: has_strict_fderiv_at.prod -> HasStrictFDerivAt.prod is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasStrictFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x) -> (HasStrictFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' x) -> (HasStrictFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) f₁' fβ‚‚') x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasStrictFDerivAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x) -> (HasStrictFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' x) -> (HasStrictFDerivAt.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) f₁' fβ‚‚') x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.prod HasStrictFDerivAt.prodβ‚“'. -/
 protected theorem HasStrictFDerivAt.prod (hf₁ : HasStrictFDerivAt f₁ f₁' x)
     (hfβ‚‚ : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
@@ -77,10 +74,7 @@ protected theorem HasStrictFDerivAt.prod (hf₁ : HasStrictFDerivAt f₁ f₁' x
 #align has_strict_fderiv_at.prod HasStrictFDerivAt.prod
 
 /- warning: has_fderiv_at_filter.prod -> HasFDerivAtFilter.prod is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivAtFilter.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x L) -> (HasFDerivAtFilter.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' x L) -> (HasFDerivAtFilter.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) f₁' fβ‚‚') x L)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {L : Filter.{u3} E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasFDerivAtFilter.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x L) -> (HasFDerivAtFilter.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' x L) -> (HasFDerivAtFilter.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) f₁' fβ‚‚') x L)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.prod HasFDerivAtFilter.prodβ‚“'. -/
 theorem HasFDerivAtFilter.prod (hf₁ : HasFDerivAtFilter f₁ f₁' x L)
     (hfβ‚‚ : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
@@ -89,10 +83,7 @@ theorem HasFDerivAtFilter.prod (hf₁ : HasFDerivAtFilter f₁ f₁' x L)
 #align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
 
 /- warning: has_fderiv_within_at.prod -> HasFDerivWithinAt.prod is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' s x) -> (HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' s x) -> (HasFDerivWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) f₁' fβ‚‚') s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasFDerivWithinAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' s x) -> (HasFDerivWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' s x) -> (HasFDerivWithinAt.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) f₁' fβ‚‚') s x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.prod HasFDerivWithinAt.prodβ‚“'. -/
 theorem HasFDerivWithinAt.prod (hf₁ : HasFDerivWithinAt f₁ f₁' s x)
     (hfβ‚‚ : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
@@ -101,10 +92,7 @@ theorem HasFDerivWithinAt.prod (hf₁ : HasFDerivWithinAt f₁ f₁' s x)
 #align has_fderiv_within_at.prod HasFDerivWithinAt.prod
 
 /- warning: has_fderiv_at.prod -> HasFDerivAt.prod is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x) -> (HasFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' x) -> (HasFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) f₁' fβ‚‚') x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasFDerivAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x) -> (HasFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' x) -> (HasFDerivAt.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) f₁' fβ‚‚') x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at.prod HasFDerivAt.prodβ‚“'. -/
 theorem HasFDerivAt.prod (hf₁ : HasFDerivAt f₁ f₁' x) (hfβ‚‚ : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x :=
@@ -180,10 +168,7 @@ theorem Differentiable.prod (hf₁ : Differentiable π•œ f₁) (hfβ‚‚ : Differen
 #align differentiable.prod Differentiable.prod
 
 /- warning: differentiable_at.fderiv_prod -> DifferentiableAt.fderiv_prod is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {x : E} {fβ‚‚ : E -> G}, (DifferentiableAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) -> (DifferentiableAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (UniformSpace.toTopologicalSpace.{max u3 u4} (Prod.{u3, u4} F G) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (Prod.{u3, u4} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π•œ (Prod.{u3, u4} F G) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6)) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))) (fderiv.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) x) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fderiv.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) (fderiv.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {x : E} {fβ‚‚ : E -> G}, (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) -> (DifferentiableAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ x) -> (Eq.{max (max (succ u3) (succ u2)) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (UniformSpace.toTopologicalSpace.{max u1 u2} (Prod.{u2, u1} F G) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (Prod.{u2, u1} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π•œ (Prod.{u2, u1} F G) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6)) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))) (fderiv.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) x) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fderiv.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) (fderiv.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prodβ‚“'. -/
 theorem DifferentiableAt.fderiv_prod (hf₁ : DifferentiableAt π•œ f₁ x)
     (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ x) :
@@ -192,10 +177,7 @@ theorem DifferentiableAt.fderiv_prod (hf₁ : DifferentiableAt π•œ f₁ x)
 #align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
 
 /- warning: differentiable_at.fderiv_within_prod -> DifferentiableAt.fderivWithin_prod is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> G}, (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) -> (DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s x) -> (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (UniformSpace.toTopologicalSpace.{max u3 u4} (Prod.{u3, u4} F G) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (Prod.{u3, u4} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π•œ (Prod.{u3, u4} F G) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6)) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))) (fderivWithin.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) s x) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fderivWithin.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> G}, (DifferentiableWithinAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) -> (DifferentiableWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s x) -> (UniqueDiffWithinAt.{u4, u3} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Eq.{max (max (succ u3) (succ u2)) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (UniformSpace.toTopologicalSpace.{max u1 u2} (Prod.{u2, u1} F G) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (Prod.{u2, u1} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π•œ (Prod.{u2, u1} F G) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6)) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))) (fderivWithin.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) s x) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fderivWithin.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_within_prod DifferentiableAt.fderivWithin_prodβ‚“'. -/
 theorem DifferentiableAt.fderivWithin_prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
     (hfβ‚‚ : DifferentiableWithinAt π•œ fβ‚‚ s x) (hxs : UniqueDiffWithinAt π•œ s x) :
@@ -221,10 +203,7 @@ theorem hasStrictFDerivAt_fst : HasStrictFDerivAt (@Prod.fst E F) (fst π•œ E F)
 #align has_strict_fderiv_at_fst hasStrictFDerivAt_fst
 
 /- warning: has_strict_fderiv_at.fst -> HasStrictFDerivAt.fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasStrictFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasStrictFDerivAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.fst HasStrictFDerivAt.fstβ‚“'. -/
 protected theorem HasStrictFDerivAt.fst (h : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
@@ -239,10 +218,7 @@ theorem hasFDerivAtFilter_fst {L : Filter (E Γ— F)} :
 -/
 
 /- warning: has_fderiv_at_filter.fst -> HasFDerivAtFilter.fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {L : Filter.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x L) -> (HasFDerivAtFilter.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') x L)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {L : Filter.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x L) -> (HasFDerivAtFilter.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') x L)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.fst HasFDerivAtFilter.fstβ‚“'. -/
 protected theorem HasFDerivAtFilter.fst (h : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
     HasFDerivAtFilter (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x L :=
@@ -260,10 +236,7 @@ theorem hasFDerivAt_fst : HasFDerivAt (@Prod.fst E F) (fst π•œ E F) p :=
 #align has_fderiv_at_fst hasFDerivAt_fst
 
 /- warning: has_fderiv_at.fst -> HasFDerivAt.fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasFDerivAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at.fst HasFDerivAt.fstβ‚“'. -/
 protected theorem HasFDerivAt.fst (h : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
@@ -278,10 +251,7 @@ theorem hasFDerivWithinAt_fst {s : Set (E Γ— F)} :
 -/
 
 /- warning: has_fderiv_within_at.fst -> HasFDerivWithinAt.fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' s x) -> (HasFDerivWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' s x) -> (HasFDerivWithinAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') s x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.fst HasFDerivWithinAt.fstβ‚“'. -/
 protected theorem HasFDerivWithinAt.fst (h : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') s x :=
@@ -377,10 +347,7 @@ theorem fderiv_fst : fderiv π•œ Prod.fst p = fst π•œ E F :=
 #align fderiv_fst fderiv_fst
 
 /- warning: fderiv.fst -> fderiv.fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ x) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderiv.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv.fst fderiv.fstβ‚“'. -/
 theorem fderiv.fst (h : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x => (fβ‚‚ x).1) x = (fst π•œ F G).comp (fderiv π•œ fβ‚‚ x) :=
@@ -388,10 +355,7 @@ theorem fderiv.fst (h : DifferentiableAt π•œ fβ‚‚ x) :
 #align fderiv.fst fderiv.fst
 
 /- warning: fderiv_within_fst -> fderivWithin_fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u2 u3} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.addCommMonoid.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π•œ E F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Prod.topologicalSpace.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ (max u2 u3)) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, max u2 u3} π•œ (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderivWithin.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) s p) (ContinuousLinearMap.fst.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u3 u2} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.instAddCommMonoidSum.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π•œ E F (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (instTopologicalSpaceProd.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, max u3 u2, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u3 u2} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u3 u2} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, max u3 u2} π•œ (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderivWithin.{u1, max u3 u2, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) s p) (ContinuousLinearMap.fst.{u1, u2, u3} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv_within_fst fderivWithin_fstβ‚“'. -/
 theorem fderivWithin_fst {s : Set (E Γ— F)} (hs : UniqueDiffWithinAt π•œ s p) :
     fderivWithin π•œ Prod.fst s p = fst π•œ E F :=
@@ -399,10 +363,7 @@ theorem fderivWithin_fst {s : Set (E Γ— F)} (hs : UniqueDiffWithinAt π•œ s p) :
 #align fderiv_within_fst fderivWithin_fst
 
 /- warning: fderiv_within.fst -> fderivWithin.fst is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (UniqueDiffWithinAt.{u4, u3} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s x) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) s x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderivWithin.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv_within.fst fderivWithin.fstβ‚“'. -/
 theorem fderivWithin.fst (hs : UniqueDiffWithinAt π•œ s x) (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     fderivWithin π•œ (fun x => (fβ‚‚ x).1) s x = (fst π•œ F G).comp (fderivWithin π•œ fβ‚‚ s x) :=
@@ -426,10 +387,7 @@ theorem hasStrictFDerivAt_snd : HasStrictFDerivAt (@Prod.snd E F) (snd π•œ E F)
 #align has_strict_fderiv_at_snd hasStrictFDerivAt_snd
 
 /- warning: has_strict_fderiv_at.snd -> HasStrictFDerivAt.snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasStrictFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasStrictFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.snd HasStrictFDerivAt.sndβ‚“'. -/
 protected theorem HasStrictFDerivAt.snd (h : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
@@ -444,10 +402,7 @@ theorem hasFDerivAtFilter_snd {L : Filter (E Γ— F)} :
 -/
 
 /- warning: has_fderiv_at_filter.snd -> HasFDerivAtFilter.snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {L : Filter.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x L) -> (HasFDerivAtFilter.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') x L)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {L : Filter.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x L) -> (HasFDerivAtFilter.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') x L)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.snd HasFDerivAtFilter.sndβ‚“'. -/
 protected theorem HasFDerivAtFilter.snd (h : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
     HasFDerivAtFilter (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x L :=
@@ -465,10 +420,7 @@ theorem hasFDerivAt_snd : HasFDerivAt (@Prod.snd E F) (snd π•œ E F) p :=
 #align has_fderiv_at_snd hasFDerivAt_snd
 
 /- warning: has_fderiv_at.snd -> HasFDerivAt.snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at.snd HasFDerivAt.sndβ‚“'. -/
 protected theorem HasFDerivAt.snd (h : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
@@ -483,10 +435,7 @@ theorem hasFDerivWithinAt_snd {s : Set (E Γ— F)} :
 -/
 
 /- warning: has_fderiv_within_at.snd -> HasFDerivWithinAt.snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' s x) -> (HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' s x) -> (HasFDerivWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') s x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.snd HasFDerivWithinAt.sndβ‚“'. -/
 protected theorem HasFDerivWithinAt.snd (h : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') s x :=
@@ -582,10 +531,7 @@ theorem fderiv_snd : fderiv π•œ Prod.snd p = snd π•œ E F :=
 #align fderiv_snd fderiv_snd
 
 /- warning: fderiv.snd -> fderiv.snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderiv.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderiv.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv.snd fderiv.sndβ‚“'. -/
 theorem fderiv.snd (h : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x => (fβ‚‚ x).2) x = (snd π•œ F G).comp (fderiv π•œ fβ‚‚ x) :=
@@ -593,10 +539,7 @@ theorem fderiv.snd (h : DifferentiableAt π•œ fβ‚‚ x) :
 #align fderiv.snd fderiv.snd
 
 /- warning: fderiv_within_snd -> fderivWithin_snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u2 u3} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.addCommMonoid.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π•œ E F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Prod.topologicalSpace.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ (max u2 u3)) (succ u3)} (ContinuousLinearMap.{u1, u1, max u2 u3, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, max u2 u3} π•œ (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) s p) (ContinuousLinearMap.snd.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u3 u2} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.instAddCommMonoidSum.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π•œ E F (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (instTopologicalSpaceProd.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, max u3 u2, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u3 u2} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u3 u2} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, max u3 u2} π•œ (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, max u3 u2, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) s p) (ContinuousLinearMap.snd.{u1, u2, u3} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv_within_snd fderivWithin_sndβ‚“'. -/
 theorem fderivWithin_snd {s : Set (E Γ— F)} (hs : UniqueDiffWithinAt π•œ s p) :
     fderivWithin π•œ Prod.snd s p = snd π•œ E F :=
@@ -604,10 +547,7 @@ theorem fderivWithin_snd {s : Set (E Γ— F)} (hs : UniqueDiffWithinAt π•œ s p) :
 #align fderiv_within_snd fderivWithin_snd
 
 /- warning: fderiv_within.snd -> fderivWithin.snd is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (UniqueDiffWithinAt.{u4, u3} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderivWithin.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) s x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderivWithin.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv_within.snd fderivWithin.sndβ‚“'. -/
 theorem fderivWithin.snd (hs : UniqueDiffWithinAt π•œ s x) (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     fderivWithin π•œ (fun x => (fβ‚‚ x).2) s x = (snd π•œ F G).comp (fderivWithin π•œ fβ‚‚ s x) :=
@@ -621,10 +561,7 @@ section Prod_map
 variable {fβ‚‚ : G β†’ G'} {fβ‚‚' : G β†’L[π•œ] G'} {y : G} (p : E Γ— G)
 
 /- warning: has_strict_fderiv_at.prod_map -> HasStrictFDerivAt.prodMap is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ‚‚ : G -> G'} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u4, u5} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9)} (p : Prod.{u2, u4} E G), (HasStrictFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u2, u4} E G p)) -> (HasStrictFDerivAt.{u1, u4, u5} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ‚‚ fβ‚‚' (Prod.snd.{u2, u4} E G p)) -> (HasStrictFDerivAt.{u1, max u2 u4, max u3 u5} π•œ _inst_1 (Prod.{u2, u4} E G) (Prod.normedAddCommGroup.{u2, u4} E G _inst_2 _inst_6) (Prod.normedSpace.{u1, u2, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (Prod.{u3, u5} F G') (Prod.normedAddCommGroup.{u3, u5} F G' _inst_4 _inst_8) (Prod.normedSpace.{u1, u3, u5} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (Prod.map.{u2, u3, u4, u5} E F G G' f fβ‚‚) (ContinuousLinearMap.prodMap.{u1, u2, u3, u4, u5} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) f' fβ‚‚') p)
-but is expected to have type
-  forall {π•œ : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u5} π•œ] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {G' : Type.{u1}} [_inst_8 : NormedAddCommGroup.{u1} G'] [_inst_9 : NormedSpace.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u5, u5, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (RingHom.id.{u5} π•œ (Semiring.toNonAssocSemiring.{u5} π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ‚‚ : G -> G'} {fβ‚‚' : ContinuousLinearMap.{u5, u5, u2, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (RingHom.id.{u5} π•œ (Semiring.toNonAssocSemiring.{u5} π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoMetricSpace.toUniformSpace.{u1} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9)} (p : Prod.{u4, u2} E G), (HasStrictFDerivAt.{u5, u4, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u4, u2} E G p)) -> (HasStrictFDerivAt.{u5, u2, u1} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ‚‚ fβ‚‚' (Prod.snd.{u4, u2} E G p)) -> (HasStrictFDerivAt.{u5, max u2 u4, max u1 u3} π•œ _inst_1 (Prod.{u4, u2} E G) (Prod.normedAddCommGroup.{u4, u2} E G _inst_2 _inst_6) (Prod.normedSpace.{u5, u4, u2} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (Prod.{u3, u1} F G') (Prod.normedAddCommGroup.{u3, u1} F G' _inst_4 _inst_8) (Prod.normedSpace.{u5, u3, u1} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) (Prod.map.{u4, u3, u2, u1} E F G G' f fβ‚‚) (ContinuousLinearMap.prodMap.{u5, u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoEMetricSpace.toUniformSpace.{u2} G (PseudoMetricSpace.toPseudoEMetricSpace.{u2} G (SeminormedAddGroup.toPseudoMetricSpace.{u2} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoEMetricSpace.toUniformSpace.{u1} G' (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G' (SeminormedAddGroup.toPseudoMetricSpace.{u1} G' (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) f' fβ‚‚') p)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMapβ‚“'. -/
 protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
     (hfβ‚‚ : HasStrictFDerivAt fβ‚‚ fβ‚‚' p.2) : HasStrictFDerivAt (Prod.map f fβ‚‚) (f'.Prod_map fβ‚‚') p :=
@@ -632,10 +569,7 @@ protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
 #align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMap
 
