analysis.calculus.fderiv.prod
β·
Mathlib.Analysis.Calculus.FDeriv.Prod
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
comp_of_eq lemmas
about how (I think) we should better formulate composition lemmas of properties of functions.comp_of_eq lemmas
: exactly the same problems happen in Lean 4.smooth_iff_proj_smooth -> smooth_prod_iff
differentiable_at.fderiv_within_prod -> differentiable_within_at.fderiv_within_prod
path_connected_space
instance of the tangent space. This instance is sufficient to compile sphere-eversion, without any normed_space
instances on the tangent space (which are not the canonical structure on the tangent space).@@ -97,7 +97,7 @@ lemma differentiable_at.fderiv_prod
fderiv π (Ξ»x:E, (fβ x, fβ x)) x = (fderiv π fβ x).prod (fderiv π fβ x) :=
(hfβ.has_fderiv_at.prod hfβ.has_fderiv_at).fderiv
-lemma differentiable_at.fderiv_within_prod
+lemma differentiable_within_at.fderiv_within_prod
(hfβ : differentiable_within_at π fβ s x) (hfβ : differentiable_within_at π fβ s x)
(hxs : unique_diff_within_at π s x) :
fderiv_within π (Ξ»x:E, (fβ x, fβ x)) s x =
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(first ported)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -3,8 +3,8 @@ Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
-import Analysis.Calculus.Fderiv.Linear
-import Analysis.Calculus.Fderiv.Comp
+import Analysis.Calculus.FDeriv.Linear
+import Analysis.Calculus.FDeriv.Comp
#align_import analysis.calculus.fderiv.prod from "leanprover-community/mathlib"@"e354e865255654389cc46e6032160238df2e0f40"
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
-/
-import Mathbin.Analysis.Calculus.Fderiv.Linear
-import Mathbin.Analysis.Calculus.Fderiv.Comp
+import Analysis.Calculus.Fderiv.Linear
+import Analysis.Calculus.Fderiv.Comp
#align_import analysis.calculus.fderiv.prod from "leanprover-community/mathlib"@"e354e865255654389cc46e6032160238df2e0f40"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
-
-! This file was ported from Lean 3 source module analysis.calculus.fderiv.prod
-! leanprover-community/mathlib commit e354e865255654389cc46e6032160238df2e0f40
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.Calculus.Fderiv.Linear
import Mathbin.Analysis.Calculus.Fderiv.Comp
+#align_import analysis.calculus.fderiv.prod from "leanprover-community/mathlib"@"e354e865255654389cc46e6032160238df2e0f40"
+
/-!
# Derivative of the cartesian product of functions
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -64,73 +64,97 @@ section Prod
variable {fβ : E β G} {fβ' : E βL[π] G}
+#print HasStrictFDerivAt.prod /-
protected theorem HasStrictFDerivAt.prod (hfβ : HasStrictFDerivAt fβ fβ' x)
(hfβ : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x :=
hfβ.prodLeft hfβ
#align has_strict_fderiv_at.prod HasStrictFDerivAt.prod
+-/
+#print HasFDerivAtFilter.prod /-
theorem HasFDerivAtFilter.prod (hfβ : HasFDerivAtFilter fβ fβ' x L)
(hfβ : HasFDerivAtFilter fβ fβ' x L) :
HasFDerivAtFilter (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x L :=
hfβ.prodLeft hfβ
#align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
+-/
+#print HasFDerivWithinAt.prod /-
theorem HasFDerivWithinAt.prod (hfβ : HasFDerivWithinAt fβ fβ' s x)
(hfβ : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') s x :=
hfβ.Prod hfβ
#align has_fderiv_within_at.prod HasFDerivWithinAt.prod
+-/
+#print HasFDerivAt.prod /-
theorem HasFDerivAt.prod (hfβ : HasFDerivAt fβ fβ' x) (hfβ : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x :=
hfβ.Prod hfβ
#align has_fderiv_at.prod HasFDerivAt.prod
+-/
+#print hasFDerivAt_prod_mk_left /-
theorem hasFDerivAt_prod_mk_left (eβ : E) (fβ : F) :
HasFDerivAt (fun e : E => (e, fβ)) (inl π E F) eβ :=
(hasFDerivAt_id eβ).Prod (hasFDerivAt_const fβ eβ)
#align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_left
+-/
+#print hasFDerivAt_prod_mk_right /-
theorem hasFDerivAt_prod_mk_right (eβ : E) (fβ : F) :
HasFDerivAt (fun f : F => (eβ, f)) (inr π E F) fβ :=
(hasFDerivAt_const eβ fβ).Prod (hasFDerivAt_id fβ)
#align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_right
+-/
+#print DifferentiableWithinAt.prod /-
theorem DifferentiableWithinAt.prod (hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x : E => (fβ x, fβ x)) s x :=
(hfβ.HasFDerivWithinAt.Prod hfβ.HasFDerivWithinAt).DifferentiableWithinAt
#align differentiable_within_at.prod DifferentiableWithinAt.prod
+-/
+#print DifferentiableAt.prod /-
@[simp]
theorem DifferentiableAt.prod (hfβ : DifferentiableAt π fβ x) (hfβ : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x : E => (fβ x, fβ x)) x :=
(hfβ.HasFDerivAt.Prod hfβ.HasFDerivAt).DifferentiableAt
#align differentiable_at.prod DifferentiableAt.prod
+-/
+#print DifferentiableOn.prod /-
theorem DifferentiableOn.prod (hfβ : DifferentiableOn π fβ s) (hfβ : DifferentiableOn π fβ s) :
DifferentiableOn π (fun x : E => (fβ x, fβ x)) s := fun x hx =>
DifferentiableWithinAt.prod (hfβ x hx) (hfβ x hx)
#align differentiable_on.prod DifferentiableOn.prod
+-/
+#print Differentiable.prod /-
@[simp]
theorem Differentiable.prod (hfβ : Differentiable π fβ) (hfβ : Differentiable π fβ) :
Differentiable π fun x : E => (fβ x, fβ x) := fun x => DifferentiableAt.prod (hfβ x) (hfβ x)
#align differentiable.prod Differentiable.prod
+-/
+#print DifferentiableAt.fderiv_prod /-
theorem DifferentiableAt.fderiv_prod (hfβ : DifferentiableAt π fβ x)
(hfβ : DifferentiableAt π fβ x) :
fderiv π (fun x : E => (fβ x, fβ x)) x = (fderiv π fβ x).Prod (fderiv π fβ x) :=
(hfβ.HasFDerivAt.Prod hfβ.HasFDerivAt).fderiv
#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
+-/
+#print DifferentiableWithinAt.fderivWithin_prod /-
theorem DifferentiableWithinAt.fderivWithin_prod (hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x) (hxs : UniqueDiffWithinAt π s x) :
fderivWithin π (fun x : E => (fβ x, fβ x)) s x =
(fderivWithin π fβ s x).Prod (fderivWithin π fβ s x) :=
(hfβ.HasFDerivWithinAt.Prod hfβ.HasFDerivWithinAt).fderivWithin hxs
#align differentiable_within_at.fderiv_within_prod DifferentiableWithinAt.fderivWithin_prod
+-/
end Prod
@@ -138,14 +162,18 @@ section Fst
variable {fβ : E β F Γ G} {fβ' : E βL[π] F Γ G} {p : E Γ F}
+#print hasStrictFDerivAt_fst /-
theorem hasStrictFDerivAt_fst : HasStrictFDerivAt (@Prod.fst E F) (fst π E F) p :=
(fst π E F).HasStrictFDerivAt
#align has_strict_fderiv_at_fst hasStrictFDerivAt_fst
+-/
+#print HasStrictFDerivAt.fst /-
protected theorem HasStrictFDerivAt.fst (h : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
hasStrictFDerivAt_fst.comp x h
#align has_strict_fderiv_at.fst HasStrictFDerivAt.fst
+-/
#print hasFDerivAtFilter_fst /-
theorem hasFDerivAtFilter_fst {L : Filter (E Γ F)} :
@@ -154,19 +182,25 @@ theorem hasFDerivAtFilter_fst {L : Filter (E Γ F)} :
#align has_fderiv_at_filter_fst hasFDerivAtFilter_fst
-/
+#print HasFDerivAtFilter.fst /-
protected theorem HasFDerivAtFilter.fst (h : HasFDerivAtFilter fβ fβ' x L) :
HasFDerivAtFilter (fun x => (fβ x).1) ((fst π F G).comp fβ') x L :=
hasFDerivAtFilter_fst.comp x h tendsto_map
#align has_fderiv_at_filter.fst HasFDerivAtFilter.fst
+-/
+#print hasFDerivAt_fst /-
theorem hasFDerivAt_fst : HasFDerivAt (@Prod.fst E F) (fst π E F) p :=
hasFDerivAtFilter_fst
#align has_fderiv_at_fst hasFDerivAt_fst
+-/
+#print HasFDerivAt.fst /-
protected theorem HasFDerivAt.fst (h : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
h.fst
#align has_fderiv_at.fst HasFDerivAt.fst
+-/
#print hasFDerivWithinAt_fst /-
theorem hasFDerivWithinAt_fst {s : Set (E Γ F)} :
@@ -175,30 +209,40 @@ theorem hasFDerivWithinAt_fst {s : Set (E Γ F)} :
#align has_fderiv_within_at_fst hasFDerivWithinAt_fst
-/
+#print HasFDerivWithinAt.fst /-
protected theorem HasFDerivWithinAt.fst (h : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x).1) ((fst π F G).comp fβ') s x :=
h.fst
#align has_fderiv_within_at.fst HasFDerivWithinAt.fst
+-/
+#print differentiableAt_fst /-
theorem differentiableAt_fst : DifferentiableAt π Prod.fst p :=
hasFDerivAt_fst.DifferentiableAt
#align differentiable_at_fst differentiableAt_fst
+-/
+#print DifferentiableAt.fst /-
@[simp]
protected theorem DifferentiableAt.fst (h : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x => (fβ x).1) x :=
differentiableAt_fst.comp x h
#align differentiable_at.fst DifferentiableAt.fst
+-/
+#print differentiable_fst /-
theorem differentiable_fst : Differentiable π (Prod.fst : E Γ F β E) := fun x =>
differentiableAt_fst
#align differentiable_fst differentiable_fst
+-/
+#print Differentiable.fst /-
@[simp]
protected theorem Differentiable.fst (h : Differentiable π fβ) :
Differentiable π fun x => (fβ x).1 :=
differentiable_fst.comp h
#align differentiable.fst Differentiable.fst
+-/
#print differentiableWithinAt_fst /-
theorem differentiableWithinAt_fst {s : Set (E Γ F)} : DifferentiableWithinAt π Prod.fst s p :=
@@ -206,10 +250,12 @@ theorem differentiableWithinAt_fst {s : Set (E Γ F)} : DifferentiableWithinAt
#align differentiable_within_at_fst differentiableWithinAt_fst
-/
+#print DifferentiableWithinAt.fst /-
protected theorem DifferentiableWithinAt.fst (h : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x => (fβ x).1) s x :=
differentiableAt_fst.comp_differentiableWithinAt x h
#align differentiable_within_at.fst DifferentiableWithinAt.fst
+-/
#print differentiableOn_fst /-
theorem differentiableOn_fst {s : Set (E Γ F)} : DifferentiableOn π Prod.fst s :=
@@ -217,29 +263,39 @@ theorem differentiableOn_fst {s : Set (E Γ F)} : DifferentiableOn π Prod.fst
#align differentiable_on_fst differentiableOn_fst
-/
+#print DifferentiableOn.fst /-
protected theorem DifferentiableOn.fst (h : DifferentiableOn π fβ s) :
DifferentiableOn π (fun x => (fβ x).1) s :=
differentiable_fst.comp_differentiableOn h
#align differentiable_on.fst DifferentiableOn.fst
+-/
+#print fderiv_fst /-
theorem fderiv_fst : fderiv π Prod.fst p = fst π E F :=
hasFDerivAt_fst.fderiv
#align fderiv_fst fderiv_fst
+-/
+#print fderiv.fst /-
theorem fderiv.fst (h : DifferentiableAt π fβ x) :
fderiv π (fun x => (fβ x).1) x = (fst π F G).comp (fderiv π fβ x) :=
h.HasFDerivAt.fst.fderiv
#align fderiv.fst fderiv.fst
+-/
+#print fderivWithin_fst /-
theorem fderivWithin_fst {s : Set (E Γ F)} (hs : UniqueDiffWithinAt π s p) :
fderivWithin π Prod.fst s p = fst π E F :=
hasFDerivWithinAt_fst.fderivWithin hs
#align fderiv_within_fst fderivWithin_fst
+-/
+#print fderivWithin.fst /-
theorem fderivWithin.fst (hs : UniqueDiffWithinAt π s x) (h : DifferentiableWithinAt π fβ s x) :
fderivWithin π (fun x => (fβ x).1) s x = (fst π F G).comp (fderivWithin π fβ s x) :=
h.HasFDerivWithinAt.fst.fderivWithin hs
#align fderiv_within.fst fderivWithin.fst
+-/
end Fst
@@ -247,14 +303,18 @@ section Snd
variable {fβ : E β F Γ G} {fβ' : E βL[π] F Γ G} {p : E Γ F}
+#print hasStrictFDerivAt_snd /-
theorem hasStrictFDerivAt_snd : HasStrictFDerivAt (@Prod.snd E F) (snd π E F) p :=
(snd π E F).HasStrictFDerivAt
#align has_strict_fderiv_at_snd hasStrictFDerivAt_snd
+-/
+#print HasStrictFDerivAt.snd /-
protected theorem HasStrictFDerivAt.snd (h : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
hasStrictFDerivAt_snd.comp x h
#align has_strict_fderiv_at.snd HasStrictFDerivAt.snd
+-/
#print hasFDerivAtFilter_snd /-
theorem hasFDerivAtFilter_snd {L : Filter (E Γ F)} :
@@ -263,19 +323,25 @@ theorem hasFDerivAtFilter_snd {L : Filter (E Γ F)} :
#align has_fderiv_at_filter_snd hasFDerivAtFilter_snd
-/
+#print HasFDerivAtFilter.snd /-
protected theorem HasFDerivAtFilter.snd (h : HasFDerivAtFilter fβ fβ' x L) :
HasFDerivAtFilter (fun x => (fβ x).2) ((snd π F G).comp fβ') x L :=
hasFDerivAtFilter_snd.comp x h tendsto_map
#align has_fderiv_at_filter.snd HasFDerivAtFilter.snd
+-/
+#print hasFDerivAt_snd /-
theorem hasFDerivAt_snd : HasFDerivAt (@Prod.snd E F) (snd π E F) p :=
hasFDerivAtFilter_snd
#align has_fderiv_at_snd hasFDerivAt_snd
+-/
+#print HasFDerivAt.snd /-
protected theorem HasFDerivAt.snd (h : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
h.snd
#align has_fderiv_at.snd HasFDerivAt.snd
+-/
#print hasFDerivWithinAt_snd /-
theorem hasFDerivWithinAt_snd {s : Set (E Γ F)} :
@@ -284,30 +350,40 @@ theorem hasFDerivWithinAt_snd {s : Set (E Γ F)} :
#align has_fderiv_within_at_snd hasFDerivWithinAt_snd
-/
+#print HasFDerivWithinAt.snd /-
protected theorem HasFDerivWithinAt.snd (h : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x).2) ((snd π F G).comp fβ') s x :=
h.snd
#align has_fderiv_within_at.snd HasFDerivWithinAt.snd
+-/
+#print differentiableAt_snd /-
theorem differentiableAt_snd : DifferentiableAt π Prod.snd p :=
hasFDerivAt_snd.DifferentiableAt
#align differentiable_at_snd differentiableAt_snd
+-/
+#print DifferentiableAt.snd /-
@[simp]
protected theorem DifferentiableAt.snd (h : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x => (fβ x).2) x :=
differentiableAt_snd.comp x h
#align differentiable_at.snd DifferentiableAt.snd
+-/
+#print differentiable_snd /-
theorem differentiable_snd : Differentiable π (Prod.snd : E Γ F β F) := fun x =>
differentiableAt_snd
#align differentiable_snd differentiable_snd
+-/
+#print Differentiable.snd /-
@[simp]
protected theorem Differentiable.snd (h : Differentiable π fβ) :
Differentiable π fun x => (fβ x).2 :=
differentiable_snd.comp h
#align differentiable.snd Differentiable.snd
+-/
#print differentiableWithinAt_snd /-
theorem differentiableWithinAt_snd {s : Set (E Γ F)} : DifferentiableWithinAt π Prod.snd s p :=
@@ -315,10 +391,12 @@ theorem differentiableWithinAt_snd {s : Set (E Γ F)} : DifferentiableWithinAt
#align differentiable_within_at_snd differentiableWithinAt_snd
-/
+#print DifferentiableWithinAt.snd /-
protected theorem DifferentiableWithinAt.snd (h : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x => (fβ x).2) s x :=
differentiableAt_snd.comp_differentiableWithinAt x h
#align differentiable_within_at.snd DifferentiableWithinAt.snd
+-/
#print differentiableOn_snd /-
theorem differentiableOn_snd {s : Set (E Γ F)} : DifferentiableOn π Prod.snd s :=
@@ -326,29 +404,39 @@ theorem differentiableOn_snd {s : Set (E Γ F)} : DifferentiableOn π Prod.snd
#align differentiable_on_snd differentiableOn_snd
-/
+#print DifferentiableOn.snd /-
protected theorem DifferentiableOn.snd (h : DifferentiableOn π fβ s) :
DifferentiableOn π (fun x => (fβ x).2) s :=
differentiable_snd.comp_differentiableOn h
#align differentiable_on.snd DifferentiableOn.snd
+-/
+#print fderiv_snd /-
theorem fderiv_snd : fderiv π Prod.snd p = snd π E F :=
hasFDerivAt_snd.fderiv
#align fderiv_snd fderiv_snd
+-/
+#print fderiv.snd /-
theorem fderiv.snd (h : DifferentiableAt π fβ x) :
fderiv π (fun x => (fβ x).2) x = (snd π F G).comp (fderiv π fβ x) :=
h.HasFDerivAt.snd.fderiv
#align fderiv.snd fderiv.snd
+-/
+#print fderivWithin_snd /-
theorem fderivWithin_snd {s : Set (E Γ F)} (hs : UniqueDiffWithinAt π s p) :
fderivWithin π Prod.snd s p = snd π E F :=
hasFDerivWithinAt_snd.fderivWithin hs
#align fderiv_within_snd fderivWithin_snd
+-/
+#print fderivWithin.snd /-
theorem fderivWithin.snd (hs : UniqueDiffWithinAt π s x) (h : DifferentiableWithinAt π fβ s x) :
fderivWithin π (fun x => (fβ x).2) s x = (snd π F G).comp (fderivWithin π fβ s x) :=
h.HasFDerivWithinAt.snd.fderivWithin hs
#align fderiv_within.snd fderivWithin.snd
+-/
end Snd
@@ -356,21 +444,27 @@ section Prod_map
variable {fβ : G β G'} {fβ' : G βL[π] G'} {y : G} (p : E Γ G)
+#print HasStrictFDerivAt.prodMap /-
protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
(hfβ : HasStrictFDerivAt fβ fβ' p.2) : HasStrictFDerivAt (Prod.map f fβ) (f'.Prod_map fβ') p :=
(hf.comp p hasStrictFDerivAt_fst).Prod (hfβ.comp p hasStrictFDerivAt_snd)
#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMap
+-/
+#print HasFDerivAt.prodMap /-
protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ : HasFDerivAt fβ fβ' p.2) :
HasFDerivAt (Prod.map f fβ) (f'.Prod_map fβ') p :=
(hf.comp p hasFDerivAt_fst).Prod (hfβ.comp p hasFDerivAt_snd)
#align has_fderiv_at.prod_map HasFDerivAt.prodMap
+-/
+#print DifferentiableAt.prod_map /-
@[simp]
protected theorem DifferentiableAt.prod_map (hf : DifferentiableAt π f p.1)
(hfβ : DifferentiableAt π fβ p.2) : DifferentiableAt π (fun p : E Γ G => (f p.1, fβ p.2)) p :=
(hf.comp p differentiableAt_fst).Prod (hfβ.comp p differentiableAt_snd)
#align differentiable_at.prod_map DifferentiableAt.prod_map
+-/
end Prod_map
@@ -395,6 +489,7 @@ variable {ΞΉ : Type _} [Fintype ΞΉ] {F' : ΞΉ β Type _} [β i, NormedAddCommGr
[β i, NormedSpace π (F' i)] {Ο : β i, E β F' i} {Ο' : β i, E βL[π] F' i} {Ξ¦ : E β β i, F' i}
{Ξ¦' : E βL[π] β i, F' i}
+#print hasStrictFDerivAt_pi' /-
@[simp]
theorem hasStrictFDerivAt_pi' :
HasStrictFDerivAt Ξ¦ Ξ¦' x β β i, HasStrictFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
@@ -402,14 +497,18 @@ theorem hasStrictFDerivAt_pi' :
simp only [HasStrictFDerivAt, ContinuousLinearMap.coe_pi]
exact is_o_pi
#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
+-/
+#print hasStrictFDerivAt_pi /-
@[simp]
theorem hasStrictFDerivAt_pi :
HasStrictFDerivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
β i, HasStrictFDerivAt (Ο i) (Ο' i) x :=
hasStrictFDerivAt_pi'
#align has_strict_fderiv_at_pi hasStrictFDerivAt_pi
+-/
+#print hasFDerivAtFilter_pi' /-
@[simp]
theorem hasFDerivAtFilter_pi' :
HasFDerivAtFilter Ξ¦ Ξ¦' x L β β i, HasFDerivAtFilter (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x L :=
@@ -417,70 +516,93 @@ theorem hasFDerivAtFilter_pi' :
simp only [HasFDerivAtFilter, ContinuousLinearMap.coe_pi]
exact is_o_pi
#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'
+-/
+#print hasFDerivAtFilter_pi /-
theorem hasFDerivAtFilter_pi :
HasFDerivAtFilter (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x L β
β i, HasFDerivAtFilter (Ο i) (Ο' i) x L :=
hasFDerivAtFilter_pi'
#align has_fderiv_at_filter_pi hasFDerivAtFilter_pi
+-/
+#print hasFDerivAt_pi' /-
@[simp]
theorem hasFDerivAt_pi' :
HasFDerivAt Ξ¦ Ξ¦' x β β i, HasFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
hasFDerivAtFilter_pi'
#align has_fderiv_at_pi' hasFDerivAt_pi'
+-/
+#print hasFDerivAt_pi /-
theorem hasFDerivAt_pi :
HasFDerivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
β i, HasFDerivAt (Ο i) (Ο' i) x :=
hasFDerivAtFilter_pi
#align has_fderiv_at_pi hasFDerivAt_pi
+-/
+#print hasFDerivWithinAt_pi' /-
@[simp]
theorem hasFDerivWithinAt_pi' :
HasFDerivWithinAt Ξ¦ Ξ¦' s x β β i, HasFDerivWithinAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') s x :=
hasFDerivAtFilter_pi'
#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'
+-/
+#print hasFDerivWithinAt_pi /-
theorem hasFDerivWithinAt_pi :
HasFDerivWithinAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') s x β
β i, HasFDerivWithinAt (Ο i) (Ο' i) s x :=
hasFDerivAtFilter_pi
#align has_fderiv_within_at_pi hasFDerivWithinAt_pi
+-/
+#print differentiableWithinAt_pi /-
@[simp]
theorem differentiableWithinAt_pi :
DifferentiableWithinAt π Ξ¦ s x β β i, DifferentiableWithinAt π (fun x => Ξ¦ x i) s x :=
β¨fun h i => (hasFDerivWithinAt_pi'.1 h.HasFDerivWithinAt i).DifferentiableWithinAt, fun h =>
(hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).DifferentiableWithinAtβ©