 /- warning: has_fderiv_at.prod_map -> HasFDerivAt.prodMap is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ‚‚ : G -> G'} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u4, u5} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9)} (p : Prod.{u2, u4} E G), (HasFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u2, u4} E G p)) -> (HasFDerivAt.{u1, u4, u5} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ‚‚ fβ‚‚' (Prod.snd.{u2, u4} E G p)) -> (HasFDerivAt.{u1, max u2 u4, max u3 u5} π•œ _inst_1 (Prod.{u2, u4} E G) (Prod.normedAddCommGroup.{u2, u4} E G _inst_2 _inst_6) (Prod.normedSpace.{u1, u2, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (Prod.{u3, u5} F G') (Prod.normedAddCommGroup.{u3, u5} F G' _inst_4 _inst_8) (Prod.normedSpace.{u1, u3, u5} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (Prod.map.{u2, u3, u4, u5} E F G G' f fβ‚‚) (ContinuousLinearMap.prodMap.{u1, u2, u3, u4, u5} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) f' fβ‚‚') p)
-but is expected to have type
-  forall {π•œ : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u5} π•œ] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {G' : Type.{u1}} [_inst_8 : NormedAddCommGroup.{u1} G'] [_inst_9 : NormedSpace.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u5, u5, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (RingHom.id.{u5} π•œ (Semiring.toNonAssocSemiring.{u5} π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ‚‚ : G -> G'} {fβ‚‚' : ContinuousLinearMap.{u5, u5, u2, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (RingHom.id.{u5} π•œ (Semiring.toNonAssocSemiring.{u5} π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoMetricSpace.toUniformSpace.{u1} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9)} (p : Prod.{u4, u2} E G), (HasFDerivAt.{u5, u4, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u4, u2} E G p)) -> (HasFDerivAt.{u5, u2, u1} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ‚‚ fβ‚‚' (Prod.snd.{u4, u2} E G p)) -> (HasFDerivAt.{u5, max u2 u4, max u1 u3} π•œ _inst_1 (Prod.{u4, u2} E G) (Prod.normedAddCommGroup.{u4, u2} E G _inst_2 _inst_6) (Prod.normedSpace.{u5, u4, u2} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (Prod.{u3, u1} F G') (Prod.normedAddCommGroup.{u3, u1} F G' _inst_4 _inst_8) (Prod.normedSpace.{u5, u3, u1} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) (Prod.map.{u4, u3, u2, u1} E F G G' f fβ‚‚) (ContinuousLinearMap.prodMap.{u5, u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoEMetricSpace.toUniformSpace.{u2} G (PseudoMetricSpace.toPseudoEMetricSpace.{u2} G (SeminormedAddGroup.toPseudoMetricSpace.{u2} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoEMetricSpace.toUniformSpace.{u1} G' (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G' (SeminormedAddGroup.toPseudoMetricSpace.{u1} G' (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) f' fβ‚‚') p)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at.prod_map HasFDerivAt.prodMapβ‚“'. -/
 protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ‚‚ : HasFDerivAt fβ‚‚ fβ‚‚' p.2) :
     HasFDerivAt (Prod.map f fβ‚‚) (f'.Prod_map fβ‚‚') p :=
@@ -643,10 +577,7 @@ protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ‚‚ : HasFD
 #align has_fderiv_at.prod_map HasFDerivAt.prodMap
 
 /- warning: differentiable_at.prod_map -> DifferentiableAt.prod_map is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} {fβ‚‚ : G -> G'} (p : Prod.{u2, u4} E G), (DifferentiableAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Prod.fst.{u2, u4} E G p)) -> (DifferentiableAt.{u1, u4, u5} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ‚‚ (Prod.snd.{u2, u4} E G p)) -> (DifferentiableAt.{u1, max u2 u4, max u3 u5} π•œ _inst_1 (Prod.{u2, u4} E G) (Prod.normedAddCommGroup.{u2, u4} E G _inst_2 _inst_6) (Prod.normedSpace.{u1, u2, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (Prod.{u3, u5} F G') (Prod.normedAddCommGroup.{u3, u5} F G' _inst_4 _inst_8) (Prod.normedSpace.{u1, u3, u5} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (fun (p : Prod.{u2, u4} E G) => Prod.mk.{u3, u5} F G' (f (Prod.fst.{u2, u4} E G p)) (fβ‚‚ (Prod.snd.{u2, u4} E G p))) p)
-but is expected to have type
-  forall {π•œ : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u5} π•œ] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {G' : Type.{u1}} [_inst_8 : NormedAddCommGroup.{u1} G'] [_inst_9 : NormedSpace.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)] {f : E -> F} {fβ‚‚ : G -> G'} (p : Prod.{u4, u2} E G), (DifferentiableAt.{u5, u4, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Prod.fst.{u4, u2} E G p)) -> (DifferentiableAt.{u5, u2, u1} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ‚‚ (Prod.snd.{u4, u2} E G p)) -> (DifferentiableAt.{u5, max u4 u2, max u1 u3} π•œ _inst_1 (Prod.{u4, u2} E G) (Prod.normedAddCommGroup.{u4, u2} E G _inst_2 _inst_6) (Prod.normedSpace.{u5, u4, u2} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (Prod.{u3, u1} F G') (Prod.normedAddCommGroup.{u3, u1} F G' _inst_4 _inst_8) (Prod.normedSpace.{u5, u3, u1} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) (fun (p : Prod.{u4, u2} E G) => Prod.mk.{u3, u1} F G' (f (Prod.fst.{u4, u2} E G p)) (fβ‚‚ (Prod.snd.{u4, u2} E G p))) p)
+<too large>
 Case conversion may be inaccurate. Consider using '#align differentiable_at.prod_map DifferentiableAt.prod_mapβ‚“'. -/
 @[simp]
 protected theorem DifferentiableAt.prod_map (hf : DifferentiableAt π•œ f p.1)
@@ -678,10 +609,7 @@ variable {ΞΉ : Type _} [Fintype ΞΉ] {F' : ΞΉ β†’ Type _} [βˆ€ i, NormedAddCommGr
   {Ξ¦' : E β†’L[π•œ] βˆ€ i, F' i}
 
 /- warning: has_strict_fderiv_at_pi' -> hasStrictFDerivAt_pi' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasStrictFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasStrictFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasStrictFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasStrictFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'β‚“'. -/
 @[simp]
 theorem hasStrictFDerivAt_pi' :
@@ -692,10 +620,7 @@ theorem hasStrictFDerivAt_pi' :
 #align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
 
 /- warning: has_strict_fderiv_at_pi -> hasStrictFDerivAt_pi is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasStrictFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') x) (forall (i : ΞΉ), HasStrictFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasStrictFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') x) (forall (i : ΞΉ), HasStrictFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_pi hasStrictFDerivAt_piβ‚“'. -/
 @[simp]
 theorem hasStrictFDerivAt_pi :
@@ -705,10 +630,7 @@ theorem hasStrictFDerivAt_pi :
 #align has_strict_fderiv_at_pi hasStrictFDerivAt_pi
 
 /- warning: has_fderiv_at_filter_pi' -> hasFDerivAtFilter_pi' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {L : Filter.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasFDerivAtFilter.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') x L)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {L : Filter.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasFDerivAtFilter.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') x L)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'β‚“'. -/
 @[simp]
 theorem hasFDerivAtFilter_pi' :
@@ -719,10 +641,7 @@ theorem hasFDerivAtFilter_pi' :
 #align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'
 
 /- warning: has_fderiv_at_filter_pi -> hasFDerivAtFilter_pi is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {L : Filter.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAtFilter.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) x L)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {L : Filter.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAtFilter.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) x L)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_pi hasFDerivAtFilter_piβ‚“'. -/
 theorem hasFDerivAtFilter_pi :
     HasFDerivAtFilter (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x L ↔
@@ -731,10 +650,7 @@ theorem hasFDerivAtFilter_pi :
 #align has_fderiv_at_filter_pi hasFDerivAtFilter_pi
 
 /- warning: has_fderiv_at_pi' -> hasFDerivAt_pi' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at_pi' hasFDerivAt_pi'β‚“'. -/
 @[simp]
 theorem hasFDerivAt_pi' :
@@ -743,10 +659,7 @@ theorem hasFDerivAt_pi' :
 #align has_fderiv_at_pi' hasFDerivAt_pi'
 
 /- warning: has_fderiv_at_pi -> hasFDerivAt_pi is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') x) (forall (i : ΞΉ), HasFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') x) (forall (i : ΞΉ), HasFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_at_pi hasFDerivAt_piβ‚“'. -/
 theorem hasFDerivAt_pi :
     HasFDerivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
@@ -755,10 +668,7 @@ theorem hasFDerivAt_pi :
 #align has_fderiv_at_pi hasFDerivAt_pi
 
 /- warning: has_fderiv_within_at_pi' -> hasFDerivWithinAt_pi' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasFDerivWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasFDerivWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') s x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'β‚“'. -/
 @[simp]
 theorem hasFDerivWithinAt_pi' :
@@ -767,10 +677,7 @@ theorem hasFDerivWithinAt_pi' :
 #align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'
 
 /- warning: has_fderiv_within_at_pi -> hasFDerivWithinAt_pi is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) s x)
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) s x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_pi hasFDerivWithinAt_piβ‚“'. -/
 theorem hasFDerivWithinAt_pi :
     HasFDerivWithinAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') s x ↔
@@ -825,10 +732,7 @@ theorem differentiable_pi : Differentiable π•œ Ξ¦ ↔ βˆ€ i, Differentiable 
 #align differentiable_pi differentiable_pi
 
 /- warning: fderiv_within_pi -> fderivWithin_pi is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) s x) -> (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π•œ (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderivWithin.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) s x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderivWithin.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) s x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u1}} [_inst_10 : Fintype.{u1} ΞΉ] {F' : ΞΉ -> Type.{u2}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u2} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u2} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableWithinAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) s x) -> (UniqueDiffWithinAt.{u4, u3} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Eq.{max (max (succ u3) (succ u1)) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π•œ (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u4, u1, u2} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderivWithin.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u1, u2} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) s x) (ContinuousLinearMap.pi.{u4, u3, u1, u2} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u2} (F' i) (PseudoMetricSpace.toUniformSpace.{u2} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u2} (F' i) (NormedAddCommGroup.toAddCommGroup.{u2} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u2} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderivWithin.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) s x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv_within_pi fderivWithin_piβ‚“'. -/
 -- TODO: find out which version (`Ο†` or `Ξ¦`) works better with `rw`/`simp`
 theorem fderivWithin_pi (h : βˆ€ i, DifferentiableWithinAt π•œ (Ο† i) s x)
@@ -838,10 +742,7 @@ theorem fderivWithin_pi (h : βˆ€ i, DifferentiableWithinAt π•œ (Ο† i) s x)
 #align fderiv_within_pi fderivWithin_pi
 
 /- warning: fderiv_pi -> fderiv_pi is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π•œ (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderiv.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderiv.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) x)))
-but is expected to have type
-  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u1}} [_inst_10 : Fintype.{u1} ΞΉ] {F' : ΞΉ -> Type.{u2}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u2} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u2} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) x) -> (Eq.{max (max (succ u3) (succ u1)) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π•œ (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u4, u1, u2} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderiv.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u1, u2} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) x) (ContinuousLinearMap.pi.{u4, u3, u1, u2} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u2} (F' i) (PseudoMetricSpace.toUniformSpace.{u2} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u2} (F' i) (NormedAddCommGroup.toAddCommGroup.{u2} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u2} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderiv.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) x)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align fderiv_pi fderiv_piβ‚“'. -/
 theorem fderiv_pi (h : βˆ€ i, DifferentiableAt π•œ (Ο† i) x) :
     fderiv π•œ (fun x i => Ο† i x) x = pi fun i => fderiv π•œ (Ο† i) x :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
 
 ! This file was ported from Lean 3 source module analysis.calculus.fderiv.prod
-! leanprover-community/mathlib commit e3fb84046afd187b710170887195d50bada934ee
+! leanprover-community/mathlib commit 38df578a6450a8c5142b3727e3ae894c2300cae0
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -14,6 +14,9 @@ import Mathbin.Analysis.Calculus.Fderiv.Comp
 /-!
 # Derivative of the cartesian product of functions
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 For detailed documentation of the FrΓ©chet derivative,
 see the module docstring of `analysis/calculus/fderiv/basic.lean`.
 
Diff
@@ -61,67 +61,139 @@ section Prod
 
 variable {fβ‚‚ : E β†’ G} {fβ‚‚' : E β†’L[π•œ] G}
 
+/- warning: has_strict_fderiv_at.prod -> HasStrictFDerivAt.prod is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasStrictFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x) -> (HasStrictFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' x) -> (HasStrictFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) f₁' fβ‚‚') x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasStrictFDerivAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x) -> (HasStrictFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' x) -> (HasStrictFDerivAt.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) f₁' fβ‚‚') x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.prod HasStrictFDerivAt.prodβ‚“'. -/
 protected theorem HasStrictFDerivAt.prod (hf₁ : HasStrictFDerivAt f₁ f₁' x)
     (hfβ‚‚ : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x :=
   hf₁.prodLeft hfβ‚‚
 #align has_strict_fderiv_at.prod HasStrictFDerivAt.prod
 
+/- warning: has_fderiv_at_filter.prod -> HasFDerivAtFilter.prod is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivAtFilter.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x L) -> (HasFDerivAtFilter.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' x L) -> (HasFDerivAtFilter.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) f₁' fβ‚‚') x L)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {L : Filter.{u3} E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasFDerivAtFilter.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x L) -> (HasFDerivAtFilter.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' x L) -> (HasFDerivAtFilter.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) f₁' fβ‚‚') x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.prod HasFDerivAtFilter.prodβ‚“'. -/
 theorem HasFDerivAtFilter.prod (hf₁ : HasFDerivAtFilter f₁ f₁' x L)
     (hfβ‚‚ : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
     HasFDerivAtFilter (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x L :=
   hf₁.prodLeft hfβ‚‚
 #align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
 
+/- warning: has_fderiv_within_at.prod -> HasFDerivWithinAt.prod is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' s x) -> (HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' s x) -> (HasFDerivWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) f₁' fβ‚‚') s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasFDerivWithinAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' s x) -> (HasFDerivWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' s x) -> (HasFDerivWithinAt.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) f₁' fβ‚‚') s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.prod HasFDerivWithinAt.prodβ‚“'. -/
 theorem HasFDerivWithinAt.prod (hf₁ : HasFDerivWithinAt f₁ f₁' s x)
     (hfβ‚‚ : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') s x :=
   hf₁.Prod hfβ‚‚
 #align has_fderiv_within_at.prod HasFDerivWithinAt.prod
 
+/- warning: has_fderiv_at.prod -> HasFDerivAt.prod is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x) -> (HasFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' x) -> (HasFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) f₁' fβ‚‚') x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {f₁' : ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {fβ‚‚ : E -> G} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasFDerivAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ f₁' x) -> (HasFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ fβ‚‚' x) -> (HasFDerivAt.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) f₁' fβ‚‚') x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.prod HasFDerivAt.prodβ‚“'. -/
 theorem HasFDerivAt.prod (hf₁ : HasFDerivAt f₁ f₁' x) (hfβ‚‚ : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x :=
   hf₁.Prod hfβ‚‚
 #align has_fderiv_at.prod HasFDerivAt.prod
 
+/- warning: has_fderiv_at_prod_mk_left -> hasFDerivAt_prod_mk_left is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (eβ‚€ : E) (fβ‚€ : F), HasFDerivAt.{u1, u2, max u2 u3} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (fun (e : E) => Prod.mk.{u2, u3} E F e fβ‚€) (ContinuousLinearMap.inl.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) eβ‚€
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (eβ‚€ : E) (fβ‚€ : F), HasFDerivAt.{u3, u2, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (fun (e : E) => Prod.mk.{u2, u1} E F e fβ‚€) (ContinuousLinearMap.inl.{u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) eβ‚€
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_leftβ‚“'. -/
 theorem hasFDerivAt_prod_mk_left (eβ‚€ : E) (fβ‚€ : F) :
     HasFDerivAt (fun e : E => (e, fβ‚€)) (inl π•œ E F) eβ‚€ :=
   (hasFDerivAt_id eβ‚€).Prod (hasFDerivAt_const fβ‚€ eβ‚€)
 #align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_left
 
+/- warning: has_fderiv_at_prod_mk_right -> hasFDerivAt_prod_mk_right is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (eβ‚€ : E) (fβ‚€ : F), HasFDerivAt.{u1, u3, max u2 u3} π•œ _inst_1 F _inst_4 _inst_5 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (fun (f : F) => Prod.mk.{u2, u3} E F eβ‚€ f) (ContinuousLinearMap.inr.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) fβ‚€
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u3, u2} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] (eβ‚€ : E) (fβ‚€ : F), HasFDerivAt.{u3, u2, max u2 u1} π•œ _inst_1 F _inst_4 _inst_5 (Prod.{u1, u2} E F) (Prod.normedAddCommGroup.{u1, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u1, u2} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (fun (f : F) => Prod.mk.{u1, u2} E F eβ‚€ f) (ContinuousLinearMap.inr.{u3, u1, u2} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u2} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) fβ‚€
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_rightβ‚“'. -/
 theorem hasFDerivAt_prod_mk_right (eβ‚€ : E) (fβ‚€ : F) :
     HasFDerivAt (fun f : F => (eβ‚€, f)) (inr π•œ E F) fβ‚€ :=
   (hasFDerivAt_const eβ‚€ fβ‚€).Prod (hasFDerivAt_id fβ‚€)
 #align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_right
 
+/- warning: differentiable_within_at.prod -> DifferentiableWithinAt.prod is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> G}, (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) -> (DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s x) -> (DifferentiableWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> G}, (DifferentiableWithinAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) -> (DifferentiableWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s x) -> (DifferentiableWithinAt.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.prod DifferentiableWithinAt.prodβ‚“'. -/
 theorem DifferentiableWithinAt.prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
     (hfβ‚‚ : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s x :=
   (hf₁.HasFDerivWithinAt.Prod hfβ‚‚.HasFDerivWithinAt).DifferentiableWithinAt
 #align differentiable_within_at.prod DifferentiableWithinAt.prod
 
+/- warning: differentiable_at.prod -> DifferentiableAt.prod is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {x : E} {fβ‚‚ : E -> G}, (DifferentiableAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) -> (DifferentiableAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ x) -> (DifferentiableAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {x : E} {fβ‚‚ : E -> G}, (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) -> (DifferentiableAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ x) -> (DifferentiableAt.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.prod DifferentiableAt.prodβ‚“'. -/
 @[simp]
 theorem DifferentiableAt.prod (hf₁ : DifferentiableAt π•œ f₁ x) (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x : E => (f₁ x, fβ‚‚ x)) x :=
   (hf₁.HasFDerivAt.Prod hfβ‚‚.HasFDerivAt).DifferentiableAt
 #align differentiable_at.prod DifferentiableAt.prod
 
+/- warning: differentiable_on.prod -> DifferentiableOn.prod is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {s : Set.{u2} E} {fβ‚‚ : E -> G}, (DifferentiableOn.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s) -> (DifferentiableOn.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s) -> (DifferentiableOn.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) s)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {s : Set.{u3} E} {fβ‚‚ : E -> G}, (DifferentiableOn.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s) -> (DifferentiableOn.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s) -> (DifferentiableOn.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.prod DifferentiableOn.prodβ‚“'. -/
 theorem DifferentiableOn.prod (hf₁ : DifferentiableOn π•œ f₁ s) (hfβ‚‚ : DifferentiableOn π•œ fβ‚‚ s) :
     DifferentiableOn π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s := fun x hx =>
   DifferentiableWithinAt.prod (hf₁ x hx) (hfβ‚‚ x hx)
 #align differentiable_on.prod DifferentiableOn.prod
 
+/- warning: differentiable.prod -> Differentiable.prod is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {fβ‚‚ : E -> G}, (Differentiable.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁) -> (Differentiable.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚) -> (Differentiable.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {fβ‚‚ : E -> G}, (Differentiable.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁) -> (Differentiable.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚) -> (Differentiable.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)))
+Case conversion may be inaccurate. Consider using '#align differentiable.prod Differentiable.prodβ‚“'. -/
 @[simp]
 theorem Differentiable.prod (hf₁ : Differentiable π•œ f₁) (hfβ‚‚ : Differentiable π•œ fβ‚‚) :
     Differentiable π•œ fun x : E => (f₁ x, fβ‚‚ x) := fun x => DifferentiableAt.prod (hf₁ x) (hfβ‚‚ x)
 #align differentiable.prod Differentiable.prod
 
+/- warning: differentiable_at.fderiv_prod -> DifferentiableAt.fderiv_prod is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {x : E} {fβ‚‚ : E -> G}, (DifferentiableAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) -> (DifferentiableAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (UniformSpace.toTopologicalSpace.{max u3 u4} (Prod.{u3, u4} F G) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (Prod.{u3, u4} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π•œ (Prod.{u3, u4} F G) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6)) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))) (fderiv.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) x) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fderiv.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) (fderiv.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {x : E} {fβ‚‚ : E -> G}, (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) -> (DifferentiableAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ x) -> (Eq.{max (max (succ u3) (succ u2)) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (UniformSpace.toTopologicalSpace.{max u1 u2} (Prod.{u2, u1} F G) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (Prod.{u2, u1} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π•œ (Prod.{u2, u1} F G) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6)) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))) (fderiv.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) x) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fderiv.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ x) (fderiv.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ x)))
+Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prodβ‚“'. -/
 theorem DifferentiableAt.fderiv_prod (hf₁ : DifferentiableAt π•œ f₁ x)
     (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x : E => (f₁ x, fβ‚‚ x)) x = (fderiv π•œ f₁ x).Prod (fderiv π•œ fβ‚‚ x) :=
   (hf₁.HasFDerivAt.Prod hfβ‚‚.HasFDerivAt).fderiv
 #align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
 
+/- warning: differentiable_at.fderiv_within_prod -> DifferentiableAt.fderivWithin_prod is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {f₁ : E -> F} {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> G}, (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) -> (DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s x) -> (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (UniformSpace.toTopologicalSpace.{max u3 u4} (Prod.{u3, u4} F G) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (Prod.{u3, u4} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π•œ (Prod.{u3, u4} F G) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6)) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))) (fderivWithin.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (f₁ x) (fβ‚‚ x)) s x) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fderivWithin.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {f₁ : E -> F} {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> G}, (DifferentiableWithinAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) -> (DifferentiableWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s x) -> (UniqueDiffWithinAt.{u4, u3} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Eq.{max (max (succ u3) (succ u2)) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (UniformSpace.toTopologicalSpace.{max u1 u2} (Prod.{u2, u1} F G) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (Prod.{u2, u1} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π•œ (Prod.{u2, u1} F G) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6)) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))) (fderivWithin.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (f₁ x) (fβ‚‚ x)) s x) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fderivWithin.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f₁ s x) (fderivWithin.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ‚‚ s x)))
+Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_within_prod DifferentiableAt.fderivWithin_prodβ‚“'. -/
 theorem DifferentiableAt.fderivWithin_prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
     (hfβ‚‚ : DifferentiableWithinAt π•œ fβ‚‚ s x) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s x =
@@ -135,96 +207,200 @@ section Fst
 
 variable {fβ‚‚ : E β†’ F Γ— G} {fβ‚‚' : E β†’L[π•œ] F Γ— G} {p : E Γ— F}
 
+/- warning: has_strict_fderiv_at_fst -> hasStrictFDerivAt_fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasStrictFDerivAt.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) (ContinuousLinearMap.fst.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasStrictFDerivAt.{u3, max u2 u1, u2} π•œ _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u1} E F) (ContinuousLinearMap.fst.{u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_fst hasStrictFDerivAt_fstβ‚“'. -/
 theorem hasStrictFDerivAt_fst : HasStrictFDerivAt (@Prod.fst E F) (fst π•œ E F) p :=
   (fst π•œ E F).HasStrictFDerivAt
 #align has_strict_fderiv_at_fst hasStrictFDerivAt_fst
 
+/- warning: has_strict_fderiv_at.fst -> HasStrictFDerivAt.fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasStrictFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasStrictFDerivAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.fst HasStrictFDerivAt.fstβ‚“'. -/
 protected theorem HasStrictFDerivAt.fst (h : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
   hasStrictFDerivAt_fst.comp x h
 #align has_strict_fderiv_at.fst HasStrictFDerivAt.fst
 
+#print hasFDerivAtFilter_fst /-
 theorem hasFDerivAtFilter_fst {L : Filter (E Γ— F)} :
     HasFDerivAtFilter (@Prod.fst E F) (fst π•œ E F) p L :=
   (fst π•œ E F).HasFDerivAtFilter
 #align has_fderiv_at_filter_fst hasFDerivAtFilter_fst
+-/
 
+/- warning: has_fderiv_at_filter.fst -> HasFDerivAtFilter.fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {L : Filter.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x L) -> (HasFDerivAtFilter.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') x L)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {L : Filter.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x L) -> (HasFDerivAtFilter.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.fst HasFDerivAtFilter.fstβ‚“'. -/
 protected theorem HasFDerivAtFilter.fst (h : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
     HasFDerivAtFilter (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x L :=
   hasFDerivAtFilter_fst.comp x h tendsto_map
 #align has_fderiv_at_filter.fst HasFDerivAtFilter.fst
 
+/- warning: has_fderiv_at_fst -> hasFDerivAt_fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasFDerivAt.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) (ContinuousLinearMap.fst.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasFDerivAt.{u3, max u2 u1, u2} π•œ _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u1} E F) (ContinuousLinearMap.fst.{u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_fst hasFDerivAt_fstβ‚“'. -/
 theorem hasFDerivAt_fst : HasFDerivAt (@Prod.fst E F) (fst π•œ E F) p :=
   hasFDerivAtFilter_fst
 #align has_fderiv_at_fst hasFDerivAt_fst
 
+/- warning: has_fderiv_at.fst -> HasFDerivAt.fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasFDerivAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.fst HasFDerivAt.fstβ‚“'. -/
 protected theorem HasFDerivAt.fst (h : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
   h.fst
 #align has_fderiv_at.fst HasFDerivAt.fst
 
+#print hasFDerivWithinAt_fst /-
 theorem hasFDerivWithinAt_fst {s : Set (E Γ— F)} :
     HasFDerivWithinAt (@Prod.fst E F) (fst π•œ E F) s p :=
   hasFDerivAtFilter_fst
 #align has_fderiv_within_at_fst hasFDerivWithinAt_fst
+-/
 
+/- warning: has_fderiv_within_at.fst -> HasFDerivWithinAt.fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' s x) -> (HasFDerivWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' s x) -> (HasFDerivWithinAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.fst HasFDerivWithinAt.fstβ‚“'. -/
 protected theorem HasFDerivWithinAt.fst (h : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') s x :=
   h.fst
 #align has_fderiv_within_at.fst HasFDerivWithinAt.fst
 
+/- warning: differentiable_at_fst -> differentiableAt_fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, DifferentiableAt.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) p
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u3, u2} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u1, u2} E F}, DifferentiableAt.{u3, max u2 u1, u1} π•œ _inst_1 (Prod.{u1, u2} E F) (Prod.normedAddCommGroup.{u1, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u1, u2} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u1, u2} E F) p
+Case conversion may be inaccurate. Consider using '#align differentiable_at_fst differentiableAt_fstβ‚“'. -/
 theorem differentiableAt_fst : DifferentiableAt π•œ Prod.fst p :=
   hasFDerivAt_fst.DifferentiableAt
 #align differentiable_at_fst differentiableAt_fst
 
+/- warning: differentiable_at.fst -> DifferentiableAt.fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ x) -> (DifferentiableAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ x) -> (DifferentiableAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.fst DifferentiableAt.fstβ‚“'. -/
 @[simp]
 protected theorem DifferentiableAt.fst (h : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x => (fβ‚‚ x).1) x :=
   differentiableAt_fst.comp x h
 #align differentiable_at.fst DifferentiableAt.fst
 
+/- warning: differentiable_fst -> differentiable_fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)], Differentiable.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F)
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)], Differentiable.{u3, max u2 u1, u2} π•œ _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u1} E F)
+Case conversion may be inaccurate. Consider using '#align differentiable_fst differentiable_fstβ‚“'. -/
 theorem differentiable_fst : Differentiable π•œ (Prod.fst : E Γ— F β†’ E) := fun x =>
   differentiableAt_fst
 #align differentiable_fst differentiable_fst
 
+/- warning: differentiable.fst -> Differentiable.fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (Differentiable.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚) -> (Differentiable.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (Differentiable.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚) -> (Differentiable.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)))
+Case conversion may be inaccurate. Consider using '#align differentiable.fst Differentiable.fstβ‚“'. -/
 @[simp]
 protected theorem Differentiable.fst (h : Differentiable π•œ fβ‚‚) :
     Differentiable π•œ fun x => (fβ‚‚ x).1 :=
   differentiable_fst.comp h
 #align differentiable.fst Differentiable.fst
 
+#print differentiableWithinAt_fst /-
 theorem differentiableWithinAt_fst {s : Set (E Γ— F)} : DifferentiableWithinAt π•œ Prod.fst s p :=
   differentiableAt_fst.DifferentiableWithinAt
 #align differentiable_within_at_fst differentiableWithinAt_fst
+-/
 
+/- warning: differentiable_within_at.fst -> DifferentiableWithinAt.fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s x) -> (DifferentiableWithinAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s x) -> (DifferentiableWithinAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.fst DifferentiableWithinAt.fstβ‚“'. -/
 protected theorem DifferentiableWithinAt.fst (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x => (fβ‚‚ x).1) s x :=
   differentiableAt_fst.comp_differentiableWithinAt x h
 #align differentiable_within_at.fst DifferentiableWithinAt.fst
 
+#print differentiableOn_fst /-
 theorem differentiableOn_fst {s : Set (E Γ— F)} : DifferentiableOn π•œ Prod.fst s :=
   differentiable_fst.DifferentiableOn
 #align differentiable_on_fst differentiableOn_fst
+-/
 
+/- warning: differentiable_on.fst -> DifferentiableOn.fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableOn.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s) -> (DifferentiableOn.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) s)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableOn.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s) -> (DifferentiableOn.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.fst DifferentiableOn.fstβ‚“'. -/
 protected theorem DifferentiableOn.fst (h : DifferentiableOn π•œ fβ‚‚ s) :
     DifferentiableOn π•œ (fun x => (fβ‚‚ x).1) s :=
   differentiable_fst.comp_differentiableOn h
 #align differentiable_on.fst DifferentiableOn.fst
 
+/- warning: fderiv_fst -> fderiv_fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, Eq.{max (succ (max u2 u3)) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, max u2 u3} π•œ (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderiv.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) p) (ContinuousLinearMap.fst.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u3, u2} E F}, Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u3, u2} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u3, u2} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u3, u2} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u1, max u2 u3} π•œ (Prod.{u3, u2} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u3, u2} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3)) (fderiv.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u3, u2} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u3, u2} E F) p) (ContinuousLinearMap.fst.{u1, u3, u2} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))
+Case conversion may be inaccurate. Consider using '#align fderiv_fst fderiv_fstβ‚“'. -/
 theorem fderiv_fst : fderiv π•œ Prod.fst p = fst π•œ E F :=
   hasFDerivAt_fst.fderiv
 #align fderiv_fst fderiv_fst
 
+/- warning: fderiv.fst -> fderiv.fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ x) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderiv.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ x)))
+Case conversion may be inaccurate. Consider using '#align fderiv.fst fderiv.fstβ‚“'. -/
 theorem fderiv.fst (h : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x => (fβ‚‚ x).1) x = (fst π•œ F G).comp (fderiv π•œ fβ‚‚ x) :=
   h.HasFDerivAt.fst.fderiv
 #align fderiv.fst fderiv.fst
 
+/- warning: fderiv_within_fst -> fderivWithin_fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u2 u3} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.addCommMonoid.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π•œ E F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Prod.topologicalSpace.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ (max u2 u3)) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u2} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, max u2 u3} π•œ (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderivWithin.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) s p) (ContinuousLinearMap.fst.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u3 u2} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.instAddCommMonoidSum.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π•œ E F (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (instTopologicalSpaceProd.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, max u3 u2, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u3 u2} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u3 u2} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, max u3 u2} π•œ (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderivWithin.{u1, max u3 u2, u2} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) s p) (ContinuousLinearMap.fst.{u1, u2, u3} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_fst fderivWithin_fstβ‚“'. -/
 theorem fderivWithin_fst {s : Set (E Γ— F)} (hs : UniqueDiffWithinAt π•œ s p) :
     fderivWithin π•œ Prod.fst s p = fst π•œ E F :=
   hasFDerivWithinAt_fst.fderivWithin hs
 #align fderiv_within_fst fderivWithin_fst
 
+/- warning: fderiv_within.fst -> fderivWithin.fst is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ‚‚ x)) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (UniqueDiffWithinAt.{u4, u3} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s x) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ‚‚ x)) s x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderivWithin.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s x)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within.fst fderivWithin.fstβ‚“'. -/
 theorem fderivWithin.fst (hs : UniqueDiffWithinAt π•œ s x) (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     fderivWithin π•œ (fun x => (fβ‚‚ x).1) s x = (fst π•œ F G).comp (fderivWithin π•œ fβ‚‚ s x) :=
   h.HasFDerivWithinAt.fst.fderivWithin hs
@@ -236,96 +412,200 @@ section Snd
 
 variable {fβ‚‚ : E β†’ F Γ— G} {fβ‚‚' : E β†’L[π•œ] F Γ— G} {p : E Γ— F}
 
+/- warning: has_strict_fderiv_at_snd -> hasStrictFDerivAt_snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasStrictFDerivAt.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) (ContinuousLinearMap.snd.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasStrictFDerivAt.{u3, max u2 u1, u1} π•œ _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u1} E F) (ContinuousLinearMap.snd.{u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_snd hasStrictFDerivAt_sndβ‚“'. -/
 theorem hasStrictFDerivAt_snd : HasStrictFDerivAt (@Prod.snd E F) (snd π•œ E F) p :=
   (snd π•œ E F).HasStrictFDerivAt
 #align has_strict_fderiv_at_snd hasStrictFDerivAt_snd
 
+/- warning: has_strict_fderiv_at.snd -> HasStrictFDerivAt.snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasStrictFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasStrictFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.snd HasStrictFDerivAt.sndβ‚“'. -/
 protected theorem HasStrictFDerivAt.snd (h : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
   hasStrictFDerivAt_snd.comp x h
 #align has_strict_fderiv_at.snd HasStrictFDerivAt.snd
 
+#print hasFDerivAtFilter_snd /-
 theorem hasFDerivAtFilter_snd {L : Filter (E Γ— F)} :
     HasFDerivAtFilter (@Prod.snd E F) (snd π•œ E F) p L :=
   (snd π•œ E F).HasFDerivAtFilter
 #align has_fderiv_at_filter_snd hasFDerivAtFilter_snd
+-/
 
+/- warning: has_fderiv_at_filter.snd -> HasFDerivAtFilter.snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {L : Filter.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x L) -> (HasFDerivAtFilter.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') x L)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {L : Filter.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x L) -> (HasFDerivAtFilter.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.snd HasFDerivAtFilter.sndβ‚“'. -/
 protected theorem HasFDerivAtFilter.snd (h : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
     HasFDerivAtFilter (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x L :=
   hasFDerivAtFilter_snd.comp x h tendsto_map
 #align has_fderiv_at_filter.snd HasFDerivAtFilter.snd
 
+/- warning: has_fderiv_at_snd -> hasFDerivAt_snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasFDerivAt.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) (ContinuousLinearMap.snd.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasFDerivAt.{u3, max u2 u1, u1} π•œ _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u1} E F) (ContinuousLinearMap.snd.{u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_snd hasFDerivAt_sndβ‚“'. -/
 theorem hasFDerivAt_snd : HasFDerivAt (@Prod.snd E F) (snd π•œ E F) p :=
   hasFDerivAtFilter_snd
 #align has_fderiv_at_snd hasFDerivAt_snd
 
+/- warning: has_fderiv_at.snd -> HasFDerivAt.snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' x) -> (HasFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.snd HasFDerivAt.sndβ‚“'. -/
 protected theorem HasFDerivAt.snd (h : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
   h.snd
 #align has_fderiv_at.snd HasFDerivAt.snd
 