#align differentiable_within_at_pi differentiableWithinAt_pi
+-/
+#print differentiableAt_pi /-
@[simp]
theorem differentiableAt_pi : DifferentiableAt π Ξ¦ x β β i, DifferentiableAt π (fun x => Ξ¦ x i) x :=
β¨fun h i => (hasFDerivAt_pi'.1 h.HasFDerivAt i).DifferentiableAt, fun h =>
(hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).DifferentiableAtβ©
#align differentiable_at_pi differentiableAt_pi
+-/
+#print differentiableOn_pi /-
theorem differentiableOn_pi : DifferentiableOn π Ξ¦ s β β i, DifferentiableOn π (fun x => Ξ¦ x i) s :=
β¨fun h i x hx => differentiableWithinAt_pi.1 (h x hx) i, fun h x hx =>
differentiableWithinAt_pi.2 fun i => h i x hxβ©
#align differentiable_on_pi differentiableOn_pi
+-/
+#print differentiable_pi /-
theorem differentiable_pi : Differentiable π Ξ¦ β β i, Differentiable π fun x => Ξ¦ x i :=
β¨fun h i x => differentiableAt_pi.1 (h x) i, fun h x => differentiableAt_pi.2 fun i => h i xβ©
#align differentiable_pi differentiable_pi
+-/
+#print fderivWithin_pi /-
-- TODO: find out which version (`Ο` or `Ξ¦`) works better with `rw`/`simp`
theorem fderivWithin_pi (h : β i, DifferentiableWithinAt π (Ο i) s x)
(hs : UniqueDiffWithinAt π s x) :
fderivWithin π (fun x i => Ο i x) s x = pi fun i => fderivWithin π (Ο i) s x :=
(hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).fderivWithin hs
#align fderiv_within_pi fderivWithin_pi
+-/
+#print fderiv_pi /-
theorem fderiv_pi (h : β i, DifferentiableAt π (Ο i) x) :
fderiv π (fun x i => Ο i x) x = pi fun i => fderiv π (Ο i) x :=
(hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).fderiv
#align fderiv_pi fderiv_pi
+-/
end Pi
mathlib commit https://github.com/leanprover-community/mathlib/commit/31c24aa72e7b3e5ed97a8412470e904f82b81004
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
! This file was ported from Lean 3 source module analysis.calculus.fderiv.prod
-! leanprover-community/mathlib commit 38df578a6450a8c5142b3727e3ae894c2300cae0
+! leanprover-community/mathlib commit e354e865255654389cc46e6032160238df2e0f40
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -125,12 +125,12 @@ theorem DifferentiableAt.fderiv_prod (hfβ : DifferentiableAt π fβ x)
(hfβ.HasFDerivAt.Prod hfβ.HasFDerivAt).fderiv
#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
-theorem DifferentiableAt.fderivWithin_prod (hfβ : DifferentiableWithinAt π fβ s x)
+theorem DifferentiableWithinAt.fderivWithin_prod (hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x) (hxs : UniqueDiffWithinAt π s x) :
fderivWithin π (fun x : E => (fβ x, fβ x)) s x =
(fderivWithin π fβ s x).Prod (fderivWithin π fβ s x) :=
(hfβ.HasFDerivWithinAt.Prod hfβ.HasFDerivWithinAt).fderivWithin hxs
-#align differentiable_at.fderiv_within_prod DifferentiableAt.fderivWithin_prod
+#align differentiable_within_at.fderiv_within_prod DifferentiableWithinAt.fderivWithin_prod
end Prod
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -27,7 +27,7 @@ cartesian products of functions, and functions into Pi-types.
open Filter Asymptotics ContinuousLinearMap Set Metric
-open Topology Classical NNReal Filter Asymptotics ENNReal
+open scoped Topology Classical NNReal Filter Asymptotics ENNReal
noncomputable section
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -64,121 +64,67 @@ section Prod
variable {fβ : E β G} {fβ' : E βL[π] G}
-/- warning: has_strict_fderiv_at.prod -> HasStrictFDerivAt.prod is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.prod HasStrictFDerivAt.prodβ'. -/
protected theorem HasStrictFDerivAt.prod (hfβ : HasStrictFDerivAt fβ fβ' x)
(hfβ : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x :=
hfβ.prodLeft hfβ
#align has_strict_fderiv_at.prod HasStrictFDerivAt.prod
-/- warning: has_fderiv_at_filter.prod -> HasFDerivAtFilter.prod is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.prod HasFDerivAtFilter.prodβ'. -/
theorem HasFDerivAtFilter.prod (hfβ : HasFDerivAtFilter fβ fβ' x L)
(hfβ : HasFDerivAtFilter fβ fβ' x L) :
HasFDerivAtFilter (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x L :=
hfβ.prodLeft hfβ
#align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
-/- warning: has_fderiv_within_at.prod -> HasFDerivWithinAt.prod is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.prod HasFDerivWithinAt.prodβ'. -/
theorem HasFDerivWithinAt.prod (hfβ : HasFDerivWithinAt fβ fβ' s x)
(hfβ : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') s x :=
hfβ.Prod hfβ
#align has_fderiv_within_at.prod HasFDerivWithinAt.prod
-/- warning: has_fderiv_at.prod -> HasFDerivAt.prod is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.prod HasFDerivAt.prodβ'. -/
theorem HasFDerivAt.prod (hfβ : HasFDerivAt fβ fβ' x) (hfβ : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x :=
hfβ.Prod hfβ
#align has_fderiv_at.prod HasFDerivAt.prod
-/- warning: has_fderiv_at_prod_mk_left -> hasFDerivAt_prod_mk_left is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (eβ : E) (fβ : F), HasFDerivAt.{u1, u2, max u2 u3} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (fun (e : E) => Prod.mk.{u2, u3} E F e fβ) (ContinuousLinearMap.inl.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) eβ
-but is expected to have type
- forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (eβ : E) (fβ : F), HasFDerivAt.{u3, u2, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (fun (e : E) => Prod.mk.{u2, u1} E F e fβ) (ContinuousLinearMap.inl.{u3, u2, u1} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) eβ
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_leftβ'. -/
theorem hasFDerivAt_prod_mk_left (eβ : E) (fβ : F) :
HasFDerivAt (fun e : E => (e, fβ)) (inl π E F) eβ :=
(hasFDerivAt_id eβ).Prod (hasFDerivAt_const fβ eβ)
#align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_left
-/- warning: has_fderiv_at_prod_mk_right -> hasFDerivAt_prod_mk_right is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (eβ : E) (fβ : F), HasFDerivAt.{u1, u3, max u2 u3} π _inst_1 F _inst_4 _inst_5 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (fun (f : F) => Prod.mk.{u2, u3} E F eβ f) (ContinuousLinearMap.inr.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) fβ
-but is expected to have type
- forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u3, u2} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] (eβ : E) (fβ : F), HasFDerivAt.{u3, u2, max u2 u1} π _inst_1 F _inst_4 _inst_5 (Prod.{u1, u2} E F) (Prod.normedAddCommGroup.{u1, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u1, u2} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (fun (f : F) => Prod.mk.{u1, u2} E F eβ f) (ContinuousLinearMap.inr.{u3, u1, u2} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u2} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) fβ
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_rightβ'. -/
theorem hasFDerivAt_prod_mk_right (eβ : E) (fβ : F) :
HasFDerivAt (fun f : F => (eβ, f)) (inr π E F) fβ :=
(hasFDerivAt_const eβ fβ).Prod (hasFDerivAt_id fβ)
#align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_right
-/- warning: differentiable_within_at.prod -> DifferentiableWithinAt.prod is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {x : E} {s : Set.{u2} E} {fβ : E -> G}, (DifferentiableWithinAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s x) -> (DifferentiableWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s x) -> (DifferentiableWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) s x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {x : E} {s : Set.{u3} E} {fβ : E -> G}, (DifferentiableWithinAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s x) -> (DifferentiableWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s x) -> (DifferentiableWithinAt.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.prod DifferentiableWithinAt.prodβ'. -/
theorem DifferentiableWithinAt.prod (hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x : E => (fβ x, fβ x)) s x :=
(hfβ.HasFDerivWithinAt.Prod hfβ.HasFDerivWithinAt).DifferentiableWithinAt
#align differentiable_within_at.prod DifferentiableWithinAt.prod
-/- warning: differentiable_at.prod -> DifferentiableAt.prod is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {x : E} {fβ : E -> G}, (DifferentiableAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ x) -> (DifferentiableAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ x) -> (DifferentiableAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {x : E} {fβ : E -> G}, (DifferentiableAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ x) -> (DifferentiableAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ x) -> (DifferentiableAt.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.prod DifferentiableAt.prodβ'. -/
@[simp]
theorem DifferentiableAt.prod (hfβ : DifferentiableAt π fβ x) (hfβ : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x : E => (fβ x, fβ x)) x :=
(hfβ.HasFDerivAt.Prod hfβ.HasFDerivAt).DifferentiableAt
#align differentiable_at.prod DifferentiableAt.prod
-/- warning: differentiable_on.prod -> DifferentiableOn.prod is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {s : Set.{u2} E} {fβ : E -> G}, (DifferentiableOn.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s) -> (DifferentiableOn.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s) -> (DifferentiableOn.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) s)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {s : Set.{u3} E} {fβ : E -> G}, (DifferentiableOn.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s) -> (DifferentiableOn.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s) -> (DifferentiableOn.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.prod DifferentiableOn.prodβ'. -/
theorem DifferentiableOn.prod (hfβ : DifferentiableOn π fβ s) (hfβ : DifferentiableOn π fβ s) :
DifferentiableOn π (fun x : E => (fβ x, fβ x)) s := fun x hx =>
DifferentiableWithinAt.prod (hfβ x hx) (hfβ x hx)
#align differentiable_on.prod DifferentiableOn.prod
-/- warning: differentiable.prod -> Differentiable.prod is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {fβ : E -> G}, (Differentiable.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ) -> (Differentiable.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ) -> (Differentiable.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)))
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {fβ : E -> G}, (Differentiable.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ) -> (Differentiable.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ) -> (Differentiable.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)))
-Case conversion may be inaccurate. Consider using '#align differentiable.prod Differentiable.prodβ'. -/
@[simp]
theorem Differentiable.prod (hfβ : Differentiable π fβ) (hfβ : Differentiable π fβ) :
Differentiable π fun x : E => (fβ x, fβ x) := fun x => DifferentiableAt.prod (hfβ x) (hfβ x)
#align differentiable.prod Differentiable.prod
-/- warning: differentiable_at.fderiv_prod -> DifferentiableAt.fderiv_prod is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prodβ'. -/
theorem DifferentiableAt.fderiv_prod (hfβ : DifferentiableAt π fβ x)
(hfβ : DifferentiableAt π fβ x) :
fderiv π (fun x : E => (fβ x, fβ x)) x = (fderiv π fβ x).Prod (fderiv π fβ x) :=
(hfβ.HasFDerivAt.Prod hfβ.HasFDerivAt).fderiv
#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
-/- warning: differentiable_at.fderiv_within_prod -> DifferentiableAt.fderivWithin_prod is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_within_prod DifferentiableAt.fderivWithin_prodβ'. -/
theorem DifferentiableAt.fderivWithin_prod (hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x) (hxs : UniqueDiffWithinAt π s x) :
fderivWithin π (fun x : E => (fβ x, fβ x)) s x =
@@ -192,19 +138,10 @@ section Fst
variable {fβ : E β F Γ G} {fβ' : E βL[π] F Γ G} {p : E Γ F}
-/- warning: has_strict_fderiv_at_fst -> hasStrictFDerivAt_fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasStrictFDerivAt.{u1, max u2 u3, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) (ContinuousLinearMap.fst.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
-but is expected to have type
- forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasStrictFDerivAt.{u3, max u2 u1, u2} π _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u1} E F) (ContinuousLinearMap.fst.{u3, u2, u1} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_fst hasStrictFDerivAt_fstβ'. -/
theorem hasStrictFDerivAt_fst : HasStrictFDerivAt (@Prod.fst E F) (fst π E F) p :=
(fst π E F).HasStrictFDerivAt
#align has_strict_fderiv_at_fst hasStrictFDerivAt_fst
-/- warning: has_strict_fderiv_at.fst -> HasStrictFDerivAt.fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.fst HasStrictFDerivAt.fstβ'. -/
protected theorem HasStrictFDerivAt.fst (h : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
hasStrictFDerivAt_fst.comp x h
@@ -217,27 +154,15 @@ theorem hasFDerivAtFilter_fst {L : Filter (E Γ F)} :
#align has_fderiv_at_filter_fst hasFDerivAtFilter_fst
-/
-/- warning: has_fderiv_at_filter.fst -> HasFDerivAtFilter.fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.fst HasFDerivAtFilter.fstβ'. -/
protected theorem HasFDerivAtFilter.fst (h : HasFDerivAtFilter fβ fβ' x L) :
HasFDerivAtFilter (fun x => (fβ x).1) ((fst π F G).comp fβ') x L :=
hasFDerivAtFilter_fst.comp x h tendsto_map
#align has_fderiv_at_filter.fst HasFDerivAtFilter.fst
-/- warning: has_fderiv_at_fst -> hasFDerivAt_fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasFDerivAt.{u1, max u2 u3, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) (ContinuousLinearMap.fst.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
-but is expected to have type
- forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasFDerivAt.{u3, max u2 u1, u2} π _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u1} E F) (ContinuousLinearMap.fst.{u3, u2, u1} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_fst hasFDerivAt_fstβ'. -/
theorem hasFDerivAt_fst : HasFDerivAt (@Prod.fst E F) (fst π E F) p :=
hasFDerivAtFilter_fst
#align has_fderiv_at_fst hasFDerivAt_fst
-/- warning: has_fderiv_at.fst -> HasFDerivAt.fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.fst HasFDerivAt.fstβ'. -/
protected theorem HasFDerivAt.fst (h : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
h.fst
@@ -250,52 +175,25 @@ theorem hasFDerivWithinAt_fst {s : Set (E Γ F)} :
#align has_fderiv_within_at_fst hasFDerivWithinAt_fst
-/
-/- warning: has_fderiv_within_at.fst -> HasFDerivWithinAt.fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.fst HasFDerivWithinAt.fstβ'. -/
protected theorem HasFDerivWithinAt.fst (h : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x).1) ((fst π F G).comp fβ') s x :=
h.fst
#align has_fderiv_within_at.fst HasFDerivWithinAt.fst
-/- warning: differentiable_at_fst -> differentiableAt_fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, DifferentiableAt.{u1, max u2 u3, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) p
-but is expected to have type
- forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u3, u2} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u1, u2} E F}, DifferentiableAt.{u3, max u2 u1, u1} π _inst_1 (Prod.{u1, u2} E F) (Prod.normedAddCommGroup.{u1, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u1, u2} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u1, u2} E F) p
-Case conversion may be inaccurate. Consider using '#align differentiable_at_fst differentiableAt_fstβ'. -/
theorem differentiableAt_fst : DifferentiableAt π Prod.fst p :=
hasFDerivAt_fst.DifferentiableAt
#align differentiable_at_fst differentiableAt_fst
-/- warning: differentiable_at.fst -> DifferentiableAt.fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ x) -> (DifferentiableAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ x) -> (DifferentiableAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.fst DifferentiableAt.fstβ'. -/
@[simp]
protected theorem DifferentiableAt.fst (h : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x => (fβ x).1) x :=
differentiableAt_fst.comp x h
#align differentiable_at.fst DifferentiableAt.fst
-/- warning: differentiable_fst -> differentiable_fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)], Differentiable.{u1, max u2 u3, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F)
-but is expected to have type
- forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)], Differentiable.{u3, max u2 u1, u2} π _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u1} E F)
-Case conversion may be inaccurate. Consider using '#align differentiable_fst differentiable_fstβ'. -/
theorem differentiable_fst : Differentiable π (Prod.fst : E Γ F β E) := fun x =>
differentiableAt_fst
#align differentiable_fst differentiable_fst
-/- warning: differentiable.fst -> Differentiable.fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> (Prod.{u3, u4} F G)}, (Differentiable.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ) -> (Differentiable.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)))
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> (Prod.{u2, u1} F G)}, (Differentiable.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ) -> (Differentiable.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)))
-Case conversion may be inaccurate. Consider using '#align differentiable.fst Differentiable.fstβ'. -/
@[simp]
protected theorem Differentiable.fst (h : Differentiable π fβ) :
Differentiable π fun x => (fβ x).1 :=
@@ -308,12 +206,6 @@ theorem differentiableWithinAt_fst {s : Set (E Γ F)} : DifferentiableWithinAt
#align differentiable_within_at_fst differentiableWithinAt_fst
-/
-/- warning: differentiable_within_at.fst -> DifferentiableWithinAt.fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s x) -> (DifferentiableWithinAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) s x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s x) -> (DifferentiableWithinAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.fst DifferentiableWithinAt.fstβ'. -/
protected theorem DifferentiableWithinAt.fst (h : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x => (fβ x).1) s x :=
differentiableAt_fst.comp_differentiableWithinAt x h
@@ -325,46 +217,25 @@ theorem differentiableOn_fst {s : Set (E Γ F)} : DifferentiableOn π Prod.fst
#align differentiable_on_fst differentiableOn_fst
-/
-/- warning: differentiable_on.fst -> DifferentiableOn.fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableOn.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s) -> (DifferentiableOn.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) s)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableOn.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s) -> (DifferentiableOn.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.fst DifferentiableOn.fstβ'. -/
protected theorem DifferentiableOn.fst (h : DifferentiableOn π fβ s) :
DifferentiableOn π (fun x => (fβ x).1) s :=
differentiable_fst.comp_differentiableOn h
#align differentiable_on.fst DifferentiableOn.fst