+#print hasFDerivWithinAt_snd /-
 theorem hasFDerivWithinAt_snd {s : Set (E Γ— F)} :
     HasFDerivWithinAt (@Prod.snd E F) (snd π•œ E F) s p :=
   hasFDerivAtFilter_snd
 #align has_fderiv_within_at_snd hasFDerivWithinAt_snd
+-/
 
+/- warning: has_fderiv_within_at.snd -> HasFDerivWithinAt.snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' s x) -> (HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ‚‚') s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)} {fβ‚‚' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ fβ‚‚' s x) -> (HasFDerivWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ‚‚') s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.snd HasFDerivWithinAt.sndβ‚“'. -/
 protected theorem HasFDerivWithinAt.snd (h : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') s x :=
   h.snd
 #align has_fderiv_within_at.snd HasFDerivWithinAt.snd
 
+/- warning: differentiable_at_snd -> differentiableAt_snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, DifferentiableAt.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) p
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u3, u2} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u1, u2} E F}, DifferentiableAt.{u3, max u2 u1, u2} π•œ _inst_1 (Prod.{u1, u2} E F) (Prod.normedAddCommGroup.{u1, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u1, u2} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u1, u2} E F) p
+Case conversion may be inaccurate. Consider using '#align differentiable_at_snd differentiableAt_sndβ‚“'. -/
 theorem differentiableAt_snd : DifferentiableAt π•œ Prod.snd p :=
   hasFDerivAt_snd.DifferentiableAt
 #align differentiable_at_snd differentiableAt_snd
 
+/- warning: differentiable_at.snd -> DifferentiableAt.snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ x) -> (DifferentiableAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ x) -> (DifferentiableAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.snd DifferentiableAt.sndβ‚“'. -/
 @[simp]
 protected theorem DifferentiableAt.snd (h : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x => (fβ‚‚ x).2) x :=
   differentiableAt_snd.comp x h
 #align differentiable_at.snd DifferentiableAt.snd
 
+/- warning: differentiable_snd -> differentiable_snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)], Differentiable.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F)
+but is expected to have type
+  forall {π•œ : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π•œ F (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)], Differentiable.{u3, max u2 u1, u1} π•œ _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u1} E F)
+Case conversion may be inaccurate. Consider using '#align differentiable_snd differentiable_sndβ‚“'. -/
 theorem differentiable_snd : Differentiable π•œ (Prod.snd : E Γ— F β†’ F) := fun x =>
   differentiableAt_snd
 #align differentiable_snd differentiable_snd
 
+/- warning: differentiable.snd -> Differentiable.snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (Differentiable.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚) -> (Differentiable.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (Differentiable.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚) -> (Differentiable.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)))
+Case conversion may be inaccurate. Consider using '#align differentiable.snd Differentiable.sndβ‚“'. -/
 @[simp]
 protected theorem Differentiable.snd (h : Differentiable π•œ fβ‚‚) :
     Differentiable π•œ fun x => (fβ‚‚ x).2 :=
   differentiable_snd.comp h
 #align differentiable.snd Differentiable.snd
 
+#print differentiableWithinAt_snd /-
 theorem differentiableWithinAt_snd {s : Set (E Γ— F)} : DifferentiableWithinAt π•œ Prod.snd s p :=
   differentiableAt_snd.DifferentiableWithinAt
 #align differentiable_within_at_snd differentiableWithinAt_snd
+-/
 
+/- warning: differentiable_within_at.snd -> DifferentiableWithinAt.snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s x) -> (DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s x) -> (DifferentiableWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.snd DifferentiableWithinAt.sndβ‚“'. -/
 protected theorem DifferentiableWithinAt.snd (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x => (fβ‚‚ x).2) s x :=
   differentiableAt_snd.comp_differentiableWithinAt x h
 #align differentiable_within_at.snd DifferentiableWithinAt.snd
 
+#print differentiableOn_snd /-
 theorem differentiableOn_snd {s : Set (E Γ— F)} : DifferentiableOn π•œ Prod.snd s :=
   differentiable_snd.DifferentiableOn
 #align differentiable_on_snd differentiableOn_snd
+-/
 
+/- warning: differentiable_on.snd -> DifferentiableOn.snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableOn.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s) -> (DifferentiableOn.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) s)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableOn.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s) -> (DifferentiableOn.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.snd DifferentiableOn.sndβ‚“'. -/
 protected theorem DifferentiableOn.snd (h : DifferentiableOn π•œ fβ‚‚ s) :
     DifferentiableOn π•œ (fun x => (fβ‚‚ x).2) s :=
   differentiable_snd.comp_differentiableOn h
 #align differentiable_on.snd DifferentiableOn.snd
 
+/- warning: fderiv_snd -> fderiv_snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, Eq.{max (succ (max u2 u3)) (succ u3)} (ContinuousLinearMap.{u1, u1, max u2 u3, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, max u2 u3} π•œ (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) p) (ContinuousLinearMap.snd.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u3, u2} E F}, Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u3, u2} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u3, u2} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u3, u2} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, max u2 u3} π•œ (Prod.{u3, u2} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u3, u2} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, max u2 u3, u2} π•œ _inst_1 (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u3, u2} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u3, u2} E F) p) (ContinuousLinearMap.snd.{u1, u3, u2} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))
+Case conversion may be inaccurate. Consider using '#align fderiv_snd fderiv_sndβ‚“'. -/
 theorem fderiv_snd : fderiv π•œ Prod.snd p = snd π•œ E F :=
   hasFDerivAt_snd.fderiv
 #align fderiv_snd fderiv_snd
 
+/- warning: fderiv.snd -> fderiv.snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderiv.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderiv.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ x)))
+Case conversion may be inaccurate. Consider using '#align fderiv.snd fderiv.sndβ‚“'. -/
 theorem fderiv.snd (h : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x => (fβ‚‚ x).2) x = (snd π•œ F G).comp (fderiv π•œ fβ‚‚ x) :=
   h.HasFDerivAt.snd.fderiv
 #align fderiv.snd fderiv.snd
 
+/- warning: fderiv_within_snd -> fderivWithin_snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u2 u3} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.addCommMonoid.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π•œ E F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Prod.topologicalSpace.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ (max u2 u3)) (succ u3)} (ContinuousLinearMap.{u1, u1, max u2 u3, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, max u2 u3} π•œ (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, max u2 u3, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) s p) (ContinuousLinearMap.snd.{u1, u2, u3} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u3 u2} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.instAddCommMonoidSum.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π•œ E F (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (instTopologicalSpaceProd.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, max u3 u2, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u3 u2} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u3 u2} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, max u3 u2} π•œ (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, max u3 u2, u3} π•œ _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) s p) (ContinuousLinearMap.snd.{u1, u2, u3} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_snd fderivWithin_sndβ‚“'. -/
 theorem fderivWithin_snd {s : Set (E Γ— F)} (hs : UniqueDiffWithinAt π•œ s p) :
     fderivWithin π•œ Prod.snd s p = snd π•œ E F :=
   hasFDerivWithinAt_snd.fderivWithin hs
 #align fderiv_within_snd fderivWithin_snd
 
+/- warning: fderiv_within.snd -> fderivWithin.snd is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ‚‚ : E -> (Prod.{u3, u4} F G)}, (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ‚‚ x)) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π•œ F G (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ‚‚ s x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ‚‚ : E -> (Prod.{u2, u1} F G)}, (UniqueDiffWithinAt.{u4, u3} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderivWithin.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ‚‚ x)) s x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π•œ F G (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π•œ F (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π•œ G (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderivWithin.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ‚‚ s x)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within.snd fderivWithin.sndβ‚“'. -/
 theorem fderivWithin.snd (hs : UniqueDiffWithinAt π•œ s x) (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     fderivWithin π•œ (fun x => (fβ‚‚ x).2) s x = (snd π•œ F G).comp (fderivWithin π•œ fβ‚‚ s x) :=
   h.HasFDerivWithinAt.snd.fderivWithin hs
@@ -337,16 +617,34 @@ section Prod_map
 
 variable {fβ‚‚ : G β†’ G'} {fβ‚‚' : G β†’L[π•œ] G'} {y : G} (p : E Γ— G)
 
+/- warning: has_strict_fderiv_at.prod_map -> HasStrictFDerivAt.prodMap is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ‚‚ : G -> G'} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u4, u5} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9)} (p : Prod.{u2, u4} E G), (HasStrictFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u2, u4} E G p)) -> (HasStrictFDerivAt.{u1, u4, u5} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ‚‚ fβ‚‚' (Prod.snd.{u2, u4} E G p)) -> (HasStrictFDerivAt.{u1, max u2 u4, max u3 u5} π•œ _inst_1 (Prod.{u2, u4} E G) (Prod.normedAddCommGroup.{u2, u4} E G _inst_2 _inst_6) (Prod.normedSpace.{u1, u2, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (Prod.{u3, u5} F G') (Prod.normedAddCommGroup.{u3, u5} F G' _inst_4 _inst_8) (Prod.normedSpace.{u1, u3, u5} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (Prod.map.{u2, u3, u4, u5} E F G G' f fβ‚‚) (ContinuousLinearMap.prodMap.{u1, u2, u3, u4, u5} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) f' fβ‚‚') p)
+but is expected to have type
+  forall {π•œ : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u5} π•œ] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {G' : Type.{u1}} [_inst_8 : NormedAddCommGroup.{u1} G'] [_inst_9 : NormedSpace.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u5, u5, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (RingHom.id.{u5} π•œ (Semiring.toNonAssocSemiring.{u5} π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ‚‚ : G -> G'} {fβ‚‚' : ContinuousLinearMap.{u5, u5, u2, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (RingHom.id.{u5} π•œ (Semiring.toNonAssocSemiring.{u5} π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoMetricSpace.toUniformSpace.{u1} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9)} (p : Prod.{u4, u2} E G), (HasStrictFDerivAt.{u5, u4, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u4, u2} E G p)) -> (HasStrictFDerivAt.{u5, u2, u1} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ‚‚ fβ‚‚' (Prod.snd.{u4, u2} E G p)) -> (HasStrictFDerivAt.{u5, max u2 u4, max u1 u3} π•œ _inst_1 (Prod.{u4, u2} E G) (Prod.normedAddCommGroup.{u4, u2} E G _inst_2 _inst_6) (Prod.normedSpace.{u5, u4, u2} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (Prod.{u3, u1} F G') (Prod.normedAddCommGroup.{u3, u1} F G' _inst_4 _inst_8) (Prod.normedSpace.{u5, u3, u1} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) (Prod.map.{u4, u3, u2, u1} E F G G' f fβ‚‚) (ContinuousLinearMap.prodMap.{u5, u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoEMetricSpace.toUniformSpace.{u2} G (PseudoMetricSpace.toPseudoEMetricSpace.{u2} G (SeminormedAddGroup.toPseudoMetricSpace.{u2} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoEMetricSpace.toUniformSpace.{u1} G' (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G' (SeminormedAddGroup.toPseudoMetricSpace.{u1} G' (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) f' fβ‚‚') p)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMapβ‚“'. -/
 protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
     (hfβ‚‚ : HasStrictFDerivAt fβ‚‚ fβ‚‚' p.2) : HasStrictFDerivAt (Prod.map f fβ‚‚) (f'.Prod_map fβ‚‚') p :=
   (hf.comp p hasStrictFDerivAt_fst).Prod (hfβ‚‚.comp p hasStrictFDerivAt_snd)
 #align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMap
 
+/- warning: has_fderiv_at.prod_map -> HasFDerivAt.prodMap is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ‚‚ : G -> G'} {fβ‚‚' : ContinuousLinearMap.{u1, u1, u4, u5} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9)} (p : Prod.{u2, u4} E G), (HasFDerivAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u2, u4} E G p)) -> (HasFDerivAt.{u1, u4, u5} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ‚‚ fβ‚‚' (Prod.snd.{u2, u4} E G p)) -> (HasFDerivAt.{u1, max u2 u4, max u3 u5} π•œ _inst_1 (Prod.{u2, u4} E G) (Prod.normedAddCommGroup.{u2, u4} E G _inst_2 _inst_6) (Prod.normedSpace.{u1, u2, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (Prod.{u3, u5} F G') (Prod.normedAddCommGroup.{u3, u5} F G' _inst_4 _inst_8) (Prod.normedSpace.{u1, u3, u5} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (Prod.map.{u2, u3, u4, u5} E F G G' f fβ‚‚) (ContinuousLinearMap.prodMap.{u1, u2, u3, u4, u5} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) f' fβ‚‚') p)
+but is expected to have type
+  forall {π•œ : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u5} π•œ] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {G' : Type.{u1}} [_inst_8 : NormedAddCommGroup.{u1} G'] [_inst_9 : NormedSpace.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u5, u5, u4, u3} π•œ π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (RingHom.id.{u5} π•œ (Semiring.toNonAssocSemiring.{u5} π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ‚‚ : G -> G'} {fβ‚‚' : ContinuousLinearMap.{u5, u5, u2, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) (RingHom.id.{u5} π•œ (Semiring.toNonAssocSemiring.{u5} π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoMetricSpace.toUniformSpace.{u1} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9)} (p : Prod.{u4, u2} E G), (HasFDerivAt.{u5, u4, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u4, u2} E G p)) -> (HasFDerivAt.{u5, u2, u1} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ‚‚ fβ‚‚' (Prod.snd.{u4, u2} E G p)) -> (HasFDerivAt.{u5, max u2 u4, max u1 u3} π•œ _inst_1 (Prod.{u4, u2} E G) (Prod.normedAddCommGroup.{u4, u2} E G _inst_2 _inst_6) (Prod.normedSpace.{u5, u4, u2} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (Prod.{u3, u1} F G') (Prod.normedAddCommGroup.{u3, u1} F G' _inst_4 _inst_8) (Prod.normedSpace.{u5, u3, u1} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) (Prod.map.{u4, u3, u2, u1} E F G G' f fβ‚‚) (ContinuousLinearMap.prodMap.{u5, u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u5} π•œ (Semifield.toDivisionSemiring.{u5} π•œ (Field.toSemifield.{u5} π•œ (NormedField.toField.{u5} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoEMetricSpace.toUniformSpace.{u2} G (PseudoMetricSpace.toPseudoEMetricSpace.{u2} G (SeminormedAddGroup.toPseudoMetricSpace.{u2} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoEMetricSpace.toUniformSpace.{u1} G' (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G' (SeminormedAddGroup.toPseudoMetricSpace.{u1} G' (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) f' fβ‚‚') p)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.prod_map HasFDerivAt.prodMapβ‚“'. -/
 protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ‚‚ : HasFDerivAt fβ‚‚ fβ‚‚' p.2) :
     HasFDerivAt (Prod.map f fβ‚‚) (f'.Prod_map fβ‚‚') p :=
   (hf.comp p hasFDerivAt_fst).Prod (hfβ‚‚.comp p hasFDerivAt_snd)
 #align has_fderiv_at.prod_map HasFDerivAt.prodMap
 
+/- warning: differentiable_at.prod_map -> DifferentiableAt.prod_map is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π•œ G (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π•œ G' (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} {fβ‚‚ : G -> G'} (p : Prod.{u2, u4} E G), (DifferentiableAt.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Prod.fst.{u2, u4} E G p)) -> (DifferentiableAt.{u1, u4, u5} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ‚‚ (Prod.snd.{u2, u4} E G p)) -> (DifferentiableAt.{u1, max u2 u4, max u3 u5} π•œ _inst_1 (Prod.{u2, u4} E G) (Prod.normedAddCommGroup.{u2, u4} E G _inst_2 _inst_6) (Prod.normedSpace.{u1, u2, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (Prod.{u3, u5} F G') (Prod.normedAddCommGroup.{u3, u5} F G' _inst_4 _inst_8) (Prod.normedSpace.{u1, u3, u5} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (fun (p : Prod.{u2, u4} E G) => Prod.mk.{u3, u5} F G' (f (Prod.fst.{u2, u4} E G p)) (fβ‚‚ (Prod.snd.{u2, u4} E G p))) p)
+but is expected to have type
+  forall {π•œ : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u5} π•œ] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u5, u4} π•œ E (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u5, u3} π•œ F (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u5, u2} π•œ G (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {G' : Type.{u1}} [_inst_8 : NormedAddCommGroup.{u1} G'] [_inst_9 : NormedSpace.{u5, u1} π•œ G' (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)] {f : E -> F} {fβ‚‚ : G -> G'} (p : Prod.{u4, u2} E G), (DifferentiableAt.{u5, u4, u3} π•œ _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Prod.fst.{u4, u2} E G p)) -> (DifferentiableAt.{u5, u2, u1} π•œ _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ‚‚ (Prod.snd.{u4, u2} E G p)) -> (DifferentiableAt.{u5, max u4 u2, max u1 u3} π•œ _inst_1 (Prod.{u4, u2} E G) (Prod.normedAddCommGroup.{u4, u2} E G _inst_2 _inst_6) (Prod.normedSpace.{u5, u4, u2} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (Prod.{u3, u1} F G') (Prod.normedAddCommGroup.{u3, u1} F G' _inst_4 _inst_8) (Prod.normedSpace.{u5, u3, u1} π•œ (NontriviallyNormedField.toNormedField.{u5} π•œ _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) (fun (p : Prod.{u4, u2} E G) => Prod.mk.{u3, u1} F G' (f (Prod.fst.{u4, u2} E G p)) (fβ‚‚ (Prod.snd.{u4, u2} E G p))) p)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.prod_map DifferentiableAt.prod_mapβ‚“'. -/
 @[simp]
 protected theorem DifferentiableAt.prod_map (hf : DifferentiableAt π•œ f p.1)
     (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ p.2) : DifferentiableAt π•œ (fun p : E Γ— G => (f p.1, fβ‚‚ p.2)) p :=
@@ -376,6 +674,12 @@ variable {ΞΉ : Type _} [Fintype ΞΉ] {F' : ΞΉ β†’ Type _} [βˆ€ i, NormedAddCommGr
   [βˆ€ i, NormedSpace π•œ (F' i)] {Ο† : βˆ€ i, E β†’ F' i} {Ο†' : βˆ€ i, E β†’L[π•œ] F' i} {Ξ¦ : E β†’ βˆ€ i, F' i}
   {Ξ¦' : E β†’L[π•œ] βˆ€ i, F' i}
 
+/- warning: has_strict_fderiv_at_pi' -> hasStrictFDerivAt_pi' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasStrictFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasStrictFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasStrictFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasStrictFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'β‚“'. -/
 @[simp]
 theorem hasStrictFDerivAt_pi' :
     HasStrictFDerivAt Ξ¦ Ξ¦' x ↔ βˆ€ i, HasStrictFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
@@ -384,6 +688,12 @@ theorem hasStrictFDerivAt_pi' :
   exact is_o_pi
 #align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
 
+/- warning: has_strict_fderiv_at_pi -> hasStrictFDerivAt_pi is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasStrictFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') x) (forall (i : ΞΉ), HasStrictFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasStrictFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') x) (forall (i : ΞΉ), HasStrictFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_pi hasStrictFDerivAt_piβ‚“'. -/
 @[simp]
 theorem hasStrictFDerivAt_pi :
     HasStrictFDerivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
@@ -391,6 +701,12 @@ theorem hasStrictFDerivAt_pi :
   hasStrictFDerivAt_pi'
 #align has_strict_fderiv_at_pi hasStrictFDerivAt_pi
 
+/- warning: has_fderiv_at_filter_pi' -> hasFDerivAtFilter_pi' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {L : Filter.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasFDerivAtFilter.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') x L)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {L : Filter.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasFDerivAtFilter.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'β‚“'. -/
 @[simp]
 theorem hasFDerivAtFilter_pi' :
     HasFDerivAtFilter Ξ¦ Ξ¦' x L ↔ βˆ€ i, HasFDerivAtFilter (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x L :=
@@ -399,36 +715,72 @@ theorem hasFDerivAtFilter_pi' :
   exact is_o_pi
 #align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'
 
+/- warning: has_fderiv_at_filter_pi -> hasFDerivAtFilter_pi is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {L : Filter.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAtFilter.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) x L)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {L : Filter.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAtFilter.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_pi hasFDerivAtFilter_piβ‚“'. -/
 theorem hasFDerivAtFilter_pi :
     HasFDerivAtFilter (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x L ↔
       βˆ€ i, HasFDerivAtFilter (Ο† i) (Ο†' i) x L :=
   hasFDerivAtFilter_pi'
 #align has_fderiv_at_filter_pi hasFDerivAtFilter_pi
 
+/- warning: has_fderiv_at_pi' -> hasFDerivAt_pi' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_pi' hasFDerivAt_pi'β‚“'. -/
 @[simp]
 theorem hasFDerivAt_pi' :
     HasFDerivAt Ξ¦ Ξ¦' x ↔ βˆ€ i, HasFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
   hasFDerivAtFilter_pi'
 #align has_fderiv_at_pi' hasFDerivAt_pi'
 
+/- warning: has_fderiv_at_pi -> hasFDerivAt_pi is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') x) (forall (i : ΞΉ), HasFDerivAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') x) (forall (i : ΞΉ), HasFDerivAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_pi hasFDerivAt_piβ‚“'. -/
 theorem hasFDerivAt_pi :
     HasFDerivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
       βˆ€ i, HasFDerivAt (Ο† i) (Ο†' i) x :=
   hasFDerivAtFilter_pi
 #align has_fderiv_at_pi hasFDerivAt_pi
 
+/- warning: has_fderiv_within_at_pi' -> hasFDerivWithinAt_pi' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasFDerivWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π•œ π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasFDerivWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π•œ π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'β‚“'. -/
 @[simp]
 theorem hasFDerivWithinAt_pi' :
     HasFDerivWithinAt Ξ¦ Ξ¦' s x ↔ βˆ€ i, HasFDerivWithinAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') s x :=
   hasFDerivAtFilter_pi'
 #align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'
 
+/- warning: has_fderiv_within_at_pi -> hasFDerivWithinAt_pi is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)} {Ο†' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο†') s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) (Ο†' i) s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_pi hasFDerivWithinAt_piβ‚“'. -/
 theorem hasFDerivWithinAt_pi :
     HasFDerivWithinAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') s x ↔
       βˆ€ i, HasFDerivWithinAt (Ο† i) (Ο†' i) s x :=
   hasFDerivAtFilter_pi
 #align has_fderiv_within_at_pi hasFDerivWithinAt_pi
 
+/- warning: differentiable_within_at_pi -> differentiableWithinAt_pi is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableWithinAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s x) (forall (i : ΞΉ), DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableWithinAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s x) (forall (i : ΞΉ), DifferentiableWithinAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at_pi differentiableWithinAt_piβ‚“'. -/
 @[simp]
 theorem differentiableWithinAt_pi :
     DifferentiableWithinAt π•œ Ξ¦ s x ↔ βˆ€ i, DifferentiableWithinAt π•œ (fun x => Ξ¦ x i) s x :=
@@ -436,21 +788,45 @@ theorem differentiableWithinAt_pi :
     (hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).DifferentiableWithinAt⟩
 #align differentiable_within_at_pi differentiableWithinAt_pi
 
+/- warning: differentiable_at_pi -> differentiableAt_pi is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableAt.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ x) (forall (i : ΞΉ), DifferentiableAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) x)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableAt.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ x) (forall (i : ΞΉ), DifferentiableAt.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at_pi differentiableAt_piβ‚“'. -/
 @[simp]
 theorem differentiableAt_pi : DifferentiableAt π•œ Ξ¦ x ↔ βˆ€ i, DifferentiableAt π•œ (fun x => Ξ¦ x i) x :=
   ⟨fun h i => (hasFDerivAt_pi'.1 h.HasFDerivAt i).DifferentiableAt, fun h =>
     (hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).DifferentiableAt⟩
 #align differentiable_at_pi differentiableAt_pi
 
+/- warning: differentiable_on_pi -> differentiableOn_pi is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableOn.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s) (forall (i : ΞΉ), DifferentiableOn.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s)
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableOn.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s) (forall (i : ΞΉ), DifferentiableOn.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on_pi differentiableOn_piβ‚“'. -/
 theorem differentiableOn_pi : DifferentiableOn π•œ Ξ¦ s ↔ βˆ€ i, DifferentiableOn π•œ (fun x => Ξ¦ x i) s :=
   ⟨fun h i x hx => differentiableWithinAt_pi.1 (h x hx) i, fun h x hx =>
     differentiableWithinAt_pi.2 fun i => h i x hx⟩
 #align differentiable_on_pi differentiableOn_pi
 
+/- warning: differentiable_pi -> differentiable_pi is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (Differentiable.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦) (forall (i : ΞΉ), Differentiable.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (Differentiable.{u4, u3, max u2 u1} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦) (forall (i : ΞΉ), Differentiable.{u4, u3, u1} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i))
+Case conversion may be inaccurate. Consider using '#align differentiable_pi differentiable_piβ‚“'. -/
 theorem differentiable_pi : Differentiable π•œ Ξ¦ ↔ βˆ€ i, Differentiable π•œ fun x => Ξ¦ x i :=
   ⟨fun h i x => differentiableAt_pi.1 (h x) i, fun h x => differentiableAt_pi.2 fun i => h i x⟩
 #align differentiable_pi differentiable_pi
 
+/- warning: fderiv_within_pi -> fderivWithin_pi is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableWithinAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) s x) -> (UniqueDiffWithinAt.{u1, u2} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π•œ (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderivWithin.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) s x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderivWithin.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) s x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u1}} [_inst_10 : Fintype.{u1} ΞΉ] {F' : ΞΉ -> Type.{u2}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u2} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u2} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableWithinAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) s x) -> (UniqueDiffWithinAt.{u4, u3} π•œ _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Eq.{max (max (succ u3) (succ u1)) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π•œ (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u4, u1, u2} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderivWithin.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u1, u2} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) s x) (ContinuousLinearMap.pi.{u4, u3, u1, u2} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u2} (F' i) (PseudoMetricSpace.toUniformSpace.{u2} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u2} (F' i) (NormedAddCommGroup.toAddCommGroup.{u2} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u2} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderivWithin.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) s x)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_pi fderivWithin_piβ‚“'. -/
 -- TODO: find out which version (`Ο†` or `Ξ¦`) works better with `rw`/`simp`
 theorem fderivWithin_pi (h : βˆ€ i, DifferentiableWithinAt π•œ (Ο† i) s x)
     (hs : UniqueDiffWithinAt π•œ s x) :
@@ -458,6 +834,12 @@ theorem fderivWithin_pi (h : βˆ€ i, DifferentiableWithinAt π•œ (Ο† i) s x)
   (hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).fderivWithin hs
 #align fderiv_within_pi fderivWithin_pi
 
+/- warning: fderiv_pi -> fderiv_pi is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableAt.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π•œ (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderiv.{u1, u2, max u3 u4} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderiv.{u1, u2, u4} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) x)))
+but is expected to have type
+  forall {π•œ : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π•œ] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u1}} [_inst_10 : Fintype.{u1} ΞΉ] {F' : ΞΉ -> Type.{u2}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u2} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u2} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))] {Ο† : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableAt.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) x) -> (Eq.{max (max (succ u3) (succ u1)) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) (RingHom.id.{u4} π•œ (Semiring.toNonAssocSemiring.{u4} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π•œ (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u4, u1, u2} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderiv.{u4, u3, max u1 u2} π•œ _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u1, u2} π•œ ΞΉ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο† i x) x) (ContinuousLinearMap.pi.{u4, u3, u1, u2} π•œ (DivisionSemiring.toSemiring.{u4} π•œ (Semifield.toDivisionSemiring.{u4} π•œ (Field.toSemifield.{u4} π•œ (NormedField.toField.{u4} π•œ (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π•œ E (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u2} (F' i) (PseudoMetricSpace.toUniformSpace.{u2} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u2} (F' i) (NormedAddCommGroup.toAddCommGroup.{u2} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u2} π•œ (F' i) (NontriviallyNormedField.toNormedField.{u4} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderiv.{u4, u3, u2} π•œ _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο† i) x)))
+Case conversion may be inaccurate. Consider using '#align fderiv_pi fderiv_piβ‚“'. -/
 theorem fderiv_pi (h : βˆ€ i, DifferentiableAt π•œ (Ο† i) x) :
     fderiv π•œ (fun x i => Ο† i x) x = pi fun i => fderiv π•œ (Ο† i) x :=
   (hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).fderiv
Diff
@@ -61,49 +61,49 @@ section Prod
 
 variable {fβ‚‚ : E β†’ G} {fβ‚‚' : E β†’L[π•œ] G}
 
-protected theorem HasStrictFderivAt.prod (hf₁ : HasStrictFderivAt f₁ f₁' x)
-    (hfβ‚‚ : HasStrictFderivAt fβ‚‚ fβ‚‚' x) :
-    HasStrictFderivAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x :=
+protected theorem HasStrictFDerivAt.prod (hf₁ : HasStrictFDerivAt f₁ f₁' x)
+    (hfβ‚‚ : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
+    HasStrictFDerivAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x :=
   hf₁.prodLeft hfβ‚‚
-#align has_strict_fderiv_at.prod HasStrictFderivAt.prod
+#align has_strict_fderiv_at.prod HasStrictFDerivAt.prod
 
-theorem HasFderivAtFilter.prod (hf₁ : HasFderivAtFilter f₁ f₁' x L)
-    (hfβ‚‚ : HasFderivAtFilter fβ‚‚ fβ‚‚' x L) :
-    HasFderivAtFilter (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x L :=
+theorem HasFDerivAtFilter.prod (hf₁ : HasFDerivAtFilter f₁ f₁' x L)
+    (hfβ‚‚ : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
+    HasFDerivAtFilter (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x L :=
   hf₁.prodLeft hfβ‚‚
-#align has_fderiv_at_filter.prod HasFderivAtFilter.prod
+#align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
 
-theorem HasFderivWithinAt.prod (hf₁ : HasFderivWithinAt f₁ f₁' s x)
-    (hfβ‚‚ : HasFderivWithinAt fβ‚‚ fβ‚‚' s x) :
-    HasFderivWithinAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') s x :=
+theorem HasFDerivWithinAt.prod (hf₁ : HasFDerivWithinAt f₁ f₁' s x)
+    (hfβ‚‚ : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
+    HasFDerivWithinAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') s x :=
   hf₁.Prod hfβ‚‚
-#align has_fderiv_within_at.prod HasFderivWithinAt.prod
+#align has_fderiv_within_at.prod HasFDerivWithinAt.prod
 
-theorem HasFderivAt.prod (hf₁ : HasFderivAt f₁ f₁' x) (hfβ‚‚ : HasFderivAt fβ‚‚ fβ‚‚' x) :
-    HasFderivAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x :=
+theorem HasFDerivAt.prod (hf₁ : HasFDerivAt f₁ f₁' x) (hfβ‚‚ : HasFDerivAt fβ‚‚ fβ‚‚' x) :
+    HasFDerivAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.Prod fβ‚‚') x :=
   hf₁.Prod hfβ‚‚
-#align has_fderiv_at.prod HasFderivAt.prod
+#align has_fderiv_at.prod HasFDerivAt.prod
 
-theorem hasFderivAt_prod_mk_left (eβ‚€ : E) (fβ‚€ : F) :
-    HasFderivAt (fun e : E => (e, fβ‚€)) (inl π•œ E F) eβ‚€ :=
-  (hasFderivAt_id eβ‚€).Prod (hasFderivAt_const fβ‚€ eβ‚€)
-#align has_fderiv_at_prod_mk_left hasFderivAt_prod_mk_left
+theorem hasFDerivAt_prod_mk_left (eβ‚€ : E) (fβ‚€ : F) :
+    HasFDerivAt (fun e : E => (e, fβ‚€)) (inl π•œ E F) eβ‚€ :=
+  (hasFDerivAt_id eβ‚€).Prod (hasFDerivAt_const fβ‚€ eβ‚€)
+#align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_left
 
-theorem hasFderivAt_prod_mk_right (eβ‚€ : E) (fβ‚€ : F) :
-    HasFderivAt (fun f : F => (eβ‚€, f)) (inr π•œ E F) fβ‚€ :=
-  (hasFderivAt_const eβ‚€ fβ‚€).Prod (hasFderivAt_id fβ‚€)
-#align has_fderiv_at_prod_mk_right hasFderivAt_prod_mk_right
+theorem hasFDerivAt_prod_mk_right (eβ‚€ : E) (fβ‚€ : F) :
+    HasFDerivAt (fun f : F => (eβ‚€, f)) (inr π•œ E F) fβ‚€ :=
+  (hasFDerivAt_const eβ‚€ fβ‚€).Prod (hasFDerivAt_id fβ‚€)
+#align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_right
 
 theorem DifferentiableWithinAt.prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
     (hfβ‚‚ : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s x :=
-  (hf₁.HasFderivWithinAt.Prod hfβ‚‚.HasFderivWithinAt).DifferentiableWithinAt
+  (hf₁.HasFDerivWithinAt.Prod hfβ‚‚.HasFDerivWithinAt).DifferentiableWithinAt
 #align differentiable_within_at.prod DifferentiableWithinAt.prod
 
 @[simp]
 theorem DifferentiableAt.prod (hf₁ : DifferentiableAt π•œ f₁ x) (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x : E => (f₁ x, fβ‚‚ x)) x :=
-  (hf₁.HasFderivAt.Prod hfβ‚‚.HasFderivAt).DifferentiableAt
+  (hf₁.HasFDerivAt.Prod hfβ‚‚.HasFDerivAt).DifferentiableAt
 #align differentiable_at.prod DifferentiableAt.prod
 
 theorem DifferentiableOn.prod (hf₁ : DifferentiableOn π•œ f₁ s) (hfβ‚‚ : DifferentiableOn π•œ fβ‚‚ s) :
@@ -119,14 +119,14 @@ theorem Differentiable.prod (hf₁ : Differentiable π•œ f₁) (hfβ‚‚ : Differen
 theorem DifferentiableAt.fderiv_prod (hf₁ : DifferentiableAt π•œ f₁ x)
     (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x : E => (f₁ x, fβ‚‚ x)) x = (fderiv π•œ f₁ x).Prod (fderiv π•œ fβ‚‚ x) :=
-  (hf₁.HasFderivAt.Prod hfβ‚‚.HasFderivAt).fderiv
+  (hf₁.HasFDerivAt.Prod hfβ‚‚.HasFDerivAt).fderiv
 #align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
 
 theorem DifferentiableAt.fderivWithin_prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
     (hfβ‚‚ : DifferentiableWithinAt π•œ fβ‚‚ s x) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s x =
       (fderivWithin π•œ f₁ s x).Prod (fderivWithin π•œ fβ‚‚ s x) :=
-  (hf₁.HasFderivWithinAt.Prod hfβ‚‚.HasFderivWithinAt).fderivWithin hxs
+  (hf₁.HasFDerivWithinAt.Prod hfβ‚‚.HasFDerivWithinAt).fderivWithin hxs
 #align differentiable_at.fderiv_within_prod DifferentiableAt.fderivWithin_prod
 
 end Prod
@@ -135,46 +135,46 @@ section Fst
 
 variable {fβ‚‚ : E β†’ F Γ— G} {fβ‚‚' : E β†’L[π•œ] F Γ— G} {p : E Γ— F}
 
-theorem hasStrictFderivAt_fst : HasStrictFderivAt (@Prod.fst E F) (fst π•œ E F) p :=
-  (fst π•œ E F).HasStrictFderivAt
-#align has_strict_fderiv_at_fst hasStrictFderivAt_fst
+theorem hasStrictFDerivAt_fst : HasStrictFDerivAt (@Prod.fst E F) (fst π•œ E F) p :=
+  (fst π•œ E F).HasStrictFDerivAt
+#align has_strict_fderiv_at_fst hasStrictFDerivAt_fst
 