-/- warning: fderiv_fst -> fderiv_fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, Eq.{max (succ (max u2 u3)) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, max u2 u3} π (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderiv.{u1, max u2 u3, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) p) (ContinuousLinearMap.fst.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))
-but is expected to have type
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u3, u2} E F}, Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u3} π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u3, u2} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u3, u2} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u3, u2} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u1, max u2 u3} π (Prod.{u3, u2} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u3, u2} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3)) (fderiv.{u1, max u2 u3, u3} π _inst_1 (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u3, u2} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u3, u2} E F) p) (ContinuousLinearMap.fst.{u1, u3, u2} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))
-Case conversion may be inaccurate. Consider using '#align fderiv_fst fderiv_fstβ'. -/
theorem fderiv_fst : fderiv π Prod.fst p = fst π E F :=
hasFDerivAt_fst.fderiv
#align fderiv_fst fderiv_fst
-/- warning: fderiv.fst -> fderiv.fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv.fst fderiv.fstβ'. -/
theorem fderiv.fst (h : DifferentiableAt π fβ x) :
fderiv π (fun x => (fβ x).1) x = (fst π F G).comp (fderiv π fβ x) :=
h.HasFDerivAt.fst.fderiv
#align fderiv.fst fderiv.fst
-/- warning: fderiv_within_fst -> fderivWithin_fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_fst fderivWithin_fstβ'. -/
theorem fderivWithin_fst {s : Set (E Γ F)} (hs : UniqueDiffWithinAt π s p) :
fderivWithin π Prod.fst s p = fst π E F :=
hasFDerivWithinAt_fst.fderivWithin hs
#align fderiv_within_fst fderivWithin_fst
-/- warning: fderiv_within.fst -> fderivWithin.fst is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within.fst fderivWithin.fstβ'. -/
theorem fderivWithin.fst (hs : UniqueDiffWithinAt π s x) (h : DifferentiableWithinAt π fβ s x) :
fderivWithin π (fun x => (fβ x).1) s x = (fst π F G).comp (fderivWithin π fβ s x) :=
h.HasFDerivWithinAt.fst.fderivWithin hs
@@ -376,19 +247,10 @@ section Snd
variable {fβ : E β F Γ G} {fβ' : E βL[π] F Γ G} {p : E Γ F}
-/- warning: has_strict_fderiv_at_snd -> hasStrictFDerivAt_snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasStrictFDerivAt.{u1, max u2 u3, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) (ContinuousLinearMap.snd.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
-but is expected to have type
- forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasStrictFDerivAt.{u3, max u2 u1, u1} π _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u1} E F) (ContinuousLinearMap.snd.{u3, u2, u1} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_snd hasStrictFDerivAt_sndβ'. -/
theorem hasStrictFDerivAt_snd : HasStrictFDerivAt (@Prod.snd E F) (snd π E F) p :=
(snd π E F).HasStrictFDerivAt
#align has_strict_fderiv_at_snd hasStrictFDerivAt_snd
-/- warning: has_strict_fderiv_at.snd -> HasStrictFDerivAt.snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.snd HasStrictFDerivAt.sndβ'. -/
protected theorem HasStrictFDerivAt.snd (h : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
hasStrictFDerivAt_snd.comp x h
@@ -401,27 +263,15 @@ theorem hasFDerivAtFilter_snd {L : Filter (E Γ F)} :
#align has_fderiv_at_filter_snd hasFDerivAtFilter_snd
-/
-/- warning: has_fderiv_at_filter.snd -> HasFDerivAtFilter.snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.snd HasFDerivAtFilter.sndβ'. -/
protected theorem HasFDerivAtFilter.snd (h : HasFDerivAtFilter fβ fβ' x L) :
HasFDerivAtFilter (fun x => (fβ x).2) ((snd π F G).comp fβ') x L :=
hasFDerivAtFilter_snd.comp x h tendsto_map
#align has_fderiv_at_filter.snd HasFDerivAtFilter.snd
-/- warning: has_fderiv_at_snd -> hasFDerivAt_snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasFDerivAt.{u1, max u2 u3, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) (ContinuousLinearMap.snd.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
-but is expected to have type
- forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasFDerivAt.{u3, max u2 u1, u1} π _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u1} E F) (ContinuousLinearMap.snd.{u3, u2, u1} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_snd hasFDerivAt_sndβ'. -/
theorem hasFDerivAt_snd : HasFDerivAt (@Prod.snd E F) (snd π E F) p :=
hasFDerivAtFilter_snd
#align has_fderiv_at_snd hasFDerivAt_snd
-/- warning: has_fderiv_at.snd -> HasFDerivAt.snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.snd HasFDerivAt.sndβ'. -/
protected theorem HasFDerivAt.snd (h : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
h.snd
@@ -434,52 +284,25 @@ theorem hasFDerivWithinAt_snd {s : Set (E Γ F)} :
#align has_fderiv_within_at_snd hasFDerivWithinAt_snd
-/
-/- warning: has_fderiv_within_at.snd -> HasFDerivWithinAt.snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.snd HasFDerivWithinAt.sndβ'. -/
protected theorem HasFDerivWithinAt.snd (h : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x).2) ((snd π F G).comp fβ') s x :=
h.snd
#align has_fderiv_within_at.snd HasFDerivWithinAt.snd
-/- warning: differentiable_at_snd -> differentiableAt_snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, DifferentiableAt.{u1, max u2 u3, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) p
-but is expected to have type
- forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u3, u2} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u1, u2} E F}, DifferentiableAt.{u3, max u2 u1, u2} π _inst_1 (Prod.{u1, u2} E F) (Prod.normedAddCommGroup.{u1, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u1, u2} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u1, u2} E F) p
-Case conversion may be inaccurate. Consider using '#align differentiable_at_snd differentiableAt_sndβ'. -/
theorem differentiableAt_snd : DifferentiableAt π Prod.snd p :=
hasFDerivAt_snd.DifferentiableAt
#align differentiable_at_snd differentiableAt_snd
-/- warning: differentiable_at.snd -> DifferentiableAt.snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ x) -> (DifferentiableAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ x) -> (DifferentiableAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at.snd DifferentiableAt.sndβ'. -/
@[simp]
protected theorem DifferentiableAt.snd (h : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x => (fβ x).2) x :=
differentiableAt_snd.comp x h
#align differentiable_at.snd DifferentiableAt.snd
-/- warning: differentiable_snd -> differentiable_snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)], Differentiable.{u1, max u2 u3, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F)
-but is expected to have type
- forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)], Differentiable.{u3, max u2 u1, u1} π _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u1} E F)
-Case conversion may be inaccurate. Consider using '#align differentiable_snd differentiable_sndβ'. -/
theorem differentiable_snd : Differentiable π (Prod.snd : E Γ F β F) := fun x =>
differentiableAt_snd
#align differentiable_snd differentiable_snd
-/- warning: differentiable.snd -> Differentiable.snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> (Prod.{u3, u4} F G)}, (Differentiable.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ) -> (Differentiable.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)))
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> (Prod.{u2, u1} F G)}, (Differentiable.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ) -> (Differentiable.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)))
-Case conversion may be inaccurate. Consider using '#align differentiable.snd Differentiable.sndβ'. -/
@[simp]
protected theorem Differentiable.snd (h : Differentiable π fβ) :
Differentiable π fun x => (fβ x).2 :=
@@ -492,12 +315,6 @@ theorem differentiableWithinAt_snd {s : Set (E Γ F)} : DifferentiableWithinAt
#align differentiable_within_at_snd differentiableWithinAt_snd
-/
-/- warning: differentiable_within_at.snd -> DifferentiableWithinAt.snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s x) -> (DifferentiableWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) s x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s x) -> (DifferentiableWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at.snd DifferentiableWithinAt.sndβ'. -/
protected theorem DifferentiableWithinAt.snd (h : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x => (fβ x).2) s x :=
differentiableAt_snd.comp_differentiableWithinAt x h
@@ -509,46 +326,25 @@ theorem differentiableOn_snd {s : Set (E Γ F)} : DifferentiableOn π Prod.snd
#align differentiable_on_snd differentiableOn_snd
-/
-/- warning: differentiable_on.snd -> DifferentiableOn.snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableOn.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s) -> (DifferentiableOn.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) s)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableOn.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s) -> (DifferentiableOn.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on.snd DifferentiableOn.sndβ'. -/
protected theorem DifferentiableOn.snd (h : DifferentiableOn π fβ s) :
DifferentiableOn π (fun x => (fβ x).2) s :=
differentiable_snd.comp_differentiableOn h
#align differentiable_on.snd DifferentiableOn.snd
-/- warning: fderiv_snd -> fderiv_snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, Eq.{max (succ (max u2 u3)) (succ u3)} (ContinuousLinearMap.{u1, u1, max u2 u3, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, max u2 u3} π (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, max u2 u3, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) p) (ContinuousLinearMap.snd.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))
-but is expected to have type
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u3, u2} E F}, Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u2} π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u3, u2} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u3, u2} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u3, u2} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, max u2 u3} π (Prod.{u3, u2} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u3, u2} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, max u2 u3, u2} π _inst_1 (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u3, u2} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u3, u2} E F) p) (ContinuousLinearMap.snd.{u1, u3, u2} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))
-Case conversion may be inaccurate. Consider using '#align fderiv_snd fderiv_sndβ'. -/
theorem fderiv_snd : fderiv π Prod.snd p = snd π E F :=
hasFDerivAt_snd.fderiv
#align fderiv_snd fderiv_snd
-/- warning: fderiv.snd -> fderiv.snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv.snd fderiv.sndβ'. -/
theorem fderiv.snd (h : DifferentiableAt π fβ x) :
fderiv π (fun x => (fβ x).2) x = (snd π F G).comp (fderiv π fβ x) :=
h.HasFDerivAt.snd.fderiv
#align fderiv.snd fderiv.snd
-/- warning: fderiv_within_snd -> fderivWithin_snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_snd fderivWithin_sndβ'. -/
theorem fderivWithin_snd {s : Set (E Γ F)} (hs : UniqueDiffWithinAt π s p) :
fderivWithin π Prod.snd s p = snd π E F :=
hasFDerivWithinAt_snd.fderivWithin hs
#align fderiv_within_snd fderivWithin_snd
-/- warning: fderiv_within.snd -> fderivWithin.snd is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within.snd fderivWithin.sndβ'. -/
theorem fderivWithin.snd (hs : UniqueDiffWithinAt π s x) (h : DifferentiableWithinAt π fβ s x) :
fderivWithin π (fun x => (fβ x).2) s x = (snd π F G).comp (fderivWithin π fβ s x) :=
h.HasFDerivWithinAt.snd.fderivWithin hs
@@ -560,25 +356,16 @@ section Prod_map
variable {fβ : G β G'} {fβ' : G βL[π] G'} {y : G} (p : E Γ G)
-/- warning: has_strict_fderiv_at.prod_map -> HasStrictFDerivAt.prodMap is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMapβ'. -/
protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
(hfβ : HasStrictFDerivAt fβ fβ' p.2) : HasStrictFDerivAt (Prod.map f fβ) (f'.Prod_map fβ') p :=
(hf.comp p hasStrictFDerivAt_fst).Prod (hfβ.comp p hasStrictFDerivAt_snd)
#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMap
-/- warning: has_fderiv_at.prod_map -> HasFDerivAt.prodMap is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at.prod_map HasFDerivAt.prodMapβ'. -/
protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ : HasFDerivAt fβ fβ' p.2) :
HasFDerivAt (Prod.map f fβ) (f'.Prod_map fβ') p :=
(hf.comp p hasFDerivAt_fst).Prod (hfβ.comp p hasFDerivAt_snd)
#align has_fderiv_at.prod_map HasFDerivAt.prodMap
-/- warning: differentiable_at.prod_map -> DifferentiableAt.prod_map is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align differentiable_at.prod_map DifferentiableAt.prod_mapβ'. -/
@[simp]
protected theorem DifferentiableAt.prod_map (hf : DifferentiableAt π f p.1)
(hfβ : DifferentiableAt π fβ p.2) : DifferentiableAt π (fun p : E Γ G => (f p.1, fβ p.2)) p :=
@@ -608,9 +395,6 @@ variable {ΞΉ : Type _} [Fintype ΞΉ] {F' : ΞΉ β Type _} [β i, NormedAddCommGr
[β i, NormedSpace π (F' i)] {Ο : β i, E β F' i} {Ο' : β i, E βL[π] F' i} {Ξ¦ : E β β i, F' i}
{Ξ¦' : E βL[π] β i, F' i}
-/- warning: has_strict_fderiv_at_pi' -> hasStrictFDerivAt_pi' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'β'. -/
@[simp]
theorem hasStrictFDerivAt_pi' :
HasStrictFDerivAt Ξ¦ Ξ¦' x β β i, HasStrictFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
@@ -619,9 +403,6 @@ theorem hasStrictFDerivAt_pi' :
exact is_o_pi
#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
-/- warning: has_strict_fderiv_at_pi -> hasStrictFDerivAt_pi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_pi hasStrictFDerivAt_piβ'. -/
@[simp]
theorem hasStrictFDerivAt_pi :
HasStrictFDerivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
@@ -629,9 +410,6 @@ theorem hasStrictFDerivAt_pi :
hasStrictFDerivAt_pi'
#align has_strict_fderiv_at_pi hasStrictFDerivAt_pi
-/- warning: has_fderiv_at_filter_pi' -> hasFDerivAtFilter_pi' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'β'. -/
@[simp]
theorem hasFDerivAtFilter_pi' :
HasFDerivAtFilter Ξ¦ Ξ¦' x L β β i, HasFDerivAtFilter (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x L :=
@@ -640,57 +418,36 @@ theorem hasFDerivAtFilter_pi' :
exact is_o_pi
#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'
-/- warning: has_fderiv_at_filter_pi -> hasFDerivAtFilter_pi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_pi hasFDerivAtFilter_piβ'. -/
theorem hasFDerivAtFilter_pi :
HasFDerivAtFilter (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x L β
β i, HasFDerivAtFilter (Ο i) (Ο' i) x L :=
hasFDerivAtFilter_pi'
#align has_fderiv_at_filter_pi hasFDerivAtFilter_pi
-/- warning: has_fderiv_at_pi' -> hasFDerivAt_pi' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_pi' hasFDerivAt_pi'β'. -/
@[simp]
theorem hasFDerivAt_pi' :
HasFDerivAt Ξ¦ Ξ¦' x β β i, HasFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
hasFDerivAtFilter_pi'
#align has_fderiv_at_pi' hasFDerivAt_pi'
-/- warning: has_fderiv_at_pi -> hasFDerivAt_pi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_at_pi hasFDerivAt_piβ'. -/
theorem hasFDerivAt_pi :
HasFDerivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
β i, HasFDerivAt (Ο i) (Ο' i) x :=
hasFDerivAtFilter_pi
#align has_fderiv_at_pi hasFDerivAt_pi
-/- warning: has_fderiv_within_at_pi' -> hasFDerivWithinAt_pi' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'β'. -/
@[simp]
theorem hasFDerivWithinAt_pi' :
HasFDerivWithinAt Ξ¦ Ξ¦' s x β β i, HasFDerivWithinAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') s x :=
hasFDerivAtFilter_pi'
#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'
-/- warning: has_fderiv_within_at_pi -> hasFDerivWithinAt_pi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_pi hasFDerivWithinAt_piβ'. -/
theorem hasFDerivWithinAt_pi :
HasFDerivWithinAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') s x β
β i, HasFDerivWithinAt (Ο i) (Ο' i) s x :=
hasFDerivAtFilter_pi
#align has_fderiv_within_at_pi hasFDerivWithinAt_pi
-/- warning: differentiable_within_at_pi -> differentiableWithinAt_pi is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s x) (forall (i : ΞΉ), DifferentiableWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s x) (forall (i : ΞΉ), DifferentiableWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s x)
-Case conversion may be inaccurate. Consider using '#align differentiable_within_at_pi differentiableWithinAt_piβ'. -/
@[simp]
theorem differentiableWithinAt_pi :
DifferentiableWithinAt π Ξ¦ s x β β i, DifferentiableWithinAt π (fun x => Ξ¦ x i) s x :=
@@ -698,42 +455,21 @@ theorem differentiableWithinAt_pi :
(hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).DifferentiableWithinAtβ©
#align differentiable_within_at_pi differentiableWithinAt_pi
-/- warning: differentiable_at_pi -> differentiableAt_pi is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ x) (forall (i : ΞΉ), DifferentiableAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ x) (forall (i : ΞΉ), DifferentiableAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) x)
-Case conversion may be inaccurate. Consider using '#align differentiable_at_pi differentiableAt_piβ'. -/
@[simp]
theorem differentiableAt_pi : DifferentiableAt π Ξ¦ x β β i, DifferentiableAt π (fun x => Ξ¦ x i) x :=
β¨fun h i => (hasFDerivAt_pi'.1 h.HasFDerivAt i).DifferentiableAt, fun h =>
(hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).DifferentiableAtβ©
#align differentiable_at_pi differentiableAt_pi
-/- warning: differentiable_on_pi -> differentiableOn_pi is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableOn.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s) (forall (i : ΞΉ), DifferentiableOn.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableOn.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s) (forall (i : ΞΉ), DifferentiableOn.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s)
-Case conversion may be inaccurate. Consider using '#align differentiable_on_pi differentiableOn_piβ'. -/
theorem differentiableOn_pi : DifferentiableOn π Ξ¦ s β β i, DifferentiableOn π (fun x => Ξ¦ x i) s :=
β¨fun h i x hx => differentiableWithinAt_pi.1 (h x hx) i, fun h x hx =>
differentiableWithinAt_pi.2 fun i => h i x hxβ©
#align differentiable_on_pi differentiableOn_pi
-/- warning: differentiable_pi -> differentiable_pi is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (Differentiable.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦) (forall (i : ΞΉ), Differentiable.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i))