-protected theorem HasStrictFderivAt.fst (h : HasStrictFderivAt fβ‚‚ fβ‚‚' x) :
-    HasStrictFderivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
-  hasStrictFderivAt_fst.comp x h
-#align has_strict_fderiv_at.fst HasStrictFderivAt.fst
+protected theorem HasStrictFDerivAt.fst (h : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
+    HasStrictFDerivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
+  hasStrictFDerivAt_fst.comp x h
+#align has_strict_fderiv_at.fst HasStrictFDerivAt.fst
 
-theorem hasFderivAtFilter_fst {L : Filter (E Γ— F)} :
-    HasFderivAtFilter (@Prod.fst E F) (fst π•œ E F) p L :=
-  (fst π•œ E F).HasFderivAtFilter
-#align has_fderiv_at_filter_fst hasFderivAtFilter_fst
+theorem hasFDerivAtFilter_fst {L : Filter (E Γ— F)} :
+    HasFDerivAtFilter (@Prod.fst E F) (fst π•œ E F) p L :=
+  (fst π•œ E F).HasFDerivAtFilter
+#align has_fderiv_at_filter_fst hasFDerivAtFilter_fst
 
-protected theorem HasFderivAtFilter.fst (h : HasFderivAtFilter fβ‚‚ fβ‚‚' x L) :
-    HasFderivAtFilter (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x L :=
-  hasFderivAtFilter_fst.comp x h tendsto_map
-#align has_fderiv_at_filter.fst HasFderivAtFilter.fst
+protected theorem HasFDerivAtFilter.fst (h : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
+    HasFDerivAtFilter (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x L :=
+  hasFDerivAtFilter_fst.comp x h tendsto_map
+#align has_fderiv_at_filter.fst HasFDerivAtFilter.fst
 
-theorem hasFderivAt_fst : HasFderivAt (@Prod.fst E F) (fst π•œ E F) p :=
-  hasFderivAtFilter_fst
-#align has_fderiv_at_fst hasFderivAt_fst
+theorem hasFDerivAt_fst : HasFDerivAt (@Prod.fst E F) (fst π•œ E F) p :=
+  hasFDerivAtFilter_fst
+#align has_fderiv_at_fst hasFDerivAt_fst
 
-protected theorem HasFderivAt.fst (h : HasFderivAt fβ‚‚ fβ‚‚' x) :
-    HasFderivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
+protected theorem HasFDerivAt.fst (h : HasFDerivAt fβ‚‚ fβ‚‚' x) :
+    HasFDerivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
   h.fst
-#align has_fderiv_at.fst HasFderivAt.fst
+#align has_fderiv_at.fst HasFDerivAt.fst
 
-theorem hasFderivWithinAt_fst {s : Set (E Γ— F)} :
-    HasFderivWithinAt (@Prod.fst E F) (fst π•œ E F) s p :=
-  hasFderivAtFilter_fst
-#align has_fderiv_within_at_fst hasFderivWithinAt_fst
+theorem hasFDerivWithinAt_fst {s : Set (E Γ— F)} :
+    HasFDerivWithinAt (@Prod.fst E F) (fst π•œ E F) s p :=
+  hasFDerivAtFilter_fst
+#align has_fderiv_within_at_fst hasFDerivWithinAt_fst
 
-protected theorem HasFderivWithinAt.fst (h : HasFderivWithinAt fβ‚‚ fβ‚‚' s x) :
-    HasFderivWithinAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') s x :=
+protected theorem HasFDerivWithinAt.fst (h : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
+    HasFDerivWithinAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') s x :=
   h.fst
-#align has_fderiv_within_at.fst HasFderivWithinAt.fst
+#align has_fderiv_within_at.fst HasFDerivWithinAt.fst
 
 theorem differentiableAt_fst : DifferentiableAt π•œ Prod.fst p :=
-  hasFderivAt_fst.DifferentiableAt
+  hasFDerivAt_fst.DifferentiableAt
 #align differentiable_at_fst differentiableAt_fst
 
 @[simp]
@@ -212,22 +212,22 @@ protected theorem DifferentiableOn.fst (h : DifferentiableOn π•œ fβ‚‚ s) :
 #align differentiable_on.fst DifferentiableOn.fst
 
 theorem fderiv_fst : fderiv π•œ Prod.fst p = fst π•œ E F :=
-  hasFderivAt_fst.fderiv
+  hasFDerivAt_fst.fderiv
 #align fderiv_fst fderiv_fst
 
 theorem fderiv.fst (h : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x => (fβ‚‚ x).1) x = (fst π•œ F G).comp (fderiv π•œ fβ‚‚ x) :=
-  h.HasFderivAt.fst.fderiv
+  h.HasFDerivAt.fst.fderiv
 #align fderiv.fst fderiv.fst
 
 theorem fderivWithin_fst {s : Set (E Γ— F)} (hs : UniqueDiffWithinAt π•œ s p) :
     fderivWithin π•œ Prod.fst s p = fst π•œ E F :=
-  hasFderivWithinAt_fst.fderivWithin hs
+  hasFDerivWithinAt_fst.fderivWithin hs
 #align fderiv_within_fst fderivWithin_fst
 
 theorem fderivWithin.fst (hs : UniqueDiffWithinAt π•œ s x) (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     fderivWithin π•œ (fun x => (fβ‚‚ x).1) s x = (fst π•œ F G).comp (fderivWithin π•œ fβ‚‚ s x) :=
-  h.HasFderivWithinAt.fst.fderivWithin hs
+  h.HasFDerivWithinAt.fst.fderivWithin hs
 #align fderiv_within.fst fderivWithin.fst
 
 end Fst
@@ -236,46 +236,46 @@ section Snd
 
 variable {fβ‚‚ : E β†’ F Γ— G} {fβ‚‚' : E β†’L[π•œ] F Γ— G} {p : E Γ— F}
 
-theorem hasStrictFderivAt_snd : HasStrictFderivAt (@Prod.snd E F) (snd π•œ E F) p :=
-  (snd π•œ E F).HasStrictFderivAt
-#align has_strict_fderiv_at_snd hasStrictFderivAt_snd
+theorem hasStrictFDerivAt_snd : HasStrictFDerivAt (@Prod.snd E F) (snd π•œ E F) p :=
+  (snd π•œ E F).HasStrictFDerivAt
+#align has_strict_fderiv_at_snd hasStrictFDerivAt_snd
 
-protected theorem HasStrictFderivAt.snd (h : HasStrictFderivAt fβ‚‚ fβ‚‚' x) :
-    HasStrictFderivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
-  hasStrictFderivAt_snd.comp x h
-#align has_strict_fderiv_at.snd HasStrictFderivAt.snd
+protected theorem HasStrictFDerivAt.snd (h : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
+    HasStrictFDerivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
+  hasStrictFDerivAt_snd.comp x h
+#align has_strict_fderiv_at.snd HasStrictFDerivAt.snd
 
-theorem hasFderivAtFilter_snd {L : Filter (E Γ— F)} :
-    HasFderivAtFilter (@Prod.snd E F) (snd π•œ E F) p L :=
-  (snd π•œ E F).HasFderivAtFilter
-#align has_fderiv_at_filter_snd hasFderivAtFilter_snd
+theorem hasFDerivAtFilter_snd {L : Filter (E Γ— F)} :
+    HasFDerivAtFilter (@Prod.snd E F) (snd π•œ E F) p L :=
+  (snd π•œ E F).HasFDerivAtFilter
+#align has_fderiv_at_filter_snd hasFDerivAtFilter_snd
 
-protected theorem HasFderivAtFilter.snd (h : HasFderivAtFilter fβ‚‚ fβ‚‚' x L) :
-    HasFderivAtFilter (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x L :=
-  hasFderivAtFilter_snd.comp x h tendsto_map
-#align has_fderiv_at_filter.snd HasFderivAtFilter.snd
+protected theorem HasFDerivAtFilter.snd (h : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
+    HasFDerivAtFilter (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x L :=
+  hasFDerivAtFilter_snd.comp x h tendsto_map
+#align has_fderiv_at_filter.snd HasFDerivAtFilter.snd
 
-theorem hasFderivAt_snd : HasFderivAt (@Prod.snd E F) (snd π•œ E F) p :=
-  hasFderivAtFilter_snd
-#align has_fderiv_at_snd hasFderivAt_snd
+theorem hasFDerivAt_snd : HasFDerivAt (@Prod.snd E F) (snd π•œ E F) p :=
+  hasFDerivAtFilter_snd
+#align has_fderiv_at_snd hasFDerivAt_snd
 
-protected theorem HasFderivAt.snd (h : HasFderivAt fβ‚‚ fβ‚‚' x) :
-    HasFderivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
+protected theorem HasFDerivAt.snd (h : HasFDerivAt fβ‚‚ fβ‚‚' x) :
+    HasFDerivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
   h.snd
-#align has_fderiv_at.snd HasFderivAt.snd
+#align has_fderiv_at.snd HasFDerivAt.snd
 
-theorem hasFderivWithinAt_snd {s : Set (E Γ— F)} :
-    HasFderivWithinAt (@Prod.snd E F) (snd π•œ E F) s p :=
-  hasFderivAtFilter_snd
-#align has_fderiv_within_at_snd hasFderivWithinAt_snd
+theorem hasFDerivWithinAt_snd {s : Set (E Γ— F)} :
+    HasFDerivWithinAt (@Prod.snd E F) (snd π•œ E F) s p :=
+  hasFDerivAtFilter_snd
+#align has_fderiv_within_at_snd hasFDerivWithinAt_snd
 
-protected theorem HasFderivWithinAt.snd (h : HasFderivWithinAt fβ‚‚ fβ‚‚' s x) :
-    HasFderivWithinAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') s x :=
+protected theorem HasFDerivWithinAt.snd (h : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
+    HasFDerivWithinAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') s x :=
   h.snd
-#align has_fderiv_within_at.snd HasFderivWithinAt.snd
+#align has_fderiv_within_at.snd HasFDerivWithinAt.snd
 
 theorem differentiableAt_snd : DifferentiableAt π•œ Prod.snd p :=
-  hasFderivAt_snd.DifferentiableAt
+  hasFDerivAt_snd.DifferentiableAt
 #align differentiable_at_snd differentiableAt_snd
 
 @[simp]
@@ -313,22 +313,22 @@ protected theorem DifferentiableOn.snd (h : DifferentiableOn π•œ fβ‚‚ s) :
 #align differentiable_on.snd DifferentiableOn.snd
 
 theorem fderiv_snd : fderiv π•œ Prod.snd p = snd π•œ E F :=
-  hasFderivAt_snd.fderiv
+  hasFDerivAt_snd.fderiv
 #align fderiv_snd fderiv_snd
 
 theorem fderiv.snd (h : DifferentiableAt π•œ fβ‚‚ x) :
     fderiv π•œ (fun x => (fβ‚‚ x).2) x = (snd π•œ F G).comp (fderiv π•œ fβ‚‚ x) :=
-  h.HasFderivAt.snd.fderiv
+  h.HasFDerivAt.snd.fderiv
 #align fderiv.snd fderiv.snd
 
 theorem fderivWithin_snd {s : Set (E Γ— F)} (hs : UniqueDiffWithinAt π•œ s p) :
     fderivWithin π•œ Prod.snd s p = snd π•œ E F :=
-  hasFderivWithinAt_snd.fderivWithin hs
+  hasFDerivWithinAt_snd.fderivWithin hs
 #align fderiv_within_snd fderivWithin_snd
 
 theorem fderivWithin.snd (hs : UniqueDiffWithinAt π•œ s x) (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     fderivWithin π•œ (fun x => (fβ‚‚ x).2) s x = (snd π•œ F G).comp (fderivWithin π•œ fβ‚‚ s x) :=
-  h.HasFderivWithinAt.snd.fderivWithin hs
+  h.HasFDerivWithinAt.snd.fderivWithin hs
 #align fderiv_within.snd fderivWithin.snd
 
 end Snd
@@ -337,15 +337,15 @@ section Prod_map
 
 variable {fβ‚‚ : G β†’ G'} {fβ‚‚' : G β†’L[π•œ] G'} {y : G} (p : E Γ— G)
 
-protected theorem HasStrictFderivAt.prodMap (hf : HasStrictFderivAt f f' p.1)
-    (hfβ‚‚ : HasStrictFderivAt fβ‚‚ fβ‚‚' p.2) : HasStrictFderivAt (Prod.map f fβ‚‚) (f'.Prod_map fβ‚‚') p :=
-  (hf.comp p hasStrictFderivAt_fst).Prod (hfβ‚‚.comp p hasStrictFderivAt_snd)
-#align has_strict_fderiv_at.prod_map HasStrictFderivAt.prodMap
+protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
+    (hfβ‚‚ : HasStrictFDerivAt fβ‚‚ fβ‚‚' p.2) : HasStrictFDerivAt (Prod.map f fβ‚‚) (f'.Prod_map fβ‚‚') p :=
+  (hf.comp p hasStrictFDerivAt_fst).Prod (hfβ‚‚.comp p hasStrictFDerivAt_snd)
+#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMap
 
-protected theorem HasFderivAt.prodMap (hf : HasFderivAt f f' p.1) (hfβ‚‚ : HasFderivAt fβ‚‚ fβ‚‚' p.2) :
-    HasFderivAt (Prod.map f fβ‚‚) (f'.Prod_map fβ‚‚') p :=
-  (hf.comp p hasFderivAt_fst).Prod (hfβ‚‚.comp p hasFderivAt_snd)
-#align has_fderiv_at.prod_map HasFderivAt.prodMap
+protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ‚‚ : HasFDerivAt fβ‚‚ fβ‚‚' p.2) :
+    HasFDerivAt (Prod.map f fβ‚‚) (f'.Prod_map fβ‚‚') p :=
+  (hf.comp p hasFDerivAt_fst).Prod (hfβ‚‚.comp p hasFDerivAt_snd)
+#align has_fderiv_at.prod_map HasFDerivAt.prodMap
 
 @[simp]
 protected theorem DifferentiableAt.prod_map (hf : DifferentiableAt π•œ f p.1)
@@ -377,69 +377,69 @@ variable {ΞΉ : Type _} [Fintype ΞΉ] {F' : ΞΉ β†’ Type _} [βˆ€ i, NormedAddCommGr
   {Ξ¦' : E β†’L[π•œ] βˆ€ i, F' i}
 
 @[simp]
-theorem hasStrictFderivAt_pi' :
-    HasStrictFderivAt Ξ¦ Ξ¦' x ↔ βˆ€ i, HasStrictFderivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
+theorem hasStrictFDerivAt_pi' :
+    HasStrictFDerivAt Ξ¦ Ξ¦' x ↔ βˆ€ i, HasStrictFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
   by
-  simp only [HasStrictFderivAt, ContinuousLinearMap.coe_pi]
+  simp only [HasStrictFDerivAt, ContinuousLinearMap.coe_pi]
   exact is_o_pi
-#align has_strict_fderiv_at_pi' hasStrictFderivAt_pi'
+#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
 
 @[simp]
-theorem hasStrictFderivAt_pi :
-    HasStrictFderivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
-      βˆ€ i, HasStrictFderivAt (Ο† i) (Ο†' i) x :=
-  hasStrictFderivAt_pi'
-#align has_strict_fderiv_at_pi hasStrictFderivAt_pi
+theorem hasStrictFDerivAt_pi :
+    HasStrictFDerivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
+      βˆ€ i, HasStrictFDerivAt (Ο† i) (Ο†' i) x :=
+  hasStrictFDerivAt_pi'
+#align has_strict_fderiv_at_pi hasStrictFDerivAt_pi
 
 @[simp]
-theorem hasFderivAtFilter_pi' :
-    HasFderivAtFilter Ξ¦ Ξ¦' x L ↔ βˆ€ i, HasFderivAtFilter (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x L :=
+theorem hasFDerivAtFilter_pi' :
+    HasFDerivAtFilter Ξ¦ Ξ¦' x L ↔ βˆ€ i, HasFDerivAtFilter (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x L :=
   by
-  simp only [HasFderivAtFilter, ContinuousLinearMap.coe_pi]
+  simp only [HasFDerivAtFilter, ContinuousLinearMap.coe_pi]
   exact is_o_pi
-#align has_fderiv_at_filter_pi' hasFderivAtFilter_pi'
+#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'
 
-theorem hasFderivAtFilter_pi :
-    HasFderivAtFilter (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x L ↔
-      βˆ€ i, HasFderivAtFilter (Ο† i) (Ο†' i) x L :=
-  hasFderivAtFilter_pi'
-#align has_fderiv_at_filter_pi hasFderivAtFilter_pi
+theorem hasFDerivAtFilter_pi :
+    HasFDerivAtFilter (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x L ↔
+      βˆ€ i, HasFDerivAtFilter (Ο† i) (Ο†' i) x L :=
+  hasFDerivAtFilter_pi'
+#align has_fderiv_at_filter_pi hasFDerivAtFilter_pi
 
 @[simp]
-theorem hasFderivAt_pi' :
-    HasFderivAt Ξ¦ Ξ¦' x ↔ βˆ€ i, HasFderivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
-  hasFderivAtFilter_pi'
-#align has_fderiv_at_pi' hasFderivAt_pi'
+theorem hasFDerivAt_pi' :
+    HasFDerivAt Ξ¦ Ξ¦' x ↔ βˆ€ i, HasFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
+  hasFDerivAtFilter_pi'
+#align has_fderiv_at_pi' hasFDerivAt_pi'
 
-theorem hasFderivAt_pi :
-    HasFderivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
-      βˆ€ i, HasFderivAt (Ο† i) (Ο†' i) x :=
-  hasFderivAtFilter_pi
-#align has_fderiv_at_pi hasFderivAt_pi
+theorem hasFDerivAt_pi :
+    HasFDerivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
+      βˆ€ i, HasFDerivAt (Ο† i) (Ο†' i) x :=
+  hasFDerivAtFilter_pi
+#align has_fderiv_at_pi hasFDerivAt_pi
 
 @[simp]
-theorem hasFderivWithinAt_pi' :
-    HasFderivWithinAt Ξ¦ Ξ¦' s x ↔ βˆ€ i, HasFderivWithinAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') s x :=
-  hasFderivAtFilter_pi'
-#align has_fderiv_within_at_pi' hasFderivWithinAt_pi'
+theorem hasFDerivWithinAt_pi' :
+    HasFDerivWithinAt Ξ¦ Ξ¦' s x ↔ βˆ€ i, HasFDerivWithinAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') s x :=
+  hasFDerivAtFilter_pi'
+#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'
 
-theorem hasFderivWithinAt_pi :
-    HasFderivWithinAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') s x ↔
-      βˆ€ i, HasFderivWithinAt (Ο† i) (Ο†' i) s x :=
-  hasFderivAtFilter_pi
-#align has_fderiv_within_at_pi hasFderivWithinAt_pi
+theorem hasFDerivWithinAt_pi :
+    HasFDerivWithinAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') s x ↔
+      βˆ€ i, HasFDerivWithinAt (Ο† i) (Ο†' i) s x :=
+  hasFDerivAtFilter_pi
+#align has_fderiv_within_at_pi hasFDerivWithinAt_pi
 
 @[simp]
 theorem differentiableWithinAt_pi :
     DifferentiableWithinAt π•œ Ξ¦ s x ↔ βˆ€ i, DifferentiableWithinAt π•œ (fun x => Ξ¦ x i) s x :=
-  ⟨fun h i => (hasFderivWithinAt_pi'.1 h.HasFderivWithinAt i).DifferentiableWithinAt, fun h =>
-    (hasFderivWithinAt_pi.2 fun i => (h i).HasFderivWithinAt).DifferentiableWithinAt⟩
+  ⟨fun h i => (hasFDerivWithinAt_pi'.1 h.HasFDerivWithinAt i).DifferentiableWithinAt, fun h =>
+    (hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).DifferentiableWithinAt⟩
 #align differentiable_within_at_pi differentiableWithinAt_pi
 
 @[simp]
 theorem differentiableAt_pi : DifferentiableAt π•œ Ξ¦ x ↔ βˆ€ i, DifferentiableAt π•œ (fun x => Ξ¦ x i) x :=
-  ⟨fun h i => (hasFderivAt_pi'.1 h.HasFderivAt i).DifferentiableAt, fun h =>
-    (hasFderivAt_pi.2 fun i => (h i).HasFderivAt).DifferentiableAt⟩
+  ⟨fun h i => (hasFDerivAt_pi'.1 h.HasFDerivAt i).DifferentiableAt, fun h =>
+    (hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).DifferentiableAt⟩
 #align differentiable_at_pi differentiableAt_pi
 
 theorem differentiableOn_pi : DifferentiableOn π•œ Ξ¦ s ↔ βˆ€ i, DifferentiableOn π•œ (fun x => Ξ¦ x i) s :=
@@ -455,12 +455,12 @@ theorem differentiable_pi : Differentiable π•œ Ξ¦ ↔ βˆ€ i, Differentiable 
 theorem fderivWithin_pi (h : βˆ€ i, DifferentiableWithinAt π•œ (Ο† i) s x)
     (hs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (fun x i => Ο† i x) s x = pi fun i => fderivWithin π•œ (Ο† i) s x :=
-  (hasFderivWithinAt_pi.2 fun i => (h i).HasFderivWithinAt).fderivWithin hs
+  (hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).fderivWithin hs
 #align fderiv_within_pi fderivWithin_pi
 
 theorem fderiv_pi (h : βˆ€ i, DifferentiableAt π•œ (Ο† i) x) :
     fderiv π•œ (fun x i => Ο† i x) x = pi fun i => fderiv π•œ (Ο† i) x :=
-  (hasFderivAt_pi.2 fun i => (h i).HasFderivAt).fderiv
+  (hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).fderiv
 #align fderiv_pi fderiv_pi
 
 end Pi

Changes in mathlib4

mathlib3
mathlib4
style: add missing spaces between a tactic name and its arguments (#11714)

After the (d)simp and rw tactics - hints to find further occurrences welcome.

zulip discussion

Co-authored-by: @sven-manthe

Diff
@@ -414,7 +414,7 @@ theorem hasStrictFDerivAt_apply (i : ΞΉ) (f : βˆ€ i, F' i) :
   have h := ((hasStrictFDerivAt_pi'
              (Ξ¦ := fun (f : βˆ€ i, F' i) (i' : ΞΉ) => f i') (Ξ¦':=id') (x:=f))).1
   have h' : comp (proj i) id' = proj i := by rfl
-  rw[← h']; apply h; apply hasStrictFDerivAt_id
+  rw [← h']; apply h; apply hasStrictFDerivAt_id
 
 @[simp 1100] -- Porting note: increased priority to make lint happy
 theorem hasStrictFDerivAt_pi :
@@ -477,7 +477,7 @@ theorem hasFDerivWithinAt_apply (i : ΞΉ) (f : βˆ€ i, F' i) (s' : Set (βˆ€ i, F'
   have h := ((hasFDerivWithinAt_pi'
              (Ξ¦ := fun (f : βˆ€ i, F' i) (i' : ΞΉ) => f i') (Ξ¦':=id') (x:=f) (s:=s'))).1
   have h' : comp (proj i) id' = proj i := by rfl
-  rw[← h']; apply h; apply hasFDerivWithinAt_id
+  rw [← h']; apply h; apply hasFDerivWithinAt_id
 
 theorem hasFDerivWithinAt_pi :
     HasFDerivWithinAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') s x ↔
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -29,25 +29,15 @@ noncomputable section
 section
 
 variable {π•œ : Type*} [NontriviallyNormedField π•œ]
-
 variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E]
-
 variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F]
-
 variable {G : Type*} [NormedAddCommGroup G] [NormedSpace π•œ G]
-
 variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace π•œ G']
-
 variable {f fβ‚€ f₁ g : E β†’ F}
-
 variable {f' fβ‚€' f₁' g' : E β†’L[π•œ] F}
-
 variable (e : E β†’L[π•œ] F)
-
 variable {x : E}
-
 variable {s t : Set E}
-
 variable {L L₁ Lβ‚‚ : Filter E}
 
 section CartesianProduct
feat: set up fun_prop for Differentiable and HasFDeriv (#11153)

Basic setup for fun_prop for Differentiable(At/On/Within) and HasFDeriv(At/Within/Strict).

Mainly consists of marking theorems with fun_prop attribute but I had to formulate appropriate _pi and _apply theorems. Proofs of _apply theorems can probably be golfed into neater form.

Diff
@@ -71,45 +71,51 @@ theorem HasFDerivAtFilter.prod (hf₁ : HasFDerivAtFilter f₁ f₁' x L)
   .of_isLittleO <| hf₁.isLittleO.prod_left hfβ‚‚.isLittleO
 #align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
 
+@[fun_prop]
 nonrec theorem HasFDerivWithinAt.prod (hf₁ : HasFDerivWithinAt f₁ f₁' s x)
     (hfβ‚‚ : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.prod fβ‚‚') s x :=
   hf₁.prod hfβ‚‚
 #align has_fderiv_within_at.prod HasFDerivWithinAt.prod
 
+@[fun_prop]
 nonrec theorem HasFDerivAt.prod (hf₁ : HasFDerivAt f₁ f₁' x) (hfβ‚‚ : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (f₁ x, fβ‚‚ x)) (f₁'.prod fβ‚‚') x :=
   hf₁.prod hfβ‚‚
 #align has_fderiv_at.prod HasFDerivAt.prod
 
+@[fun_prop]
 theorem hasFDerivAt_prod_mk_left (eβ‚€ : E) (fβ‚€ : F) :
     HasFDerivAt (fun e : E => (e, fβ‚€)) (inl π•œ E F) eβ‚€ :=
   (hasFDerivAt_id eβ‚€).prod (hasFDerivAt_const fβ‚€ eβ‚€)
 #align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_left
 
+@[fun_prop]
 theorem hasFDerivAt_prod_mk_right (eβ‚€ : E) (fβ‚€ : F) :
     HasFDerivAt (fun f : F => (eβ‚€, f)) (inr π•œ E F) fβ‚€ :=
   (hasFDerivAt_const eβ‚€ fβ‚€).prod (hasFDerivAt_id fβ‚€)
 #align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_right
 
+@[fun_prop]
 theorem DifferentiableWithinAt.prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
     (hfβ‚‚ : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s x :=
   (hf₁.hasFDerivWithinAt.prod hfβ‚‚.hasFDerivWithinAt).differentiableWithinAt
 #align differentiable_within_at.prod DifferentiableWithinAt.prod
 
-@[simp]
+@[simp, fun_prop]
 theorem DifferentiableAt.prod (hf₁ : DifferentiableAt π•œ f₁ x) (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x : E => (f₁ x, fβ‚‚ x)) x :=
   (hf₁.hasFDerivAt.prod hfβ‚‚.hasFDerivAt).differentiableAt
 #align differentiable_at.prod DifferentiableAt.prod
 
+@[fun_prop]
 theorem DifferentiableOn.prod (hf₁ : DifferentiableOn π•œ f₁ s) (hfβ‚‚ : DifferentiableOn π•œ fβ‚‚ s) :
     DifferentiableOn π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s := fun x hx =>
   DifferentiableWithinAt.prod (hf₁ x hx) (hfβ‚‚ x hx)
 #align differentiable_on.prod DifferentiableOn.prod
 
-@[simp]
+@[simp, fun_prop]
 theorem Differentiable.prod (hf₁ : Differentiable π•œ f₁) (hfβ‚‚ : Differentiable π•œ fβ‚‚) :
     Differentiable π•œ fun x : E => (f₁ x, fβ‚‚ x) := fun x => DifferentiableAt.prod (hf₁ x) (hfβ‚‚ x)
 #align differentiable.prod Differentiable.prod
@@ -133,10 +139,12 @@ section Fst
 
 variable {fβ‚‚ : E β†’ F Γ— G} {fβ‚‚' : E β†’L[π•œ] F Γ— G} {p : E Γ— F}
 
+@[fun_prop]
 theorem hasStrictFDerivAt_fst : HasStrictFDerivAt (@Prod.fst E F) (fst π•œ E F) p :=
   (fst π•œ E F).hasStrictFDerivAt
 #align has_strict_fderiv_at_fst hasStrictFDerivAt_fst
 
+@[fun_prop]
 protected theorem HasStrictFDerivAt.fst (h : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
   hasStrictFDerivAt_fst.comp x h
@@ -152,58 +160,68 @@ protected theorem HasFDerivAtFilter.fst (h : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
   hasFDerivAtFilter_fst.comp x h tendsto_map
 #align has_fderiv_at_filter.fst HasFDerivAtFilter.fst
 
+@[fun_prop]
 theorem hasFDerivAt_fst : HasFDerivAt (@Prod.fst E F) (fst π•œ E F) p :=
   hasFDerivAtFilter_fst
 #align has_fderiv_at_fst hasFDerivAt_fst
 
+@[fun_prop]
 protected nonrec theorem HasFDerivAt.fst (h : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') x :=
   h.fst
 #align has_fderiv_at.fst HasFDerivAt.fst
 
+@[fun_prop]
 theorem hasFDerivWithinAt_fst {s : Set (E Γ— F)} :
     HasFDerivWithinAt (@Prod.fst E F) (fst π•œ E F) s p :=
   hasFDerivAtFilter_fst
 #align has_fderiv_within_at_fst hasFDerivWithinAt_fst
 
+@[fun_prop]
 protected nonrec theorem HasFDerivWithinAt.fst (h : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (fβ‚‚ x).1) ((fst π•œ F G).comp fβ‚‚') s x :=
   h.fst
 #align has_fderiv_within_at.fst HasFDerivWithinAt.fst
 
+@[fun_prop]
 theorem differentiableAt_fst : DifferentiableAt π•œ Prod.fst p :=
   hasFDerivAt_fst.differentiableAt
 #align differentiable_at_fst differentiableAt_fst
 
-@[simp]
+@[simp, fun_prop]
 protected theorem DifferentiableAt.fst (h : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x => (fβ‚‚ x).1) x :=
   differentiableAt_fst.comp x h
 #align differentiable_at.fst DifferentiableAt.fst
 
+@[fun_prop]
 theorem differentiable_fst : Differentiable π•œ (Prod.fst : E Γ— F β†’ E) := fun _ =>
   differentiableAt_fst
 #align differentiable_fst differentiable_fst
 
-@[simp]
+@[simp, fun_prop]
 protected theorem Differentiable.fst (h : Differentiable π•œ fβ‚‚) :
     Differentiable π•œ fun x => (fβ‚‚ x).1 :=
   differentiable_fst.comp h
 #align differentiable.fst Differentiable.fst
 
+@[fun_prop]
 theorem differentiableWithinAt_fst {s : Set (E Γ— F)} : DifferentiableWithinAt π•œ Prod.fst s p :=
   differentiableAt_fst.differentiableWithinAt
 #align differentiable_within_at_fst differentiableWithinAt_fst
 
+@[fun_prop]
 protected theorem DifferentiableWithinAt.fst (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x => (fβ‚‚ x).1) s x :=
   differentiableAt_fst.comp_differentiableWithinAt x h
 #align differentiable_within_at.fst DifferentiableWithinAt.fst
 
+@[fun_prop]
 theorem differentiableOn_fst {s : Set (E Γ— F)} : DifferentiableOn π•œ Prod.fst s :=
   differentiable_fst.differentiableOn
 #align differentiable_on_fst differentiableOn_fst
 
+@[fun_prop]
 protected theorem DifferentiableOn.fst (h : DifferentiableOn π•œ fβ‚‚ s) :
     DifferentiableOn π•œ (fun x => (fβ‚‚ x).1) s :=
   differentiable_fst.comp_differentiableOn h
@@ -234,10 +252,12 @@ section Snd
 
 variable {fβ‚‚ : E β†’ F Γ— G} {fβ‚‚' : E β†’L[π•œ] F Γ— G} {p : E Γ— F}
 
+@[fun_prop]
 theorem hasStrictFDerivAt_snd : HasStrictFDerivAt (@Prod.snd E F) (snd π•œ E F) p :=
   (snd π•œ E F).hasStrictFDerivAt
 #align has_strict_fderiv_at_snd hasStrictFDerivAt_snd
 
+@[fun_prop]
 protected theorem HasStrictFDerivAt.snd (h : HasStrictFDerivAt fβ‚‚ fβ‚‚' x) :
     HasStrictFDerivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
   hasStrictFDerivAt_snd.comp x h
@@ -253,58 +273,68 @@ protected theorem HasFDerivAtFilter.snd (h : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
   hasFDerivAtFilter_snd.comp x h tendsto_map
 #align has_fderiv_at_filter.snd HasFDerivAtFilter.snd
 
+@[fun_prop]
 theorem hasFDerivAt_snd : HasFDerivAt (@Prod.snd E F) (snd π•œ E F) p :=
   hasFDerivAtFilter_snd
 #align has_fderiv_at_snd hasFDerivAt_snd
 
+@[fun_prop]
 protected nonrec theorem HasFDerivAt.snd (h : HasFDerivAt fβ‚‚ fβ‚‚' x) :
     HasFDerivAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') x :=
   h.snd
 #align has_fderiv_at.snd HasFDerivAt.snd
 
+@[fun_prop]
 theorem hasFDerivWithinAt_snd {s : Set (E Γ— F)} :
     HasFDerivWithinAt (@Prod.snd E F) (snd π•œ E F) s p :=
   hasFDerivAtFilter_snd
 #align has_fderiv_within_at_snd hasFDerivWithinAt_snd
 
+@[fun_prop]
 protected nonrec theorem HasFDerivWithinAt.snd (h : HasFDerivWithinAt fβ‚‚ fβ‚‚' s x) :
     HasFDerivWithinAt (fun x => (fβ‚‚ x).2) ((snd π•œ F G).comp fβ‚‚') s x :=
   h.snd
 #align has_fderiv_within_at.snd HasFDerivWithinAt.snd
 
+@[fun_prop]
 theorem differentiableAt_snd : DifferentiableAt π•œ Prod.snd p :=
   hasFDerivAt_snd.differentiableAt
 #align differentiable_at_snd differentiableAt_snd
 
-@[simp]
+@[simp, fun_prop]
 protected theorem DifferentiableAt.snd (h : DifferentiableAt π•œ fβ‚‚ x) :
     DifferentiableAt π•œ (fun x => (fβ‚‚ x).2) x :=
   differentiableAt_snd.comp x h
 #align differentiable_at.snd DifferentiableAt.snd
 
+@[fun_prop]
 theorem differentiable_snd : Differentiable π•œ (Prod.snd : E Γ— F β†’ F) := fun _ =>
   differentiableAt_snd
 #align differentiable_snd differentiable_snd
 
-@[simp]
+@[simp, fun_prop]
 protected theorem Differentiable.snd (h : Differentiable π•œ fβ‚‚) :
     Differentiable π•œ fun x => (fβ‚‚ x).2 :=
   differentiable_snd.comp h
 #align differentiable.snd Differentiable.snd
 
+@[fun_prop]
 theorem differentiableWithinAt_snd {s : Set (E Γ— F)} : DifferentiableWithinAt π•œ Prod.snd s p :=
   differentiableAt_snd.differentiableWithinAt
 #align differentiable_within_at_snd differentiableWithinAt_snd
 
+@[fun_prop]
 protected theorem DifferentiableWithinAt.snd (h : DifferentiableWithinAt π•œ fβ‚‚ s x) :
     DifferentiableWithinAt π•œ (fun x => (fβ‚‚ x).2) s x :=
   differentiableAt_snd.comp_differentiableWithinAt x h
 #align differentiable_within_at.snd DifferentiableWithinAt.snd
 