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (Differentiable.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦) (forall (i : ΞΉ), Differentiable.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i))
-Case conversion may be inaccurate. Consider using '#align differentiable_pi differentiable_piβ'. -/
theorem differentiable_pi : Differentiable π Ξ¦ β β i, Differentiable π fun x => Ξ¦ x i :=
β¨fun h i x => differentiableAt_pi.1 (h x) i, fun h x => differentiableAt_pi.2 fun i => h i xβ©
#align differentiable_pi differentiable_pi
-/- warning: fderiv_within_pi -> fderivWithin_pi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_within_pi fderivWithin_piβ'. -/
-- TODO: find out which version (`Ο` or `Ξ¦`) works better with `rw`/`simp`
theorem fderivWithin_pi (h : β i, DifferentiableWithinAt π (Ο i) s x)
(hs : UniqueDiffWithinAt π s x) :
@@ -741,9 +477,6 @@ theorem fderivWithin_pi (h : β i, DifferentiableWithinAt π (Ο i) s x)
(hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).fderivWithin hs
#align fderiv_within_pi fderivWithin_pi
-/- warning: fderiv_pi -> fderiv_pi is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align fderiv_pi fderiv_piβ'. -/
theorem fderiv_pi (h : β i, DifferentiableAt π (Ο i) x) :
fderiv π (fun x i => Ο i x) x = pi fun i => fderiv π (Ο i) x :=
(hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).fderiv
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -65,10 +65,7 @@ section Prod
variable {fβ : E β G} {fβ' : E βL[π] G}
/- warning: has_strict_fderiv_at.prod -> HasStrictFDerivAt.prod is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasStrictFDerivAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' x) -> (HasStrictFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' x) -> (HasStrictFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ' fβ') x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u4, u4, u3, u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasStrictFDerivAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' x) -> (HasStrictFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' x) -> (HasStrictFDerivAt.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ' fβ') x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.prod HasStrictFDerivAt.prodβ'. -/
protected theorem HasStrictFDerivAt.prod (hfβ : HasStrictFDerivAt fβ fβ' x)
(hfβ : HasStrictFDerivAt fβ fβ' x) :
@@ -77,10 +74,7 @@ protected theorem HasStrictFDerivAt.prod (hfβ : HasStrictFDerivAt fβ fβ' x
#align has_strict_fderiv_at.prod HasStrictFDerivAt.prod
/- warning: has_fderiv_at_filter.prod -> HasFDerivAtFilter.prod is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivAtFilter.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' x L) -> (HasFDerivAtFilter.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' x L) -> (HasFDerivAtFilter.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ' fβ') x L)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u4, u4, u3, u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {L : Filter.{u3} E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasFDerivAtFilter.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' x L) -> (HasFDerivAtFilter.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' x L) -> (HasFDerivAtFilter.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ' fβ') x L)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.prod HasFDerivAtFilter.prodβ'. -/
theorem HasFDerivAtFilter.prod (hfβ : HasFDerivAtFilter fβ fβ' x L)
(hfβ : HasFDerivAtFilter fβ fβ' x L) :
@@ -89,10 +83,7 @@ theorem HasFDerivAtFilter.prod (hfβ : HasFDerivAtFilter fβ fβ' x L)
#align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
/- warning: has_fderiv_within_at.prod -> HasFDerivWithinAt.prod is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivWithinAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' s x) -> (HasFDerivWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' s x) -> (HasFDerivWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ' fβ') s x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u4, u4, u3, u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasFDerivWithinAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' s x) -> (HasFDerivWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' s x) -> (HasFDerivWithinAt.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ' fβ') s x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.prod HasFDerivWithinAt.prodβ'. -/
theorem HasFDerivWithinAt.prod (hfβ : HasFDerivWithinAt fβ fβ' s x)
(hfβ : HasFDerivWithinAt fβ fβ' s x) :
@@ -101,10 +92,7 @@ theorem HasFDerivWithinAt.prod (hfβ : HasFDerivWithinAt fβ fβ' s x)
#align has_fderiv_within_at.prod HasFDerivWithinAt.prod
/- warning: has_fderiv_at.prod -> HasFDerivAt.prod is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' x) -> (HasFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' x) -> (HasFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ' fβ') x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u4, u4, u3, u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasFDerivAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' x) -> (HasFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' x) -> (HasFDerivAt.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ' fβ') x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at.prod HasFDerivAt.prodβ'. -/
theorem HasFDerivAt.prod (hfβ : HasFDerivAt fβ fβ' x) (hfβ : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x :=
@@ -180,10 +168,7 @@ theorem Differentiable.prod (hfβ : Differentiable π fβ) (hfβ : Differen
#align differentiable.prod Differentiable.prod
/- warning: differentiable_at.fderiv_prod -> DifferentiableAt.fderiv_prod is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {x : E} {fβ : E -> G}, (DifferentiableAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ x) -> (DifferentiableAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (UniformSpace.toTopologicalSpace.{max u3 u4} (Prod.{u3, u4} F G) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (Prod.{u3, u4} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π (Prod.{u3, u4} F G) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6)) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))) (fderiv.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) x) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fderiv.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ x) (fderiv.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ x)))
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {x : E} {fβ : E -> G}, (DifferentiableAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ x) -> (DifferentiableAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ x) -> (Eq.{max (max (succ u3) (succ u2)) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (UniformSpace.toTopologicalSpace.{max u1 u2} (Prod.{u2, u1} F G) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (Prod.{u2, u1} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π (Prod.{u2, u1} F G) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6)) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))) (fderiv.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) x) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fderiv.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ x) (fderiv.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ x)))
+<too large>
Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prodβ'. -/
theorem DifferentiableAt.fderiv_prod (hfβ : DifferentiableAt π fβ x)
(hfβ : DifferentiableAt π fβ x) :
@@ -192,10 +177,7 @@ theorem DifferentiableAt.fderiv_prod (hfβ : DifferentiableAt π fβ x)
#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
/- warning: differentiable_at.fderiv_within_prod -> DifferentiableAt.fderivWithin_prod is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {x : E} {s : Set.{u2} E} {fβ : E -> G}, (DifferentiableWithinAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s x) -> (DifferentiableWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s x) -> (UniqueDiffWithinAt.{u1, u2} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (UniformSpace.toTopologicalSpace.{max u3 u4} (Prod.{u3, u4} F G) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (Prod.{u3, u4} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π (Prod.{u3, u4} F G) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6)) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))) (fderivWithin.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) s x) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fderivWithin.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s x) (fderivWithin.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s x)))
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {x : E} {s : Set.{u3} E} {fβ : E -> G}, (DifferentiableWithinAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s x) -> (DifferentiableWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s x) -> (UniqueDiffWithinAt.{u4, u3} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Eq.{max (max (succ u3) (succ u2)) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (UniformSpace.toTopologicalSpace.{max u1 u2} (Prod.{u2, u1} F G) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (Prod.{u2, u1} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π (Prod.{u2, u1} F G) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6)) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))) (fderivWithin.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) s x) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fderivWithin.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s x) (fderivWithin.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s x)))
+<too large>
Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_within_prod DifferentiableAt.fderivWithin_prodβ'. -/
theorem DifferentiableAt.fderivWithin_prod (hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x) (hxs : UniqueDiffWithinAt π s x) :
@@ -221,10 +203,7 @@ theorem hasStrictFDerivAt_fst : HasStrictFDerivAt (@Prod.fst E F) (fst π E F)
#align has_strict_fderiv_at_fst hasStrictFDerivAt_fst
/- warning: has_strict_fderiv_at.fst -> HasStrictFDerivAt.fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' x) -> (HasStrictFDerivAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' x) -> (HasStrictFDerivAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.fst HasStrictFDerivAt.fstβ'. -/
protected theorem HasStrictFDerivAt.fst (h : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
@@ -239,10 +218,7 @@ theorem hasFDerivAtFilter_fst {L : Filter (E Γ F)} :
-/
/- warning: has_fderiv_at_filter.fst -> HasFDerivAtFilter.fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {L : Filter.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' x L) -> (HasFDerivAtFilter.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') x L)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {L : Filter.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' x L) -> (HasFDerivAtFilter.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') x L)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.fst HasFDerivAtFilter.fstβ'. -/
protected theorem HasFDerivAtFilter.fst (h : HasFDerivAtFilter fβ fβ' x L) :
HasFDerivAtFilter (fun x => (fβ x).1) ((fst π F G).comp fβ') x L :=
@@ -260,10 +236,7 @@ theorem hasFDerivAt_fst : HasFDerivAt (@Prod.fst E F) (fst π E F) p :=
#align has_fderiv_at_fst hasFDerivAt_fst
/- warning: has_fderiv_at.fst -> HasFDerivAt.fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' x) -> (HasFDerivAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' x) -> (HasFDerivAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at.fst HasFDerivAt.fstβ'. -/
protected theorem HasFDerivAt.fst (h : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
@@ -278,10 +251,7 @@ theorem hasFDerivWithinAt_fst {s : Set (E Γ F)} :
-/
/- warning: has_fderiv_within_at.fst -> HasFDerivWithinAt.fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' s x) -> (HasFDerivWithinAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') s x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' s x) -> (HasFDerivWithinAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') s x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.fst HasFDerivWithinAt.fstβ'. -/
protected theorem HasFDerivWithinAt.fst (h : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x).1) ((fst π F G).comp fβ') s x :=
@@ -377,10 +347,7 @@ theorem fderiv_fst : fderiv π Prod.fst p = fst π E F :=
#align fderiv_fst fderiv_fst
/- warning: fderiv.fst -> fderiv.fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ x)))
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ x) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderiv.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ x)))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv.fst fderiv.fstβ'. -/
theorem fderiv.fst (h : DifferentiableAt π fβ x) :
fderiv π (fun x => (fβ x).1) x = (fst π F G).comp (fderiv π fβ x) :=
@@ -388,10 +355,7 @@ theorem fderiv.fst (h : DifferentiableAt π fβ x) :
#align fderiv.fst fderiv.fst
/- warning: fderiv_within_fst -> fderivWithin_fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u2 u3} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.addCommMonoid.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Prod.topologicalSpace.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ (max u2 u3)) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, max u2 u3} π (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderivWithin.{u1, max u2 u3, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) s p) (ContinuousLinearMap.fst.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
-but is expected to have type
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u3 u2} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.instAddCommMonoidSum.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π E F (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (instTopologicalSpaceProd.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, max u3 u2, u2} π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u3 u2} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u3 u2} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, max u3 u2} π (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderivWithin.{u1, max u3 u2, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) s p) (ContinuousLinearMap.fst.{u1, u2, u3} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_fst fderivWithin_fstβ'. -/
theorem fderivWithin_fst {s : Set (E Γ F)} (hs : UniqueDiffWithinAt π s p) :
fderivWithin π Prod.fst s p = fst π E F :=
@@ -399,10 +363,7 @@ theorem fderivWithin_fst {s : Set (E Γ F)} (hs : UniqueDiffWithinAt π s p) :
#align fderiv_within_fst fderivWithin_fst
/- warning: fderiv_within.fst -> fderivWithin.fst is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)}, (UniqueDiffWithinAt.{u1, u2} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s x)))
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)}, (UniqueDiffWithinAt.{u4, u3} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s x) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) s x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderivWithin.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s x)))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within.fst fderivWithin.fstβ'. -/
theorem fderivWithin.fst (hs : UniqueDiffWithinAt π s x) (h : DifferentiableWithinAt π fβ s x) :
fderivWithin π (fun x => (fβ x).1) s x = (fst π F G).comp (fderivWithin π fβ s x) :=
@@ -426,10 +387,7 @@ theorem hasStrictFDerivAt_snd : HasStrictFDerivAt (@Prod.snd E F) (snd π E F)
#align has_strict_fderiv_at_snd hasStrictFDerivAt_snd
/- warning: has_strict_fderiv_at.snd -> HasStrictFDerivAt.snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' x) -> (HasStrictFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' x) -> (HasStrictFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.snd HasStrictFDerivAt.sndβ'. -/
protected theorem HasStrictFDerivAt.snd (h : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
@@ -444,10 +402,7 @@ theorem hasFDerivAtFilter_snd {L : Filter (E Γ F)} :
-/
/- warning: has_fderiv_at_filter.snd -> HasFDerivAtFilter.snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {L : Filter.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' x L) -> (HasFDerivAtFilter.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') x L)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {L : Filter.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' x L) -> (HasFDerivAtFilter.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') x L)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.snd HasFDerivAtFilter.sndβ'. -/
protected theorem HasFDerivAtFilter.snd (h : HasFDerivAtFilter fβ fβ' x L) :
HasFDerivAtFilter (fun x => (fβ x).2) ((snd π F G).comp fβ') x L :=
@@ -465,10 +420,7 @@ theorem hasFDerivAt_snd : HasFDerivAt (@Prod.snd E F) (snd π E F) p :=
#align has_fderiv_at_snd hasFDerivAt_snd
/- warning: has_fderiv_at.snd -> HasFDerivAt.snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' x) -> (HasFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' x) -> (HasFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at.snd HasFDerivAt.sndβ'. -/
protected theorem HasFDerivAt.snd (h : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
@@ -483,10 +435,7 @@ theorem hasFDerivWithinAt_snd {s : Set (E Γ F)} :
-/
/- warning: has_fderiv_within_at.snd -> HasFDerivWithinAt.snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' s x) -> (HasFDerivWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') s x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' s x) -> (HasFDerivWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') s x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.snd HasFDerivWithinAt.sndβ'. -/
protected theorem HasFDerivWithinAt.snd (h : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x).2) ((snd π F G).comp fβ') s x :=
@@ -582,10 +531,7 @@ theorem fderiv_snd : fderiv π Prod.snd p = snd π E F :=
#align fderiv_snd fderiv_snd
/- warning: fderiv.snd -> fderiv.snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ x)))
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderiv.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderiv.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ x)))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv.snd fderiv.sndβ'. -/
theorem fderiv.snd (h : DifferentiableAt π fβ x) :
fderiv π (fun x => (fβ x).2) x = (snd π F G).comp (fderiv π fβ x) :=
@@ -593,10 +539,7 @@ theorem fderiv.snd (h : DifferentiableAt π fβ x) :
#align fderiv.snd fderiv.snd
/- warning: fderiv_within_snd -> fderivWithin_snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u2 u3} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.addCommMonoid.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Prod.topologicalSpace.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ (max u2 u3)) (succ u3)} (ContinuousLinearMap.{u1, u1, max u2 u3, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, max u2 u3} π (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, max u2 u3, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) s p) (ContinuousLinearMap.snd.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
-but is expected to have type
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u3 u2} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.instAddCommMonoidSum.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π E F (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (instTopologicalSpaceProd.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, max u3 u2, u3} π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u3 u2} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u3 u2} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, max u3 u2} π (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, max u3 u2, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) s p) (ContinuousLinearMap.snd.{u1, u2, u3} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_snd fderivWithin_sndβ'. -/
theorem fderivWithin_snd {s : Set (E Γ F)} (hs : UniqueDiffWithinAt π s p) :
fderivWithin π Prod.snd s p = snd π E F :=
@@ -604,10 +547,7 @@ theorem fderivWithin_snd {s : Set (E Γ F)} (hs : UniqueDiffWithinAt π s p) :
#align fderiv_within_snd fderivWithin_snd
/- warning: fderiv_within.snd -> fderivWithin.snd is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)}, (UniqueDiffWithinAt.{u1, u2} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s x)))
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)}, (UniqueDiffWithinAt.{u4, u3} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderivWithin.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) s x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderivWithin.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s x)))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within.snd fderivWithin.sndβ'. -/
theorem fderivWithin.snd (hs : UniqueDiffWithinAt π s x) (h : DifferentiableWithinAt π fβ s x) :
fderivWithin π (fun x => (fβ x).2) s x = (snd π F G).comp (fderivWithin π fβ s x) :=
@@ -621,10 +561,7 @@ section Prod_map
variable {fβ : G β G'} {fβ' : G βL[π] G'} {y : G} (p : E Γ G)
/- warning: has_strict_fderiv_at.prod_map -> HasStrictFDerivAt.prodMap is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ : G -> G'} {fβ' : ContinuousLinearMap.{u1, u1, u4, u5} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9)} (p : Prod.{u2, u4} E G), (HasStrictFDerivAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u2, u4} E G p)) -> (HasStrictFDerivAt.{u1, u4, u5} π _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ fβ' (Prod.snd.{u2, u4} E G p)) -> (HasStrictFDerivAt.{u1, max u2 u4, max u3 u5} π _inst_1 (Prod.{u2, u4} E G) (Prod.normedAddCommGroup.{u2, u4} E G _inst_2 _inst_6) (Prod.normedSpace.{u1, u2, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (Prod.{u3, u5} F G') (Prod.normedAddCommGroup.{u3, u5} F G' _inst_4 _inst_8) (Prod.normedSpace.{u1, u3, u5} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (Prod.map.{u2, u3, u4, u5} E F G G' f fβ) (ContinuousLinearMap.prodMap.{u1, u2, u3, u4, u5} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) f' fβ') p)
-but is expected to have type
- forall {π : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u5} π] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {G' : Type.{u1}} [_inst_8 : NormedAddCommGroup.{u1} G'] [_inst_9 : NormedSpace.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u5, u5, u4, u3} π π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (RingHom.id.{u5} π (Semiring.toNonAssocSemiring.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ : G -> G'} {fβ' : ContinuousLinearMap.{u5, u5, u2, u1} π π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (RingHom.id.{u5} π (Semiring.toNonAssocSemiring.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoMetricSpace.toUniformSpace.{u1} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9)} (p : Prod.{u4, u2} E G), (HasStrictFDerivAt.{u5, u4, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u4, u2} E G p)) -> (HasStrictFDerivAt.{u5, u2, u1} π _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ fβ' (Prod.snd.{u4, u2} E G p)) -> (HasStrictFDerivAt.{u5, max u2 u4, max u1 u3} π _inst_1 (Prod.{u4, u2} E G) (Prod.normedAddCommGroup.{u4, u2} E G _inst_2 _inst_6) (Prod.normedSpace.{u5, u4, u2} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (Prod.{u3, u1} F G') (Prod.normedAddCommGroup.{u3, u1} F G' _inst_4 _inst_8) (Prod.normedSpace.{u5, u3, u1} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) (Prod.map.{u4, u3, u2, u1} E F G G' f fβ) (ContinuousLinearMap.prodMap.{u5, u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoEMetricSpace.toUniformSpace.{u2} G (PseudoMetricSpace.toPseudoEMetricSpace.{u2} G (SeminormedAddGroup.toPseudoMetricSpace.{u2} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoEMetricSpace.toUniformSpace.{u1} G' (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G' (SeminormedAddGroup.toPseudoMetricSpace.{u1} G' (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) f' fβ') p)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMapβ'. -/
protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
(hfβ : HasStrictFDerivAt fβ fβ' p.2) : HasStrictFDerivAt (Prod.map f fβ) (f'.Prod_map fβ') p :=
@@ -632,10 +569,7 @@ protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMap
/- warning: has_fderiv_at.prod_map -> HasFDerivAt.prodMap is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ : G -> G'} {fβ' : ContinuousLinearMap.{u1, u1, u4, u5} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9)} (p : Prod.{u2, u4} E G), (HasFDerivAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u2, u4} E G p)) -> (HasFDerivAt.{u1, u4, u5} π _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ fβ' (Prod.snd.{u2, u4} E G p)) -> (HasFDerivAt.{u1, max u2 u4, max u3 u5} π _inst_1 (Prod.{u2, u4} E G) (Prod.normedAddCommGroup.{u2, u4} E G _inst_2 _inst_6) (Prod.normedSpace.{u1, u2, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (Prod.{u3, u5} F G') (Prod.normedAddCommGroup.{u3, u5} F G' _inst_4 _inst_8) (Prod.normedSpace.{u1, u3, u5} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (Prod.map.{u2, u3, u4, u5} E F G G' f fβ) (ContinuousLinearMap.prodMap.{u1, u2, u3, u4, u5} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) f' fβ') p)
-but is expected to have type
- forall {π : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u5} π] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {G' : Type.{u1}} [_inst_8 : NormedAddCommGroup.{u1} G'] [_inst_9 : NormedSpace.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u5, u5, u4, u3} π π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (RingHom.id.{u5} π (Semiring.toNonAssocSemiring.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ : G -> G'} {fβ' : ContinuousLinearMap.{u5, u5, u2, u1} π π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (RingHom.id.{u5} π (Semiring.toNonAssocSemiring.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoMetricSpace.toUniformSpace.{u1} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9)} (p : Prod.{u4, u2} E G), (HasFDerivAt.{u5, u4, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u4, u2} E G p)) -> (HasFDerivAt.{u5, u2, u1} π _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ fβ' (Prod.snd.{u4, u2} E G p)) -> (HasFDerivAt.{u5, max u2 u4, max u1 u3} π _inst_1 (Prod.{u4, u2} E G) (Prod.normedAddCommGroup.{u4, u2} E G _inst_2 _inst_6) (Prod.normedSpace.{u5, u4, u2} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (Prod.{u3, u1} F G') (Prod.normedAddCommGroup.{u3, u1} F G' _inst_4 _inst_8) (Prod.normedSpace.{u5, u3, u1} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) (Prod.map.{u4, u3, u2, u1} E F G G' f fβ) (ContinuousLinearMap.prodMap.{u5, u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoEMetricSpace.toUniformSpace.{u2} G (PseudoMetricSpace.toPseudoEMetricSpace.{u2} G (SeminormedAddGroup.toPseudoMetricSpace.{u2} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoEMetricSpace.toUniformSpace.{u1} G' (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G' (SeminormedAddGroup.toPseudoMetricSpace.{u1} G' (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) f' fβ') p)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at.prod_map HasFDerivAt.prodMapβ'. -/
protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ : HasFDerivAt fβ fβ' p.2) :
HasFDerivAt (Prod.map f fβ) (f'.Prod_map fβ') p :=
@@ -643,10 +577,7 @@ protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ : HasFD
#align has_fderiv_at.prod_map HasFDerivAt.prodMap
/- warning: differentiable_at.prod_map -> DifferentiableAt.prod_map is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} {fβ : G -> G'} (p : Prod.{u2, u4} E G), (DifferentiableAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Prod.fst.{u2, u4} E G p)) -> (DifferentiableAt.{u1, u4, u5} π _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ (Prod.snd.{u2, u4} E G p)) -> (DifferentiableAt.{u1, max u2 u4, max u3 u5} π _inst_1 (Prod.{u2, u4} E G) (Prod.normedAddCommGroup.{u2, u4} E G _inst_2 _inst_6) (Prod.normedSpace.{u1, u2, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (Prod.{u3, u5} F G') (Prod.normedAddCommGroup.{u3, u5} F G' _inst_4 _inst_8) (Prod.normedSpace.{u1, u3, u5} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (fun (p : Prod.{u2, u4} E G) => Prod.mk.{u3, u5} F G' (f (Prod.fst.{u2, u4} E G p)) (fβ (Prod.snd.{u2, u4} E G p))) p)
-but is expected to have type
- forall {π : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u5} π] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {G' : Type.{u1}} [_inst_8 : NormedAddCommGroup.{u1} G'] [_inst_9 : NormedSpace.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)] {f : E -> F} {fβ : G -> G'} (p : Prod.{u4, u2} E G), (DifferentiableAt.{u5, u4, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Prod.fst.{u4, u2} E G p)) -> (DifferentiableAt.{u5, u2, u1} π _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ (Prod.snd.{u4, u2} E G p)) -> (DifferentiableAt.{u5, max u4 u2, max u1 u3} π _inst_1 (Prod.{u4, u2} E G) (Prod.normedAddCommGroup.{u4, u2} E G _inst_2 _inst_6) (Prod.normedSpace.{u5, u4, u2} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (Prod.{u3, u1} F G') (Prod.normedAddCommGroup.{u3, u1} F G' _inst_4 _inst_8) (Prod.normedSpace.{u5, u3, u1} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) (fun (p : Prod.{u4, u2} E G) => Prod.mk.{u3, u1} F G' (f (Prod.fst.{u4, u2} E G p)) (fβ (Prod.snd.{u4, u2} E G p))) p)
+<too large>
Case conversion may be inaccurate. Consider using '#align differentiable_at.prod_map DifferentiableAt.prod_mapβ'. -/
@[simp]
protected theorem DifferentiableAt.prod_map (hf : DifferentiableAt π f p.1)
@@ -678,10 +609,7 @@ variable {ΞΉ : Type _} [Fintype ΞΉ] {F' : ΞΉ β Type _} [β i, NormedAddCommGr
{Ξ¦' : E βL[π] β i, F' i}
/- warning: has_strict_fderiv_at_pi' -> hasStrictFDerivAt_pi' is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasStrictFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasStrictFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasStrictFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasStrictFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'β'. -/
@[simp]
theorem hasStrictFDerivAt_pi' :
@@ -692,10 +620,7 @@ theorem hasStrictFDerivAt_pi' :
#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
/- warning: has_strict_fderiv_at_pi -> hasStrictFDerivAt_pi is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasStrictFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') x) (forall (i : ΞΉ), HasStrictFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasStrictFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') x) (forall (i : ΞΉ), HasStrictFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_pi hasStrictFDerivAt_piβ'. -/
@[simp]
theorem hasStrictFDerivAt_pi :
@@ -705,10 +630,7 @@ theorem hasStrictFDerivAt_pi :
#align has_strict_fderiv_at_pi hasStrictFDerivAt_pi
/- warning: has_fderiv_at_filter_pi' -> hasFDerivAtFilter_pi' is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {L : Filter.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasFDerivAtFilter.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') x L)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {L : Filter.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasFDerivAtFilter.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') x L)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'β'. -/
@[simp]
theorem hasFDerivAtFilter_pi' :
@@ -719,10 +641,7 @@ theorem hasFDerivAtFilter_pi' :
#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'
/- warning: has_fderiv_at_filter_pi -> hasFDerivAtFilter_pi is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {L : Filter.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAtFilter.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) x L)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {L : Filter.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAtFilter.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) x L)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_pi hasFDerivAtFilter_piβ'. -/
theorem hasFDerivAtFilter_pi :
HasFDerivAtFilter (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x L β
@@ -731,10 +650,7 @@ theorem hasFDerivAtFilter_pi :
#align has_fderiv_at_filter_pi hasFDerivAtFilter_pi
/- warning: has_fderiv_at_pi' -> hasFDerivAt_pi' is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_pi' hasFDerivAt_pi'β'. -/
@[simp]
theorem hasFDerivAt_pi' :
@@ -743,10 +659,7 @@ theorem hasFDerivAt_pi' :
#align has_fderiv_at_pi' hasFDerivAt_pi'
/- warning: has_fderiv_at_pi -> hasFDerivAt_pi is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') x) (forall (i : ΞΉ), HasFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') x) (forall (i : ΞΉ), HasFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_at_pi hasFDerivAt_piβ'. -/
theorem hasFDerivAt_pi :
HasFDerivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
@@ -755,10 +668,7 @@ theorem hasFDerivAt_pi :
#align has_fderiv_at_pi hasFDerivAt_pi
/- warning: has_fderiv_within_at_pi' -> hasFDerivWithinAt_pi' is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasFDerivWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') s x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasFDerivWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') s x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'β'. -/
@[simp]
theorem hasFDerivWithinAt_pi' :
@@ -767,10 +677,7 @@ theorem hasFDerivWithinAt_pi' :
#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'
/- warning: has_fderiv_within_at_pi -> hasFDerivWithinAt_pi is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) s x)
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) s x)
+<too large>
Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_pi hasFDerivWithinAt_piβ'. -/
theorem hasFDerivWithinAt_pi :
HasFDerivWithinAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') s x β
@@ -825,10 +732,7 @@ theorem differentiable_pi : Differentiable π Ξ¦ β β i, Differentiable
#align differentiable_pi differentiable_pi
/- warning: fderiv_within_pi -> fderivWithin_pi is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) s x) -> (UniqueDiffWithinAt.{u1, u2} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderivWithin.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) s x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderivWithin.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) s x)))
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u1}} [_inst_10 : Fintype.{u1} ΞΉ] {F' : ΞΉ -> Type.{u2}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u2} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u2} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableWithinAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) s x) -> (UniqueDiffWithinAt.{u4, u3} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Eq.{max (max (succ u3) (succ u1)) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u4, u1, u2} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderivWithin.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u1, u2} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) s x) (ContinuousLinearMap.pi.{u4, u3, u1, u2} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u2} (F' i) (PseudoMetricSpace.toUniformSpace.{u2} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u2} (F' i) (NormedAddCommGroup.toAddCommGroup.{u2} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u2} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderivWithin.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) s x)))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_within_pi fderivWithin_piβ'. -/
-- TODO: find out which version (`Ο` or `Ξ¦`) works better with `rw`/`simp`
theorem fderivWithin_pi (h : β i, DifferentiableWithinAt π (Ο i) s x)
@@ -838,10 +742,7 @@ theorem fderivWithin_pi (h : β i, DifferentiableWithinAt π (Ο i) s x)
#align fderiv_within_pi fderivWithin_pi
/- warning: fderiv_pi -> fderiv_pi is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderiv.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderiv.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) x)))
-but is expected to have type
- forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u1}} [_inst_10 : Fintype.{u1} ΞΉ] {F' : ΞΉ -> Type.{u2}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u2} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u2} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) x) -> (Eq.{max (max (succ u3) (succ u1)) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u4, u1, u2} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderiv.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u1, u2} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) x) (ContinuousLinearMap.pi.{u4, u3, u1, u2} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u2} (F' i) (PseudoMetricSpace.toUniformSpace.{u2} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u2} (F' i) (NormedAddCommGroup.toAddCommGroup.{u2} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u2} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderiv.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) x)))
+<too large>
Case conversion may be inaccurate. Consider using '#align fderiv_pi fderiv_piβ'. -/
theorem fderiv_pi (h : β i, DifferentiableAt π (Ο i) x) :
fderiv π (fun x i => Ο i x) x = pi fun i => fderiv π (Ο i) x :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/8d33f09cd7089ecf074b4791907588245aec5d1b
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
! This file was ported from Lean 3 source module analysis.calculus.fderiv.prod
-! leanprover-community/mathlib commit e3fb84046afd187b710170887195d50bada934ee
+! leanprover-community/mathlib commit 38df578a6450a8c5142b3727e3ae894c2300cae0
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -14,6 +14,9 @@ import Mathbin.Analysis.Calculus.Fderiv.Comp
/-!