+@[fun_prop]
 theorem differentiableOn_snd {s : Set (E Γ— F)} : DifferentiableOn π•œ Prod.snd s :=
   differentiable_snd.differentiableOn
 #align differentiable_on_snd differentiableOn_snd
 
+@[fun_prop]
 protected theorem DifferentiableOn.snd (h : DifferentiableOn π•œ fβ‚‚ s) :
     DifferentiableOn π•œ (fun x => (fβ‚‚ x).2) s :=
   differentiable_snd.comp_differentiableOn h
@@ -335,17 +365,19 @@ section Prod_map
 
 variable {fβ‚‚ : G β†’ G'} {fβ‚‚' : G β†’L[π•œ] G'} {y : G} (p : E Γ— G)
 
+@[fun_prop]
 protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
     (hfβ‚‚ : HasStrictFDerivAt fβ‚‚ fβ‚‚' p.2) : HasStrictFDerivAt (Prod.map f fβ‚‚) (f'.prodMap fβ‚‚') p :=
   (hf.comp p hasStrictFDerivAt_fst).prod (hfβ‚‚.comp p hasStrictFDerivAt_snd)
 #align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMap
 
+@[fun_prop]
 protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ‚‚ : HasFDerivAt fβ‚‚ fβ‚‚' p.2) :
     HasFDerivAt (Prod.map f fβ‚‚) (f'.prodMap fβ‚‚') p :=
   (hf.comp p hasFDerivAt_fst).prod (hfβ‚‚.comp p hasFDerivAt_snd)
 #align has_fderiv_at.prod_map HasFDerivAt.prodMap
 
-@[simp]
+@[simp, fun_prop]
 protected theorem DifferentiableAt.prod_map (hf : DifferentiableAt π•œ f p.1)
     (hfβ‚‚ : DifferentiableAt π•œ fβ‚‚ p.2) : DifferentiableAt π•œ (fun p : E Γ— G => (f p.1, fβ‚‚ p.2)) p :=
   (hf.comp p differentiableAt_fst).prod (hfβ‚‚.comp p differentiableAt_snd)
@@ -381,6 +413,19 @@ theorem hasStrictFDerivAt_pi' :
   exact isLittleO_pi
 #align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
 
+@[fun_prop]
+theorem hasStrictFDerivAt_pi'' (hΟ† : βˆ€ i, HasStrictFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x) :
+    HasStrictFDerivAt Φ Φ' x := hasStrictFDerivAt_pi'.2 hφ
+
+@[fun_prop]
+theorem hasStrictFDerivAt_apply (i : ΞΉ) (f : βˆ€ i, F' i) :
+    HasStrictFDerivAt (π•œ:=π•œ) (fun f : βˆ€ i, F' i => f i) (proj i) f := by
+  let id' := ContinuousLinearMap.id π•œ (βˆ€ i, F' i)
+  have h := ((hasStrictFDerivAt_pi'
+             (Ξ¦ := fun (f : βˆ€ i, F' i) (i' : ΞΉ) => f i') (Ξ¦':=id') (x:=f))).1
+  have h' : comp (proj i) id' = proj i := by rfl
+  rw[← h']; apply h; apply hasStrictFDerivAt_id
+
 @[simp 1100] -- Porting note: increased priority to make lint happy
 theorem hasStrictFDerivAt_pi :
     HasStrictFDerivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
@@ -408,6 +453,16 @@ theorem hasFDerivAt_pi' :
   hasFDerivAtFilter_pi'
 #align has_fderiv_at_pi' hasFDerivAt_pi'
 
+@[fun_prop]
+theorem hasFDerivAt_pi'' (hΟ† : βˆ€ i, HasFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x) :
+    HasFDerivAt Φ Φ' x := hasFDerivAt_pi'.2 hφ
+
+@[fun_prop]
+theorem hasFDerivAt_apply (i : ΞΉ) (f : βˆ€ i, F' i) :
+    HasFDerivAt (π•œ:=π•œ) (fun f : βˆ€ i, F' i => f i) (proj i) f := by
+  apply HasStrictFDerivAt.hasFDerivAt
+  apply hasStrictFDerivAt_apply
+
 theorem hasFDerivAt_pi :
     HasFDerivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
       βˆ€ i, HasFDerivAt (Ο† i) (Ο†' i) x :=
@@ -420,6 +475,20 @@ theorem hasFDerivWithinAt_pi' :
   hasFDerivAtFilter_pi'
 #align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'
 
+@[fun_prop]
+theorem hasFDerivWithinAt_pi''
+    (hΟ† : βˆ€ i, HasFDerivWithinAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') s x) :
+    HasFDerivWithinAt Φ Φ' s x := hasFDerivWithinAt_pi'.2 hφ
+
+@[fun_prop]
+theorem hasFDerivWithinAt_apply (i : ΞΉ) (f : βˆ€ i, F' i) (s' : Set (βˆ€ i, F' i)) :
+    HasFDerivWithinAt (π•œ:=π•œ) (fun f : βˆ€ i, F' i => f i) (proj i) s' f := by
+  let id' := ContinuousLinearMap.id π•œ (βˆ€ i, F' i)
+  have h := ((hasFDerivWithinAt_pi'
+             (Ξ¦ := fun (f : βˆ€ i, F' i) (i' : ΞΉ) => f i') (Ξ¦':=id') (x:=f) (s:=s'))).1
+  have h' : comp (proj i) id' = proj i := by rfl
+  rw[← h']; apply h; apply hasFDerivWithinAt_id
+
 theorem hasFDerivWithinAt_pi :
     HasFDerivWithinAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') s x ↔
       βˆ€ i, HasFDerivWithinAt (Ο† i) (Ο†' i) s x :=
@@ -433,21 +502,61 @@ theorem differentiableWithinAt_pi :
     (hasFDerivWithinAt_pi.2 fun i => (h i).hasFDerivWithinAt).differentiableWithinAt⟩
 #align differentiable_within_at_pi differentiableWithinAt_pi
 
+@[fun_prop]
+theorem differentiableWithinAt_pi'' (hΟ† : βˆ€ i, DifferentiableWithinAt π•œ (fun x => Ξ¦ x i) s x) :
+    DifferentiableWithinAt π•œ Ξ¦ s x := differentiableWithinAt_pi.2 hΟ†
+
+@[fun_prop]
+theorem differentiableWithinAt_apply (i : ΞΉ) (f : βˆ€ i, F' i) (s' : Set (βˆ€ i, F' i)) :
+    DifferentiableWithinAt (π•œ:=π•œ) (fun f : βˆ€ i, F' i => f i) s' f := by
+  apply HasFDerivWithinAt.differentiableWithinAt
+  fun_prop
+
 @[simp]
 theorem differentiableAt_pi : DifferentiableAt π•œ Ξ¦ x ↔ βˆ€ i, DifferentiableAt π•œ (fun x => Ξ¦ x i) x :=
   ⟨fun h i => (hasFDerivAt_pi'.1 h.hasFDerivAt i).differentiableAt, fun h =>
     (hasFDerivAt_pi.2 fun i => (h i).hasFDerivAt).differentiableAt⟩
 #align differentiable_at_pi differentiableAt_pi
 
+@[fun_prop]
+theorem differentiableAt_pi'' (hΟ† : βˆ€ i, DifferentiableAt π•œ (fun x => Ξ¦ x i) x) :
+    DifferentiableAt π•œ Ξ¦ x := differentiableAt_pi.2 hΟ†
+
+@[fun_prop]
+theorem differentiableAt_apply (i : ΞΉ) (f : βˆ€ i, F' i) :
+    DifferentiableAt (π•œ:=π•œ) (fun f : βˆ€ i, F' i => f i) f := by
+  have h := ((differentiableAt_pi (π•œ:=π•œ)
+             (Ξ¦ := fun (f : βˆ€ i, F' i) (i' : ΞΉ) => f i') (x:=f))).1
+  apply h; apply differentiableAt_id
+
 theorem differentiableOn_pi : DifferentiableOn π•œ Ξ¦ s ↔ βˆ€ i, DifferentiableOn π•œ (fun x => Ξ¦ x i) s :=
   ⟨fun h i x hx => differentiableWithinAt_pi.1 (h x hx) i, fun h x hx =>
     differentiableWithinAt_pi.2 fun i => h i x hx⟩
 #align differentiable_on_pi differentiableOn_pi
 
+@[fun_prop]
+theorem differentiableOn_pi'' (hΟ† : βˆ€ i, DifferentiableOn π•œ (fun x => Ξ¦ x i) s) :
+    DifferentiableOn π•œ Ξ¦ s := differentiableOn_pi.2 hΟ†
+
+@[fun_prop]
+theorem differentiableOn_apply (i : ΞΉ) (s' : Set (βˆ€ i, F' i)) :
+    DifferentiableOn (π•œ:=π•œ) (fun f : βˆ€ i, F' i => f i) s' := by
+  have h := ((differentiableOn_pi (π•œ:=π•œ)
+             (Ξ¦ := fun (f : βˆ€ i, F' i) (i' : ΞΉ) => f i') (s:=s'))).1
+  apply h; apply differentiableOn_id
+
 theorem differentiable_pi : Differentiable π•œ Ξ¦ ↔ βˆ€ i, Differentiable π•œ fun x => Ξ¦ x i :=
   ⟨fun h i x => differentiableAt_pi.1 (h x) i, fun h x => differentiableAt_pi.2 fun i => h i x⟩
 #align differentiable_pi differentiable_pi
 
+@[fun_prop]
+theorem differentiable_pi'' (hΟ† : βˆ€ i, Differentiable π•œ fun x => Ξ¦ x i) :
+    Differentiable π•œ Ξ¦ := differentiable_pi.2 hΟ†
+
+@[fun_prop]
+theorem differentiable_apply (i : ΞΉ) :
+    Differentiable (π•œ:=π•œ) (fun f : βˆ€ i, F' i => f i) := by intro x; apply differentiableAt_apply
+
 -- TODO: find out which version (`Ο†` or `Ξ¦`) works better with `rw`/`simp`
 theorem fderivWithin_pi (h : βˆ€ i, DifferentiableWithinAt π•œ (Ο† i) s x)
     (hs : UniqueDiffWithinAt π•œ s x) :
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -21,7 +21,8 @@ cartesian products of functions, and functions into Pi-types.
 
 open Filter Asymptotics ContinuousLinearMap Set Metric
 
-open Topology Classical NNReal Filter Asymptotics ENNReal
+open scoped Classical
+open Topology NNReal Filter Asymptotics ENNReal
 
 noncomputable section
 
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -380,7 +380,7 @@ theorem hasStrictFDerivAt_pi' :
   exact isLittleO_pi
 #align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
 
-@[simp 1100] -- porting note: increased priority to make lint happy
+@[simp 1100] -- Porting note: increased priority to make lint happy
 theorem hasStrictFDerivAt_pi :
     HasStrictFDerivAt (fun x i => Ο† i x) (ContinuousLinearMap.pi Ο†') x ↔
       βˆ€ i, HasStrictFDerivAt (Ο† i) (Ο†' i) x :=
refactor(FDeriv): use structure (#8907)

This way we can easily change the definition so that it works for topological vector spaces without generalizing any of the theorems right away.

Diff
@@ -67,7 +67,7 @@ protected theorem HasStrictFDerivAt.prod (hf₁ : HasStrictFDerivAt f₁ f₁' x
 theorem HasFDerivAtFilter.prod (hf₁ : HasFDerivAtFilter f₁ f₁' x L)
     (hfβ‚‚ : HasFDerivAtFilter fβ‚‚ fβ‚‚' x L) :
     HasFDerivAtFilter (fun x => (f₁ x, fβ‚‚ x)) (f₁'.prod fβ‚‚') x L :=
-  hf₁.prod_left hfβ‚‚
+  .of_isLittleO <| hf₁.isLittleO.prod_left hfβ‚‚.isLittleO
 #align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
 
 nonrec theorem HasFDerivWithinAt.prod (hf₁ : HasFDerivWithinAt f₁ f₁' s x)
@@ -391,7 +391,7 @@ theorem hasStrictFDerivAt_pi :
 theorem hasFDerivAtFilter_pi' :
     HasFDerivAtFilter Ξ¦ Ξ¦' x L ↔
       βˆ€ i, HasFDerivAtFilter (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x L := by
-  simp only [HasFDerivAtFilter, ContinuousLinearMap.coe_pi]
+  simp only [hasFDerivAtFilter_iff_isLittleO, ContinuousLinearMap.coe_pi]
   exact isLittleO_pi
 #align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'
 
chore: tidy various files (#6577)
Diff
@@ -357,7 +357,7 @@ section Pi
 /-!
 ### Derivatives of functions `f : E β†’ Ξ  i, F' i`
 
-In this section we formulate `has_*fderiv*_pi` theorems as `iff`s, and provide two versions of each
+In this section we formulate `has*FDeriv*_pi` theorems as `iff`s, and provide two versions of each
 theorem:
 
 * the version without `'` deals with `Ο† : Ξ  i, E β†’ F' i` and `Ο†' : Ξ  i, E β†’L[π•œ] F' i`
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -27,15 +27,15 @@ noncomputable section
 
 section
 
-variable {π•œ : Type _} [NontriviallyNormedField π•œ]
+variable {π•œ : Type*} [NontriviallyNormedField π•œ]
 
-variable {E : Type _} [NormedAddCommGroup E] [NormedSpace π•œ E]
+variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E]
 
-variable {F : Type _} [NormedAddCommGroup F] [NormedSpace π•œ F]
+variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F]
 
-variable {G : Type _} [NormedAddCommGroup G] [NormedSpace π•œ G]
+variable {G : Type*} [NormedAddCommGroup G] [NormedSpace π•œ G]
 
-variable {G' : Type _} [NormedAddCommGroup G'] [NormedSpace π•œ G']
+variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace π•œ G']
 
 variable {f fβ‚€ f₁ g : E β†’ F}
 
@@ -369,7 +369,7 @@ theorem:
 -/
 
 
-variable {ΞΉ : Type _} [Fintype ΞΉ] {F' : ΞΉ β†’ Type _} [βˆ€ i, NormedAddCommGroup (F' i)]
+variable {ΞΉ : Type*} [Fintype ΞΉ] {F' : ΞΉ β†’ Type*} [βˆ€ i, NormedAddCommGroup (F' i)]
   [βˆ€ i, NormedSpace π•œ (F' i)] {Ο† : βˆ€ i, E β†’ F' i} {Ο†' : βˆ€ i, E β†’L[π•œ] F' i} {Ξ¦ : E β†’ βˆ€ i, F' i}
   {Ξ¦' : E β†’L[π•œ] βˆ€ i, F' i}
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,15 +2,12 @@
 Copyright (c) 2019 Jeremy Avigad. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
-
-! This file was ported from Lean 3 source module analysis.calculus.fderiv.prod
-! leanprover-community/mathlib commit e354e865255654389cc46e6032160238df2e0f40
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Analysis.Calculus.FDeriv.Linear
 import Mathlib.Analysis.Calculus.FDeriv.Comp
 
+#align_import analysis.calculus.fderiv.prod from "leanprover-community/mathlib"@"e354e865255654389cc46e6032160238df2e0f40"
+
 /-!
 # Derivative of the cartesian product of functions
 
chore: convert lambda in docs to fun (#5045)

Found with git grep -n "Ξ» [a-zA-Z_ ]*,"

Diff
@@ -364,10 +364,10 @@ In this section we formulate `has_*fderiv*_pi` theorems as `iff`s, and provide t
 theorem:
 
 * the version without `'` deals with `Ο† : Ξ  i, E β†’ F' i` and `Ο†' : Ξ  i, E β†’L[π•œ] F' i`
-  and is designed to deduce differentiability of `Ξ» x i, Ο† i x` from differentiability
+  and is designed to deduce differentiability of `fun x i ↦ Ο† i x` from differentiability
   of each `Ο† i`;
 * the version with `'` deals with `Ξ¦ : E β†’ Ξ  i, F' i` and `Ξ¦' : E β†’L[π•œ] Ξ  i, F' i`
-  and is designed to deduce differentiability of the components `Ξ» x, Ξ¦ x i` from
+  and is designed to deduce differentiability of the components `fun x ↦ Ξ¦ x i` from
   differentiability of `Ξ¦`.
 -/
 
feat: add ContinuousAt.comp_of_eq (#4904)

Forward-port of leanprover-community/mathlib#18877 (2 files)

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
 
 ! This file was ported from Lean 3 source module analysis.calculus.fderiv.prod
-! leanprover-community/mathlib commit e3fb84046afd187b710170887195d50bada934ee
+! leanprover-community/mathlib commit e354e865255654389cc46e6032160238df2e0f40
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -122,12 +122,12 @@ theorem DifferentiableAt.fderiv_prod (hf₁ : DifferentiableAt π•œ f₁ x)
   (hf₁.hasFDerivAt.prod hfβ‚‚.hasFDerivAt).fderiv
 #align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
 
-theorem DifferentiableAt.fderivWithin_prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
+theorem DifferentiableWithinAt.fderivWithin_prod (hf₁ : DifferentiableWithinAt π•œ f₁ s x)
     (hfβ‚‚ : DifferentiableWithinAt π•œ fβ‚‚ s x) (hxs : UniqueDiffWithinAt π•œ s x) :
     fderivWithin π•œ (fun x : E => (f₁ x, fβ‚‚ x)) s x =
       (fderivWithin π•œ f₁ s x).prod (fderivWithin π•œ fβ‚‚ s x) :=
   (hf₁.hasFDerivWithinAt.prod hfβ‚‚.hasFDerivWithinAt).fderivWithin hxs
-#align differentiable_at.fderiv_within_prod DifferentiableAt.fderivWithin_prod
+#align differentiable_within_at.fderiv_within_prod DifferentiableWithinAt.fderivWithin_prod
 
 end Prod
 
feat: port Analysis.Calculus.Fderiv.Prod (#4208)

Dependencies 10 + 675

676 files ported (98.5%)
300674 lines ported (98.3%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file