# Derivative of the cartesian product of functions
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
For detailed documentation of the FrΓ©chet derivative,
see the module docstring of `analysis/calculus/fderiv/basic.lean`.
mathlib commit https://github.com/leanprover-community/mathlib/commit/75e7fca56381d056096ce5d05e938f63a6567828
@@ -61,67 +61,139 @@ section Prod
variable {fβ : E β G} {fβ' : E βL[π] G}
+/- warning: has_strict_fderiv_at.prod -> HasStrictFDerivAt.prod is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasStrictFDerivAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' x) -> (HasStrictFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' x) -> (HasStrictFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ' fβ') x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u4, u4, u3, u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasStrictFDerivAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' x) -> (HasStrictFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' x) -> (HasStrictFDerivAt.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ' fβ') x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.prod HasStrictFDerivAt.prodβ'. -/
protected theorem HasStrictFDerivAt.prod (hfβ : HasStrictFDerivAt fβ fβ' x)
(hfβ : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x :=
hfβ.prodLeft hfβ
#align has_strict_fderiv_at.prod HasStrictFDerivAt.prod
+/- warning: has_fderiv_at_filter.prod -> HasFDerivAtFilter.prod is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {L : Filter.{u2} E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivAtFilter.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' x L) -> (HasFDerivAtFilter.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' x L) -> (HasFDerivAtFilter.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ' fβ') x L)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u4, u4, u3, u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {L : Filter.{u3} E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasFDerivAtFilter.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' x L) -> (HasFDerivAtFilter.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' x L) -> (HasFDerivAtFilter.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ' fβ') x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.prod HasFDerivAtFilter.prodβ'. -/
theorem HasFDerivAtFilter.prod (hfβ : HasFDerivAtFilter fβ fβ' x L)
(hfβ : HasFDerivAtFilter fβ fβ' x L) :
HasFDerivAtFilter (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x L :=
hfβ.prodLeft hfβ
#align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
+/- warning: has_fderiv_within_at.prod -> HasFDerivWithinAt.prod is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {s : Set.{u2} E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivWithinAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' s x) -> (HasFDerivWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' s x) -> (HasFDerivWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ' fβ') s x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u4, u4, u3, u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {s : Set.{u3} E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasFDerivWithinAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' s x) -> (HasFDerivWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' s x) -> (HasFDerivWithinAt.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ' fβ') s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.prod HasFDerivWithinAt.prodβ'. -/
theorem HasFDerivWithinAt.prod (hfβ : HasFDerivWithinAt fβ fβ' s x)
(hfβ : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') s x :=
hfβ.Prod hfβ
#align has_fderiv_within_at.prod HasFDerivWithinAt.prod
+/- warning: has_fderiv_at.prod -> HasFDerivAt.prod is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {x : E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)}, (HasFDerivAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' x) -> (HasFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' x) -> (HasFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ' fβ') x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {fβ' : ContinuousLinearMap.{u4, u4, u3, u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)} {x : E} {fβ : E -> G} {fβ' : ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)}, (HasFDerivAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ fβ' x) -> (HasFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ fβ' x) -> (HasFDerivAt.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoEMetricSpace.toUniformSpace.{u1} G (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G (SeminormedAddGroup.toPseudoMetricSpace.{u1} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ' fβ') x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.prod HasFDerivAt.prodβ'. -/
theorem HasFDerivAt.prod (hfβ : HasFDerivAt fβ fβ' x) (hfβ : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x :=
hfβ.Prod hfβ
#align has_fderiv_at.prod HasFDerivAt.prod
+/- warning: has_fderiv_at_prod_mk_left -> hasFDerivAt_prod_mk_left is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (eβ : E) (fβ : F), HasFDerivAt.{u1, u2, max u2 u3} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (fun (e : E) => Prod.mk.{u2, u3} E F e fβ) (ContinuousLinearMap.inl.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) eβ
+but is expected to have type
+ forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] (eβ : E) (fβ : F), HasFDerivAt.{u3, u2, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) (fun (e : E) => Prod.mk.{u2, u1} E F e fβ) (ContinuousLinearMap.inl.{u3, u2, u1} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) eβ
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_leftβ'. -/
theorem hasFDerivAt_prod_mk_left (eβ : E) (fβ : F) :
HasFDerivAt (fun e : E => (e, fβ)) (inl π E F) eβ :=
(hasFDerivAt_id eβ).Prod (hasFDerivAt_const fβ eβ)
#align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_left
+/- warning: has_fderiv_at_prod_mk_right -> hasFDerivAt_prod_mk_right is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] (eβ : E) (fβ : F), HasFDerivAt.{u1, u3, max u2 u3} π _inst_1 F _inst_4 _inst_5 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (fun (f : F) => Prod.mk.{u2, u3} E F eβ f) (ContinuousLinearMap.inr.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) fβ
+but is expected to have type
+ forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u3, u2} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] (eβ : E) (fβ : F), HasFDerivAt.{u3, u2, max u2 u1} π _inst_1 F _inst_4 _inst_5 (Prod.{u1, u2} E F) (Prod.normedAddCommGroup.{u1, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u1, u2} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (fun (f : F) => Prod.mk.{u1, u2} E F eβ f) (ContinuousLinearMap.inr.{u3, u1, u2} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u2} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) fβ
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_rightβ'. -/
theorem hasFDerivAt_prod_mk_right (eβ : E) (fβ : F) :
HasFDerivAt (fun f : F => (eβ, f)) (inr π E F) fβ :=
(hasFDerivAt_const eβ fβ).Prod (hasFDerivAt_id fβ)
#align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_right
+/- warning: differentiable_within_at.prod -> DifferentiableWithinAt.prod is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {x : E} {s : Set.{u2} E} {fβ : E -> G}, (DifferentiableWithinAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s x) -> (DifferentiableWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s x) -> (DifferentiableWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) s x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {x : E} {s : Set.{u3} E} {fβ : E -> G}, (DifferentiableWithinAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s x) -> (DifferentiableWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s x) -> (DifferentiableWithinAt.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.prod DifferentiableWithinAt.prodβ'. -/
theorem DifferentiableWithinAt.prod (hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x : E => (fβ x, fβ x)) s x :=
(hfβ.HasFDerivWithinAt.Prod hfβ.HasFDerivWithinAt).DifferentiableWithinAt
#align differentiable_within_at.prod DifferentiableWithinAt.prod
+/- warning: differentiable_at.prod -> DifferentiableAt.prod is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {x : E} {fβ : E -> G}, (DifferentiableAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ x) -> (DifferentiableAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ x) -> (DifferentiableAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {x : E} {fβ : E -> G}, (DifferentiableAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ x) -> (DifferentiableAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ x) -> (DifferentiableAt.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.prod DifferentiableAt.prodβ'. -/
@[simp]
theorem DifferentiableAt.prod (hfβ : DifferentiableAt π fβ x) (hfβ : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x : E => (fβ x, fβ x)) x :=
(hfβ.HasFDerivAt.Prod hfβ.HasFDerivAt).DifferentiableAt
#align differentiable_at.prod DifferentiableAt.prod
+/- warning: differentiable_on.prod -> DifferentiableOn.prod is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {s : Set.{u2} E} {fβ : E -> G}, (DifferentiableOn.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s) -> (DifferentiableOn.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s) -> (DifferentiableOn.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) s)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {s : Set.{u3} E} {fβ : E -> G}, (DifferentiableOn.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s) -> (DifferentiableOn.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s) -> (DifferentiableOn.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.prod DifferentiableOn.prodβ'. -/
theorem DifferentiableOn.prod (hfβ : DifferentiableOn π fβ s) (hfβ : DifferentiableOn π fβ s) :
DifferentiableOn π (fun x : E => (fβ x, fβ x)) s := fun x hx =>
DifferentiableWithinAt.prod (hfβ x hx) (hfβ x hx)
#align differentiable_on.prod DifferentiableOn.prod
+/- warning: differentiable.prod -> Differentiable.prod is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {fβ : E -> G}, (Differentiable.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ) -> (Differentiable.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ) -> (Differentiable.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)))
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {fβ : E -> G}, (Differentiable.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ) -> (Differentiable.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ) -> (Differentiable.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)))
+Case conversion may be inaccurate. Consider using '#align differentiable.prod Differentiable.prodβ'. -/
@[simp]
theorem Differentiable.prod (hfβ : Differentiable π fβ) (hfβ : Differentiable π fβ) :
Differentiable π fun x : E => (fβ x, fβ x) := fun x => DifferentiableAt.prod (hfβ x) (hfβ x)
#align differentiable.prod Differentiable.prod
+/- warning: differentiable_at.fderiv_prod -> DifferentiableAt.fderiv_prod is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {x : E} {fβ : E -> G}, (DifferentiableAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ x) -> (DifferentiableAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (UniformSpace.toTopologicalSpace.{max u3 u4} (Prod.{u3, u4} F G) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (Prod.{u3, u4} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π (Prod.{u3, u4} F G) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6)) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))) (fderiv.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) x) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fderiv.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ x) (fderiv.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ x)))
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {x : E} {fβ : E -> G}, (DifferentiableAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ x) -> (DifferentiableAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ x) -> (Eq.{max (max (succ u3) (succ u2)) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (UniformSpace.toTopologicalSpace.{max u1 u2} (Prod.{u2, u1} F G) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (Prod.{u2, u1} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π (Prod.{u2, u1} F G) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6)) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))) (fderiv.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) x) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fderiv.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ x) (fderiv.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ x)))
+Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prodβ'. -/
theorem DifferentiableAt.fderiv_prod (hfβ : DifferentiableAt π fβ x)
(hfβ : DifferentiableAt π fβ x) :
fderiv π (fun x : E => (fβ x, fβ x)) x = (fderiv π fβ x).Prod (fderiv π fβ x) :=
(hfβ.HasFDerivAt.Prod hfβ.HasFDerivAt).fderiv
#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
+/- warning: differentiable_at.fderiv_within_prod -> DifferentiableAt.fderivWithin_prod is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> F} {x : E} {s : Set.{u2} E} {fβ : E -> G}, (DifferentiableWithinAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s x) -> (DifferentiableWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s x) -> (UniqueDiffWithinAt.{u1, u2} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (UniformSpace.toTopologicalSpace.{max u3 u4} (Prod.{u3, u4} F G) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (Prod.{u3, u4} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (Prod.{u3, u4} F G) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π (Prod.{u3, u4} F G) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6)) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))) (fderivWithin.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u3, u4} F G (fβ x) (fβ x)) s x) (ContinuousLinearMap.prod.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (fderivWithin.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s x) (fderivWithin.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s x)))
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> F} {x : E} {s : Set.{u3} E} {fβ : E -> G}, (DifferentiableWithinAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s x) -> (DifferentiableWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s x) -> (UniqueDiffWithinAt.{u4, u3} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Eq.{max (max (succ u3) (succ u2)) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (UniformSpace.toTopologicalSpace.{max u1 u2} (Prod.{u2, u1} F G) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (Prod.{u2, u1} F G) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (Prod.{u2, u1} F G) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π (Prod.{u2, u1} F G) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6)) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))) (fderivWithin.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fun (x : E) => Prod.mk.{u2, u1} F G (fβ x) (fβ x)) s x) (ContinuousLinearMap.prod.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (fderivWithin.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 fβ s x) (fderivWithin.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 fβ s x)))
+Case conversion may be inaccurate. Consider using '#align differentiable_at.fderiv_within_prod DifferentiableAt.fderivWithin_prodβ'. -/
theorem DifferentiableAt.fderivWithin_prod (hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x) (hxs : UniqueDiffWithinAt π s x) :
fderivWithin π (fun x : E => (fβ x, fβ x)) s x =
@@ -135,96 +207,200 @@ section Fst
variable {fβ : E β F Γ G} {fβ' : E βL[π] F Γ G} {p : E Γ F}
+/- warning: has_strict_fderiv_at_fst -> hasStrictFDerivAt_fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasStrictFDerivAt.{u1, max u2 u3, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) (ContinuousLinearMap.fst.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
+but is expected to have type
+ forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasStrictFDerivAt.{u3, max u2 u1, u2} π _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u1} E F) (ContinuousLinearMap.fst.{u3, u2, u1} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_fst hasStrictFDerivAt_fstβ'. -/
theorem hasStrictFDerivAt_fst : HasStrictFDerivAt (@Prod.fst E F) (fst π E F) p :=
(fst π E F).HasStrictFDerivAt
#align has_strict_fderiv_at_fst hasStrictFDerivAt_fst
+/- warning: has_strict_fderiv_at.fst -> HasStrictFDerivAt.fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' x) -> (HasStrictFDerivAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' x) -> (HasStrictFDerivAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.fst HasStrictFDerivAt.fstβ'. -/
protected theorem HasStrictFDerivAt.fst (h : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
hasStrictFDerivAt_fst.comp x h
#align has_strict_fderiv_at.fst HasStrictFDerivAt.fst
+#print hasFDerivAtFilter_fst /-
theorem hasFDerivAtFilter_fst {L : Filter (E Γ F)} :
HasFDerivAtFilter (@Prod.fst E F) (fst π E F) p L :=
(fst π E F).HasFDerivAtFilter
#align has_fderiv_at_filter_fst hasFDerivAtFilter_fst
+-/
+/- warning: has_fderiv_at_filter.fst -> HasFDerivAtFilter.fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {L : Filter.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' x L) -> (HasFDerivAtFilter.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') x L)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {L : Filter.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' x L) -> (HasFDerivAtFilter.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.fst HasFDerivAtFilter.fstβ'. -/
protected theorem HasFDerivAtFilter.fst (h : HasFDerivAtFilter fβ fβ' x L) :
HasFDerivAtFilter (fun x => (fβ x).1) ((fst π F G).comp fβ') x L :=
hasFDerivAtFilter_fst.comp x h tendsto_map
#align has_fderiv_at_filter.fst HasFDerivAtFilter.fst
+/- warning: has_fderiv_at_fst -> hasFDerivAt_fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasFDerivAt.{u1, max u2 u3, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) (ContinuousLinearMap.fst.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
+but is expected to have type
+ forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasFDerivAt.{u3, max u2 u1, u2} π _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u1} E F) (ContinuousLinearMap.fst.{u3, u2, u1} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_fst hasFDerivAt_fstβ'. -/
theorem hasFDerivAt_fst : HasFDerivAt (@Prod.fst E F) (fst π E F) p :=
hasFDerivAtFilter_fst
#align has_fderiv_at_fst hasFDerivAt_fst
+/- warning: has_fderiv_at.fst -> HasFDerivAt.fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' x) -> (HasFDerivAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' x) -> (HasFDerivAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.fst HasFDerivAt.fstβ'. -/
protected theorem HasFDerivAt.fst (h : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
h.fst
#align has_fderiv_at.fst HasFDerivAt.fst
+#print hasFDerivWithinAt_fst /-
theorem hasFDerivWithinAt_fst {s : Set (E Γ F)} :
HasFDerivWithinAt (@Prod.fst E F) (fst π E F) s p :=
hasFDerivAtFilter_fst
#align has_fderiv_within_at_fst hasFDerivWithinAt_fst
+-/
+/- warning: has_fderiv_within_at.fst -> HasFDerivWithinAt.fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' s x) -> (HasFDerivWithinAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') s x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' s x) -> (HasFDerivWithinAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.fst HasFDerivWithinAt.fstβ'. -/
protected theorem HasFDerivWithinAt.fst (h : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x).1) ((fst π F G).comp fβ') s x :=
h.fst
#align has_fderiv_within_at.fst HasFDerivWithinAt.fst
+/- warning: differentiable_at_fst -> differentiableAt_fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, DifferentiableAt.{u1, max u2 u3, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) p
+but is expected to have type
+ forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u3, u2} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u1, u2} E F}, DifferentiableAt.{u3, max u2 u1, u1} π _inst_1 (Prod.{u1, u2} E F) (Prod.normedAddCommGroup.{u1, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u1, u2} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u1, u2} E F) p
+Case conversion may be inaccurate. Consider using '#align differentiable_at_fst differentiableAt_fstβ'. -/
theorem differentiableAt_fst : DifferentiableAt π Prod.fst p :=
hasFDerivAt_fst.DifferentiableAt
#align differentiable_at_fst differentiableAt_fst
+/- warning: differentiable_at.fst -> DifferentiableAt.fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ x) -> (DifferentiableAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ x) -> (DifferentiableAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.fst DifferentiableAt.fstβ'. -/
@[simp]
protected theorem DifferentiableAt.fst (h : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x => (fβ x).1) x :=
differentiableAt_fst.comp x h
#align differentiable_at.fst DifferentiableAt.fst
+/- warning: differentiable_fst -> differentiable_fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)], Differentiable.{u1, max u2 u3, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F)
+but is expected to have type
+ forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)], Differentiable.{u3, max u2 u1, u2} π _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u1} E F)
+Case conversion may be inaccurate. Consider using '#align differentiable_fst differentiable_fstβ'. -/
theorem differentiable_fst : Differentiable π (Prod.fst : E Γ F β E) := fun x =>
differentiableAt_fst
#align differentiable_fst differentiable_fst
+/- warning: differentiable.fst -> Differentiable.fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> (Prod.{u3, u4} F G)}, (Differentiable.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ) -> (Differentiable.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)))
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> (Prod.{u2, u1} F G)}, (Differentiable.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ) -> (Differentiable.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)))
+Case conversion may be inaccurate. Consider using '#align differentiable.fst Differentiable.fstβ'. -/
@[simp]
protected theorem Differentiable.fst (h : Differentiable π fβ) :
Differentiable π fun x => (fβ x).1 :=
differentiable_fst.comp h
#align differentiable.fst Differentiable.fst
+#print differentiableWithinAt_fst /-
theorem differentiableWithinAt_fst {s : Set (E Γ F)} : DifferentiableWithinAt π Prod.fst s p :=
differentiableAt_fst.DifferentiableWithinAt
#align differentiable_within_at_fst differentiableWithinAt_fst
+-/
+/- warning: differentiable_within_at.fst -> DifferentiableWithinAt.fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s x) -> (DifferentiableWithinAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) s x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s x) -> (DifferentiableWithinAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.fst DifferentiableWithinAt.fstβ'. -/
protected theorem DifferentiableWithinAt.fst (h : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x => (fβ x).1) s x :=
differentiableAt_fst.comp_differentiableWithinAt x h
#align differentiable_within_at.fst DifferentiableWithinAt.fst
+#print differentiableOn_fst /-
theorem differentiableOn_fst {s : Set (E Γ F)} : DifferentiableOn π Prod.fst s :=
differentiable_fst.DifferentiableOn
#align differentiable_on_fst differentiableOn_fst
+-/
+/- warning: differentiable_on.fst -> DifferentiableOn.fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableOn.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s) -> (DifferentiableOn.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) s)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableOn.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s) -> (DifferentiableOn.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.fst DifferentiableOn.fstβ'. -/
protected theorem DifferentiableOn.fst (h : DifferentiableOn π fβ s) :
DifferentiableOn π (fun x => (fβ x).1) s :=
differentiable_fst.comp_differentiableOn h
#align differentiable_on.fst DifferentiableOn.fst
+/- warning: fderiv_fst -> fderiv_fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, Eq.{max (succ (max u2 u3)) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, max u2 u3} π (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderiv.{u1, max u2 u3, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) p) (ContinuousLinearMap.fst.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))
+but is expected to have type
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u3, u2} E F}, Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u3} π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u3, u2} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u3, u2} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u3, u2} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u1, max u2 u3} π (Prod.{u3, u2} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u3, u2} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3)) (fderiv.{u1, max u2 u3, u3} π _inst_1 (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u3, u2} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u3, u2} E F) p) (ContinuousLinearMap.fst.{u1, u3, u2} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))
+Case conversion may be inaccurate. Consider using '#align fderiv_fst fderiv_fstβ'. -/
theorem fderiv_fst : fderiv π Prod.fst p = fst π E F :=
hasFDerivAt_fst.fderiv
#align fderiv_fst fderiv_fst
+/- warning: fderiv.fst -> fderiv.fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ x)))
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ x) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderiv.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ x)))
+Case conversion may be inaccurate. Consider using '#align fderiv.fst fderiv.fstβ'. -/
theorem fderiv.fst (h : DifferentiableAt π fβ x) :
fderiv π (fun x => (fβ x).1) x = (fst π F G).comp (fderiv π fβ x) :=
h.HasFDerivAt.fst.fderiv
#align fderiv.fst fderiv.fst
+/- warning: fderiv_within_fst -> fderivWithin_fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u2 u3} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.addCommMonoid.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Prod.topologicalSpace.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ (max u2 u3)) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, max u2 u3} π (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderivWithin.{u1, max u2 u3, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) s p) (ContinuousLinearMap.fst.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
+but is expected to have type
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u3 u2} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.instAddCommMonoidSum.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π E F (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (instTopologicalSpaceProd.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, max u3 u2, u2} π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u3 u2} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u3 u2} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, max u3 u2} π (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)) (fderivWithin.{u1, max u3 u2, u2} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) E _inst_2 _inst_3 (Prod.fst.{u2, u3} E F) s p) (ContinuousLinearMap.fst.{u1, u2, u3} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_fst fderivWithin_fstβ'. -/
theorem fderivWithin_fst {s : Set (E Γ F)} (hs : UniqueDiffWithinAt π s p) :
fderivWithin π Prod.fst s p = fst π E F :=
hasFDerivWithinAt_fst.fderivWithin hs
#align fderiv_within_fst fderivWithin_fst
+/- warning: fderiv_within.fst -> fderivWithin.fst is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)}, (UniqueDiffWithinAt.{u1, u2} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s x) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u3, u4} F G (fβ x)) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u3} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.fst.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s x)))
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)}, (UniqueDiffWithinAt.{u4, u3} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s x) -> (Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderivWithin.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 (fun (x : E) => Prod.fst.{u2, u1} F G (fβ x)) s x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u2} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.fst.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderivWithin.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s x)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within.fst fderivWithin.fstβ'. -/
theorem fderivWithin.fst (hs : UniqueDiffWithinAt π s x) (h : DifferentiableWithinAt π fβ s x) :
fderivWithin π (fun x => (fβ x).1) s x = (fst π F G).comp (fderivWithin π fβ s x) :=
h.HasFDerivWithinAt.fst.fderivWithin hs
@@ -236,96 +412,200 @@ section Snd
variable {fβ : E β F Γ G} {fβ' : E βL[π] F Γ G} {p : E Γ F}
+/- warning: has_strict_fderiv_at_snd -> hasStrictFDerivAt_snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasStrictFDerivAt.{u1, max u2 u3, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) (ContinuousLinearMap.snd.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
+but is expected to have type
+ forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasStrictFDerivAt.{u3, max u2 u1, u1} π _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u1} E F) (ContinuousLinearMap.snd.{u3, u2, u1} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_snd hasStrictFDerivAt_sndβ'. -/
theorem hasStrictFDerivAt_snd : HasStrictFDerivAt (@Prod.snd E F) (snd π E F) p :=
(snd π E F).HasStrictFDerivAt
#align has_strict_fderiv_at_snd hasStrictFDerivAt_snd
+/- warning: has_strict_fderiv_at.snd -> HasStrictFDerivAt.snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' x) -> (HasStrictFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasStrictFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' x) -> (HasStrictFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.snd HasStrictFDerivAt.sndβ'. -/
protected theorem HasStrictFDerivAt.snd (h : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
hasStrictFDerivAt_snd.comp x h
#align has_strict_fderiv_at.snd HasStrictFDerivAt.snd
+#print hasFDerivAtFilter_snd /-
theorem hasFDerivAtFilter_snd {L : Filter (E Γ F)} :
HasFDerivAtFilter (@Prod.snd E F) (snd π E F) p L :=
(snd π E F).HasFDerivAtFilter
#align has_fderiv_at_filter_snd hasFDerivAtFilter_snd
+-/
+/- warning: has_fderiv_at_filter.snd -> HasFDerivAtFilter.snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {L : Filter.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' x L) -> (HasFDerivAtFilter.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') x L)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {L : Filter.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAtFilter.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' x L) -> (HasFDerivAtFilter.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter.snd HasFDerivAtFilter.sndβ'. -/
protected theorem HasFDerivAtFilter.snd (h : HasFDerivAtFilter fβ fβ' x L) :
HasFDerivAtFilter (fun x => (fβ x).2) ((snd π F G).comp fβ') x L :=
hasFDerivAtFilter_snd.comp x h tendsto_map
#align has_fderiv_at_filter.snd HasFDerivAtFilter.snd
+/- warning: has_fderiv_at_snd -> hasFDerivAt_snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, HasFDerivAt.{u1, max u2 u3, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) (ContinuousLinearMap.snd.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) p
+but is expected to have type
+ forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)] {p : Prod.{u2, u1} E F}, HasFDerivAt.{u3, max u2 u1, u1} π _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u1} E F) (ContinuousLinearMap.snd.{u3, u2, u1} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_4)) (NormedSpace.toModule.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5)) p
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_snd hasFDerivAt_sndβ'. -/
theorem hasFDerivAt_snd : HasFDerivAt (@Prod.snd E F) (snd π E F) p :=
hasFDerivAtFilter_snd
#align has_fderiv_at_snd hasFDerivAt_snd
+/- warning: has_fderiv_at.snd -> HasFDerivAt.snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' x) -> (HasFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' x) -> (HasFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.snd HasFDerivAt.sndβ'. -/
protected theorem HasFDerivAt.snd (h : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
h.snd
#align has_fderiv_at.snd HasFDerivAt.snd
+#print hasFDerivWithinAt_snd /-
theorem hasFDerivWithinAt_snd {s : Set (E Γ F)} :
HasFDerivWithinAt (@Prod.snd E F) (snd π E F) s p :=
hasFDerivAtFilter_snd
#align has_fderiv_within_at_snd hasFDerivWithinAt_snd
+-/
+/- warning: has_fderiv_within_at.snd -> HasFDerivWithinAt.snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)} {fβ' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ fβ' s x) -> (HasFDerivWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) fβ') s x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)} {fβ' : ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7))}, (HasFDerivWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ fβ' s x) -> (HasFDerivWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) fβ') s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at.snd HasFDerivWithinAt.sndβ'. -/
protected theorem HasFDerivWithinAt.snd (h : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x).2) ((snd π F G).comp fβ') s x :=
h.snd
#align has_fderiv_within_at.snd HasFDerivWithinAt.snd
+/- warning: differentiable_at_snd -> differentiableAt_snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, DifferentiableAt.{u1, max u2 u3, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) p
+but is expected to have type
+ forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u3, u2} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u1, u2} E F}, DifferentiableAt.{u3, max u2 u1, u2} π _inst_1 (Prod.{u1, u2} E F) (Prod.normedAddCommGroup.{u1, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u1, u2} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u1, u2} E F) p
+Case conversion may be inaccurate. Consider using '#align differentiable_at_snd differentiableAt_sndβ'. -/
theorem differentiableAt_snd : DifferentiableAt π Prod.snd p :=
hasFDerivAt_snd.DifferentiableAt
#align differentiable_at_snd differentiableAt_snd
+/- warning: differentiable_at.snd -> DifferentiableAt.snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ x) -> (DifferentiableAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ x) -> (DifferentiableAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.snd DifferentiableAt.sndβ'. -/
@[simp]
protected theorem DifferentiableAt.snd (h : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x => (fβ x).2) x :=
differentiableAt_snd.comp x h
#align differentiable_at.snd DifferentiableAt.snd
+/- warning: differentiable_snd -> differentiable_snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)], Differentiable.{u1, max u2 u3, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F)
+but is expected to have type
+ forall {π : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u3} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u3, u2} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u1}} [_inst_4 : NormedAddCommGroup.{u1} F] [_inst_5 : NormedSpace.{u3, u1} π F (NontriviallyNormedField.toNormedField.{u3} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4)], Differentiable.{u3, max u2 u1, u1} π _inst_1 (Prod.{u2, u1} E F) (Prod.normedAddCommGroup.{u2, u1} E F _inst_2 _inst_4) (Prod.normedSpace.{u3, u2, u1} π (NontriviallyNormedField.toNormedField.{u3} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u1} E F)
+Case conversion may be inaccurate. Consider using '#align differentiable_snd differentiable_sndβ'. -/
theorem differentiable_snd : Differentiable π (Prod.snd : E Γ F β F) := fun x =>
differentiableAt_snd
#align differentiable_snd differentiable_snd
+/- warning: differentiable.snd -> Differentiable.snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {fβ : E -> (Prod.{u3, u4} F G)}, (Differentiable.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ) -> (Differentiable.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)))
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {fβ : E -> (Prod.{u2, u1} F G)}, (Differentiable.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ) -> (Differentiable.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)))
+Case conversion may be inaccurate. Consider using '#align differentiable.snd Differentiable.sndβ'. -/
@[simp]
protected theorem Differentiable.snd (h : Differentiable π fβ) :
Differentiable π fun x => (fβ x).2 :=
differentiable_snd.comp h
#align differentiable.snd Differentiable.snd
+#print differentiableWithinAt_snd /-
theorem differentiableWithinAt_snd {s : Set (E Γ F)} : DifferentiableWithinAt π Prod.snd s p :=
differentiableAt_snd.DifferentiableWithinAt
#align differentiable_within_at_snd differentiableWithinAt_snd
+-/
+/- warning: differentiable_within_at.snd -> DifferentiableWithinAt.snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s x) -> (DifferentiableWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) s x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s x) -> (DifferentiableWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at.snd DifferentiableWithinAt.sndβ'. -/
protected theorem DifferentiableWithinAt.snd (h : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x => (fβ x).2) s x :=
differentiableAt_snd.comp_differentiableWithinAt x h
#align differentiable_within_at.snd DifferentiableWithinAt.snd
+#print differentiableOn_snd /-
theorem differentiableOn_snd {s : Set (E Γ F)} : DifferentiableOn π Prod.snd s :=
differentiable_snd.DifferentiableOn
#align differentiable_on_snd differentiableOn_snd
+-/
+/- warning: differentiable_on.snd -> DifferentiableOn.snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableOn.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s) -> (DifferentiableOn.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) s)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableOn.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s) -> (DifferentiableOn.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on.snd DifferentiableOn.sndβ'. -/
protected theorem DifferentiableOn.snd (h : DifferentiableOn π fβ s) :
DifferentiableOn π (fun x => (fβ x).2) s :=
differentiable_snd.comp_differentiableOn h
#align differentiable_on.snd DifferentiableOn.snd
+/- warning: fderiv_snd -> fderiv_snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F}, Eq.{max (succ (max u2 u3)) (succ u3)} (ContinuousLinearMap.{u1, u1, max u2 u3, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, max u2 u3} π (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderiv.{u1, max u2 u3, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) p) (ContinuousLinearMap.snd.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5))
+but is expected to have type
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u1, u3} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u1, u2} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {p : Prod.{u3, u2} E F}, Eq.{max (succ u3) (succ u2)} (ContinuousLinearMap.{u1, u1, max u2 u3, u2} π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u3, u2} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u3, u2} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u3, u2} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u3, u2} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, max u2 u3} π (Prod.{u3, u2} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u3, u2} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u2} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5)) (fderiv.{u1, max u2 u3, u2} π _inst_1 (Prod.{u3, u2} E F) (Prod.normedAddCommGroup.{u3, u2} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u3, u2} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u3, u2} E F) p) (ContinuousLinearMap.snd.{u1, u3, u2} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (NormedSpace.toModule.{u1, u3} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u2} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5))
+Case conversion may be inaccurate. Consider using '#align fderiv_snd fderiv_sndβ'. -/
theorem fderiv_snd : fderiv π Prod.snd p = snd π E F :=
hasFDerivAt_snd.fderiv
#align fderiv_snd fderiv_snd
+/- warning: fderiv.snd -> fderiv.snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {fβ : E -> (Prod.{u3, u4} F G)}, (DifferentiableAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderiv.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ x)))
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {fβ : E -> (Prod.{u2, u1} F G)}, (DifferentiableAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderiv.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderiv.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ x)))
+Case conversion may be inaccurate. Consider using '#align fderiv.snd fderiv.sndβ'. -/
theorem fderiv.snd (h : DifferentiableAt π fβ x) :
fderiv π (fun x => (fβ x).2) x = (snd π F G).comp (fderiv π fβ x) :=
h.HasFDerivAt.snd.fderiv
#align fderiv.snd fderiv.snd
+/- warning: fderiv_within_snd -> fderivWithin_snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u2 u3} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.addCommMonoid.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π E F (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (Prod.topologicalSpace.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ (max u2 u3)) (succ u3)} (ContinuousLinearMap.{u1, u1, max u2 u3, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u2 u3} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u2 u3} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u2 u3} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, max u2 u3} π (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u2 u3} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, max u2 u3, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) s p) (ContinuousLinearMap.snd.{u1, u2, u3} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
+but is expected to have type
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {p : Prod.{u2, u3} E F} {s : Set.{max u3 u2} (Prod.{u2, u3} E F)}, (UniqueDiffWithinAt.{u1, max u2 u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.instAddCommMonoidSum.{u2, u3} E F (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4))) (Prod.module.{u1, u2, u3} π E F (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (instTopologicalSpaceProd.{u2, u3} E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4))))) s p) -> (Eq.{max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, max u3 u2, u3} π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (Prod.{u2, u3} E F) (UniformSpace.toTopologicalSpace.{max u3 u2} (Prod.{u2, u3} E F) (PseudoMetricSpace.toUniformSpace.{max u3 u2} (Prod.{u2, u3} E F) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))))) (AddCommGroup.toAddCommMonoid.{max u3 u2} (Prod.{u2, u3} E F) (NormedAddCommGroup.toAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, max u3 u2} π (Prod.{u2, u3} E F) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u2} (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4)) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)) (fderivWithin.{u1, max u3 u2, u3} π _inst_1 (Prod.{u2, u3} E F) (Prod.normedAddCommGroup.{u2, u3} E F _inst_2 _inst_4) (Prod.normedSpace.{u1, u2, u3} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) F _inst_4 _inst_5 (Prod.snd.{u2, u3} E F) s p) (ContinuousLinearMap.snd.{u1, u2, u3} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_snd fderivWithin_sndβ'. -/
theorem fderivWithin_snd {s : Set (E Γ F)} (hs : UniqueDiffWithinAt π s p) :
fderivWithin π Prod.snd s p = snd π E F :=
hasFDerivWithinAt_snd.fderivWithin hs
#align fderiv_within_snd fderivWithin_snd
+/- warning: fderiv_within.snd -> fderivWithin.snd is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {x : E} {s : Set.{u2} E} {fβ : E -> (Prod.{u3, u4} F G)}, (UniqueDiffWithinAt.{u1, u2} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s x) -> (Eq.{max (succ u2) (succ u4)} (ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u3, u4} F G (fβ x)) s x) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (Prod.{u3, u4} F G) (Prod.topologicalSpace.{u3, u4} F G (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6))))) (Prod.addCommMonoid.{u3, u4} F G (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Prod.module.{u1, u3, u4} π F G (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.snd.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7)) (fderivWithin.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (Prod.{u3, u4} F G) (Prod.normedAddCommGroup.{u3, u4} F G _inst_4 _inst_6) (Prod.normedSpace.{u1, u3, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) fβ s x)))
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {F : Type.{u2}} [_inst_4 : NormedAddCommGroup.{u2} F] [_inst_5 : NormedSpace.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)] {G : Type.{u1}} [_inst_6 : NormedAddCommGroup.{u1} G] [_inst_7 : NormedSpace.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)] {x : E} {s : Set.{u3} E} {fβ : E -> (Prod.{u2, u1} F G)}, (UniqueDiffWithinAt.{u4, u3} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (DifferentiableWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s x) -> (Eq.{max (succ u3) (succ u1)} (ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderivWithin.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 G _inst_6 _inst_7 (fun (x : E) => Prod.snd.{u2, u1} F G (fβ x)) s x) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (Prod.{u2, u1} F G) (instTopologicalSpaceProd.{u2, u1} F G (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6))))) (Prod.instAddCommMonoidSum.{u2, u1} F G (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6))) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Prod.module.{u4, u2, u1} π F G (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.snd.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u1} G (PseudoMetricSpace.toUniformSpace.{u1} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u1} G (NormedAddCommGroup.toAddCommGroup.{u1} G _inst_6)) (NormedSpace.toModule.{u4, u2} π F (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5) (NormedSpace.toModule.{u4, u1} π G (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7)) (fderivWithin.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (Prod.{u2, u1} F G) (Prod.normedAddCommGroup.{u2, u1} F G _inst_4 _inst_6) (Prod.normedSpace.{u4, u2, u1} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_4) _inst_5 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G _inst_6) _inst_7) fβ s x)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within.snd fderivWithin.sndβ'. -/
theorem fderivWithin.snd (hs : UniqueDiffWithinAt π s x) (h : DifferentiableWithinAt π fβ s x) :
fderivWithin π (fun x => (fβ x).2) s x = (snd π F G).comp (fderivWithin π fβ s x) :=
h.HasFDerivWithinAt.snd.fderivWithin hs
@@ -337,16 +617,34 @@ section Prod_map
variable {fβ : G β G'} {fβ' : G βL[π] G'} {y : G} (p : E Γ G)
+/- warning: has_strict_fderiv_at.prod_map -> HasStrictFDerivAt.prodMap is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ : G -> G'} {fβ' : ContinuousLinearMap.{u1, u1, u4, u5} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9)} (p : Prod.{u2, u4} E G), (HasStrictFDerivAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u2, u4} E G p)) -> (HasStrictFDerivAt.{u1, u4, u5} π _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ fβ' (Prod.snd.{u2, u4} E G p)) -> (HasStrictFDerivAt.{u1, max u2 u4, max u3 u5} π _inst_1 (Prod.{u2, u4} E G) (Prod.normedAddCommGroup.{u2, u4} E G _inst_2 _inst_6) (Prod.normedSpace.{u1, u2, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (Prod.{u3, u5} F G') (Prod.normedAddCommGroup.{u3, u5} F G' _inst_4 _inst_8) (Prod.normedSpace.{u1, u3, u5} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (Prod.map.{u2, u3, u4, u5} E F G G' f fβ) (ContinuousLinearMap.prodMap.{u1, u2, u3, u4, u5} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) f' fβ') p)
+but is expected to have type
+ forall {π : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u5} π] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {G' : Type.{u1}} [_inst_8 : NormedAddCommGroup.{u1} G'] [_inst_9 : NormedSpace.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u5, u5, u4, u3} π π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (RingHom.id.{u5} π (Semiring.toNonAssocSemiring.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ : G -> G'} {fβ' : ContinuousLinearMap.{u5, u5, u2, u1} π π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (RingHom.id.{u5} π (Semiring.toNonAssocSemiring.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoMetricSpace.toUniformSpace.{u1} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9)} (p : Prod.{u4, u2} E G), (HasStrictFDerivAt.{u5, u4, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u4, u2} E G p)) -> (HasStrictFDerivAt.{u5, u2, u1} π _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ fβ' (Prod.snd.{u4, u2} E G p)) -> (HasStrictFDerivAt.{u5, max u2 u4, max u1 u3} π _inst_1 (Prod.{u4, u2} E G) (Prod.normedAddCommGroup.{u4, u2} E G _inst_2 _inst_6) (Prod.normedSpace.{u5, u4, u2} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (Prod.{u3, u1} F G') (Prod.normedAddCommGroup.{u3, u1} F G' _inst_4 _inst_8) (Prod.normedSpace.{u5, u3, u1} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) (Prod.map.{u4, u3, u2, u1} E F G G' f fβ) (ContinuousLinearMap.prodMap.{u5, u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoEMetricSpace.toUniformSpace.{u2} G (PseudoMetricSpace.toPseudoEMetricSpace.{u2} G (SeminormedAddGroup.toPseudoMetricSpace.{u2} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoEMetricSpace.toUniformSpace.{u1} G' (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G' (SeminormedAddGroup.toPseudoMetricSpace.{u1} G' (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) f' fβ') p)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMapβ'. -/
protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
(hfβ : HasStrictFDerivAt fβ fβ' p.2) : HasStrictFDerivAt (Prod.map f fβ) (f'.Prod_map fβ') p :=
(hf.comp p hasStrictFDerivAt_fst).Prod (hfβ.comp p hasStrictFDerivAt_snd)
#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMap
+/- warning: has_fderiv_at.prod_map -> HasFDerivAt.prodMap is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u1, u1, u2, u3} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ : G -> G'} {fβ' : ContinuousLinearMap.{u1, u1, u4, u5} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9)} (p : Prod.{u2, u4} E G), (HasFDerivAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u2, u4} E G p)) -> (HasFDerivAt.{u1, u4, u5} π _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ fβ' (Prod.snd.{u2, u4} E G p)) -> (HasFDerivAt.{u1, max u2 u4, max u3 u5} π _inst_1 (Prod.{u2, u4} E G) (Prod.normedAddCommGroup.{u2, u4} E G _inst_2 _inst_6) (Prod.normedSpace.{u1, u2, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (Prod.{u3, u5} F G') (Prod.normedAddCommGroup.{u3, u5} F G' _inst_4 _inst_8) (Prod.normedSpace.{u1, u3, u5} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (Prod.map.{u2, u3, u4, u5} E F G G' f fβ) (ContinuousLinearMap.prodMap.{u1, u2, u3, u4, u5} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u4} G (PseudoMetricSpace.toUniformSpace.{u4} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u4} G (NormedAddCommGroup.toAddCommGroup.{u4} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u5} G' (PseudoMetricSpace.toUniformSpace.{u5} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u5} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u5} G' (NormedAddCommGroup.toAddCommGroup.{u5} G' _inst_8)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (NormedSpace.toModule.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) f' fβ') p)
+but is expected to have type
+ forall {π : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u5} π] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {G' : Type.{u1}} [_inst_8 : NormedAddCommGroup.{u1} G'] [_inst_9 : NormedSpace.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)] {f : E -> F} {f' : ContinuousLinearMap.{u5, u5, u4, u3} π π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (RingHom.id.{u5} π (Semiring.toNonAssocSemiring.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) (NormedSpace.toModule.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5)} {fβ : G -> G'} {fβ' : ContinuousLinearMap.{u5, u5, u2, u1} π π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) (RingHom.id.{u5} π (Semiring.toNonAssocSemiring.{u5} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))))) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoMetricSpace.toUniformSpace.{u2} G (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoMetricSpace.toUniformSpace.{u1} G' (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9)} (p : Prod.{u4, u2} E G), (HasFDerivAt.{u5, u4, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f f' (Prod.fst.{u4, u2} E G p)) -> (HasFDerivAt.{u5, u2, u1} π _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ fβ' (Prod.snd.{u4, u2} E G p)) -> (HasFDerivAt.{u5, max u2 u4, max u1 u3} π _inst_1 (Prod.{u4, u2} E G) (Prod.normedAddCommGroup.{u4, u2} E G _inst_2 _inst_6) (Prod.normedSpace.{u5, u4, u2} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (Prod.{u3, u1} F G') (Prod.normedAddCommGroup.{u3, u1} F G' _inst_4 _inst_8) (Prod.normedSpace.{u5, u3, u1} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) (Prod.map.{u4, u3, u2, u1} E F G G' f fβ) (ContinuousLinearMap.prodMap.{u5, u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u5} π (Semifield.toDivisionSemiring.{u5} π (Field.toSemifield.{u5} π (NormedField.toField.{u5} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u4} E (NormedAddCommGroup.toAddCommGroup.{u4} E _inst_2)) F (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_4)) G (UniformSpace.toTopologicalSpace.{u2} G (PseudoEMetricSpace.toUniformSpace.{u2} G (PseudoMetricSpace.toPseudoEMetricSpace.{u2} G (SeminormedAddGroup.toPseudoMetricSpace.{u2} G (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)))))) (AddCommGroup.toAddCommMonoid.{u2} G (NormedAddCommGroup.toAddCommGroup.{u2} G _inst_6)) G' (UniformSpace.toTopologicalSpace.{u1} G' (PseudoEMetricSpace.toUniformSpace.{u1} G' (PseudoMetricSpace.toPseudoEMetricSpace.{u1} G' (SeminormedAddGroup.toPseudoMetricSpace.{u1} G' (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)))))) (AddCommGroup.toAddCommMonoid.{u1} G' (NormedAddCommGroup.toAddCommGroup.{u1} G' _inst_8)) (NormedSpace.toModule.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3) (NormedSpace.toModule.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5) (NormedSpace.toModule.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (NormedSpace.toModule.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) f' fβ') p)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at.prod_map HasFDerivAt.prodMapβ'. -/
protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ : HasFDerivAt fβ fβ' p.2) :
HasFDerivAt (Prod.map f fβ) (f'.Prod_map fβ') p :=
(hf.comp p hasFDerivAt_fst).Prod (hfβ.comp p hasFDerivAt_snd)
#align has_fderiv_at.prod_map HasFDerivAt.prodMap
+/- warning: differentiable_at.prod_map -> DifferentiableAt.prod_map is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u1, u3} π F (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u4}} [_inst_6 : NormedAddCommGroup.{u4} G] [_inst_7 : NormedSpace.{u1, u4} π G (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6)] {G' : Type.{u5}} [_inst_8 : NormedAddCommGroup.{u5} G'] [_inst_9 : NormedSpace.{u1, u5} π G' (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8)] {f : E -> F} {fβ : G -> G'} (p : Prod.{u2, u4} E G), (DifferentiableAt.{u1, u2, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Prod.fst.{u2, u4} E G p)) -> (DifferentiableAt.{u1, u4, u5} π _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ (Prod.snd.{u2, u4} E G p)) -> (DifferentiableAt.{u1, max u2 u4, max u3 u5} π _inst_1 (Prod.{u2, u4} E G) (Prod.normedAddCommGroup.{u2, u4} E G _inst_2 _inst_6) (Prod.normedSpace.{u1, u2, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} G _inst_6) _inst_7) (Prod.{u3, u5} F G') (Prod.normedAddCommGroup.{u3, u5} F G' _inst_4 _inst_8) (Prod.normedSpace.{u1, u3, u5} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u5} G' _inst_8) _inst_9) (fun (p : Prod.{u2, u4} E G) => Prod.mk.{u3, u5} F G' (f (Prod.fst.{u2, u4} E G p)) (fβ (Prod.snd.{u2, u4} E G p))) p)
+but is expected to have type
+ forall {π : Type.{u5}} [_inst_1 : NontriviallyNormedField.{u5} π] {E : Type.{u4}} [_inst_2 : NormedAddCommGroup.{u4} E] [_inst_3 : NormedSpace.{u5, u4} π E (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2)] {F : Type.{u3}} [_inst_4 : NormedAddCommGroup.{u3} F] [_inst_5 : NormedSpace.{u5, u3} π F (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4)] {G : Type.{u2}} [_inst_6 : NormedAddCommGroup.{u2} G] [_inst_7 : NormedSpace.{u5, u2} π G (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6)] {G' : Type.{u1}} [_inst_8 : NormedAddCommGroup.{u1} G'] [_inst_9 : NormedSpace.{u5, u1} π G' (NontriviallyNormedField.toNormedField.{u5} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8)] {f : E -> F} {fβ : G -> G'} (p : Prod.{u4, u2} E G), (DifferentiableAt.{u5, u4, u3} π _inst_1 E _inst_2 _inst_3 F _inst_4 _inst_5 f (Prod.fst.{u4, u2} E G p)) -> (DifferentiableAt.{u5, u2, u1} π _inst_1 G _inst_6 _inst_7 G' _inst_8 _inst_9 fβ (Prod.snd.{u4, u2} E G p)) -> (DifferentiableAt.{u5, max u4 u2, max u1 u3} π _inst_1 (Prod.{u4, u2} E G) (Prod.normedAddCommGroup.{u4, u2} E G _inst_2 _inst_6) (Prod.normedSpace.{u5, u4, u2} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} E _inst_2) _inst_3 G (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} G _inst_6) _inst_7) (Prod.{u3, u1} F G') (Prod.normedAddCommGroup.{u3, u1} F G' _inst_4 _inst_8) (Prod.normedSpace.{u5, u3, u1} π (NontriviallyNormedField.toNormedField.{u5} π _inst_1) F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_4) _inst_5 G' (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} G' _inst_8) _inst_9) (fun (p : Prod.{u4, u2} E G) => Prod.mk.{u3, u1} F G' (f (Prod.fst.{u4, u2} E G p)) (fβ (Prod.snd.{u4, u2} E G p))) p)
+Case conversion may be inaccurate. Consider using '#align differentiable_at.prod_map DifferentiableAt.prod_mapβ'. -/
@[simp]
protected theorem DifferentiableAt.prod_map (hf : DifferentiableAt π f p.1)
(hfβ : DifferentiableAt π fβ p.2) : DifferentiableAt π (fun p : E Γ G => (f p.1, fβ p.2)) p :=
@@ -376,6 +674,12 @@ variable {ΞΉ : Type _} [Fintype ΞΉ] {F' : ΞΉ β Type _} [β i, NormedAddCommGr
[β i, NormedSpace π (F' i)] {Ο : β i, E β F' i} {Ο' : β i, E βL[π] F' i} {Ξ¦ : E β β i, F' i}
{Ξ¦' : E βL[π] β i, F' i}
+/- warning: has_strict_fderiv_at_pi' -> hasStrictFDerivAt_pi' is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasStrictFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasStrictFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasStrictFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasStrictFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'β'. -/
@[simp]
theorem hasStrictFDerivAt_pi' :
HasStrictFDerivAt Ξ¦ Ξ¦' x β β i, HasStrictFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
@@ -384,6 +688,12 @@ theorem hasStrictFDerivAt_pi' :
exact is_o_pi
#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
+/- warning: has_strict_fderiv_at_pi -> hasStrictFDerivAt_pi is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasStrictFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') x) (forall (i : ΞΉ), HasStrictFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasStrictFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') x) (forall (i : ΞΉ), HasStrictFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) x)
+Case conversion may be inaccurate. Consider using '#align has_strict_fderiv_at_pi hasStrictFDerivAt_piβ'. -/
@[simp]
theorem hasStrictFDerivAt_pi :
HasStrictFDerivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
@@ -391,6 +701,12 @@ theorem hasStrictFDerivAt_pi :
hasStrictFDerivAt_pi'
#align has_strict_fderiv_at_pi hasStrictFDerivAt_pi
+/- warning: has_fderiv_at_filter_pi' -> hasFDerivAtFilter_pi' is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {L : Filter.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasFDerivAtFilter.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') x L)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {L : Filter.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasFDerivAtFilter.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'β'. -/
@[simp]
theorem hasFDerivAtFilter_pi' :
HasFDerivAtFilter Ξ¦ Ξ¦' x L β β i, HasFDerivAtFilter (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x L :=
@@ -399,36 +715,72 @@ theorem hasFDerivAtFilter_pi' :
exact is_o_pi
#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'
+/- warning: has_fderiv_at_filter_pi -> hasFDerivAtFilter_pi is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {L : Filter.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAtFilter.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) x L)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {L : Filter.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAtFilter.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') x L) (forall (i : ΞΉ), HasFDerivAtFilter.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) x L)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_filter_pi hasFDerivAtFilter_piβ'. -/
theorem hasFDerivAtFilter_pi :
HasFDerivAtFilter (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x L β
β i, HasFDerivAtFilter (Ο i) (Ο' i) x L :=
hasFDerivAtFilter_pi'
#align has_fderiv_at_filter_pi hasFDerivAtFilter_pi
+/- warning: has_fderiv_at_pi' -> hasFDerivAt_pi' is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' x) (forall (i : ΞΉ), HasFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_pi' hasFDerivAt_pi'β'. -/
@[simp]
theorem hasFDerivAt_pi' :
HasFDerivAt Ξ¦ Ξ¦' x β β i, HasFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
hasFDerivAtFilter_pi'
#align has_fderiv_at_pi' hasFDerivAt_pi'
+/- warning: has_fderiv_at_pi -> hasFDerivAt_pi is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') x) (forall (i : ΞΉ), HasFDerivAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') x) (forall (i : ΞΉ), HasFDerivAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_at_pi hasFDerivAt_piβ'. -/
theorem hasFDerivAt_pi :
HasFDerivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
β i, HasFDerivAt (Ο i) (Ο' i) x :=
hasFDerivAtFilter_pi
#align has_fderiv_at_pi hasFDerivAt_pi
+/- warning: has_fderiv_within_at_pi' -> hasFDerivWithinAt_pi' is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)))}, Iff (HasFDerivWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u1, u1, u1, u2, max u3 u4, u4} π π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (Pi.module.{u3, u4, u1} ΞΉ (fun (i : ΞΉ) => F' i) π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i))) (NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) (RingHomCompTriple.right_ids.{u1, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))))) (ContinuousLinearMap.proj.{u1, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' a) (PseudoMetricSpace.toUniformSpace.{u4} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule'.{u1, u4} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (F' i) (_inst_11 i) (_inst_12 i)) i) Ξ¦') s x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)} {Ξ¦' : ContinuousLinearMap.{u4, u4, u3, max u2 u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)))}, Iff (HasFDerivWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ Ξ¦' s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) (ContinuousLinearMap.comp.{u4, u4, u4, u3, max u2 u1, u1} π π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (Pi.topologicalSpace.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a)))))) (Pi.addCommMonoid.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i)))) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (Pi.module.{u2, u1, u4} ΞΉ (fun (i : ΞΉ) => F' i) π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) (RingHomCompTriple.ids.{u4, u4} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1)))))))) (ContinuousLinearMap.proj.{u4, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) ΞΉ (fun (i : ΞΉ) => F' i) (fun (a : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' a) (PseudoMetricSpace.toUniformSpace.{u1} (F' a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' a) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' a) (_inst_11 a))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) i) Ξ¦') s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'β'. -/
@[simp]
theorem hasFDerivWithinAt_pi' :
HasFDerivWithinAt Ξ¦ Ξ¦' s x β β i, HasFDerivWithinAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') s x :=
hasFDerivAtFilter_pi'
#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'
+/- warning: has_fderiv_within_at_pi -> hasFDerivWithinAt_pi is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u1, u1, u2, u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) s x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)} {Ο' : forall (i : ΞΉ), ContinuousLinearMap.{u4, u4, u3, u1} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (F' i) (UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i))}, Iff (HasFDerivWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) (ContinuousLinearMap.pi.{u4, u3, u2, u1} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u1} (F' i) (PseudoMetricSpace.toUniformSpace.{u1} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u1} (F' i) (NormedAddCommGroup.toAddCommGroup.{u1} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i)) (_inst_12 i)) Ο') s x) (forall (i : ΞΉ), HasFDerivWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) (Ο' i) s x)
+Case conversion may be inaccurate. Consider using '#align has_fderiv_within_at_pi hasFDerivWithinAt_piβ'. -/
theorem hasFDerivWithinAt_pi :
HasFDerivWithinAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') s x β
β i, HasFDerivWithinAt (Ο i) (Ο' i) s x :=
hasFDerivAtFilter_pi
#align has_fderiv_within_at_pi hasFDerivWithinAt_pi
+/- warning: differentiable_within_at_pi -> differentiableWithinAt_pi is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableWithinAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s x) (forall (i : ΞΉ), DifferentiableWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableWithinAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s x) (forall (i : ΞΉ), DifferentiableWithinAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s x)
+Case conversion may be inaccurate. Consider using '#align differentiable_within_at_pi differentiableWithinAt_piβ'. -/
@[simp]
theorem differentiableWithinAt_pi :
DifferentiableWithinAt π Ξ¦ s x β β i, DifferentiableWithinAt π (fun x => Ξ¦ x i) s x :=
@@ -436,21 +788,45 @@ theorem differentiableWithinAt_pi :
(hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).DifferentiableWithinAtβ©
#align differentiable_within_at_pi differentiableWithinAt_pi
+/- warning: differentiable_at_pi -> differentiableAt_pi is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableAt.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ x) (forall (i : ΞΉ), DifferentiableAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) x)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableAt.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ x) (forall (i : ΞΉ), DifferentiableAt.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) x)
+Case conversion may be inaccurate. Consider using '#align differentiable_at_pi differentiableAt_piβ'. -/
@[simp]
theorem differentiableAt_pi : DifferentiableAt π Ξ¦ x β β i, DifferentiableAt π (fun x => Ξ¦ x i) x :=
β¨fun h i => (hasFDerivAt_pi'.1 h.HasFDerivAt i).DifferentiableAt, fun h =>
(hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).DifferentiableAtβ©
#align differentiable_at_pi differentiableAt_pi
+/- warning: differentiable_on_pi -> differentiableOn_pi is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableOn.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s) (forall (i : ΞΉ), DifferentiableOn.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s)
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {s : Set.{u3} E} {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (DifferentiableOn.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦ s) (forall (i : ΞΉ), DifferentiableOn.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i) s)
+Case conversion may be inaccurate. Consider using '#align differentiable_on_pi differentiableOn_piβ'. -/
theorem differentiableOn_pi : DifferentiableOn π Ξ¦ s β β i, DifferentiableOn π (fun x => Ξ¦ x i) s :=
β¨fun h i x hx => differentiableWithinAt_pi.1 (h x hx) i, fun h x hx =>
differentiableWithinAt_pi.2 fun i => h i x hxβ©
#align differentiable_on_pi differentiableOn_pi
+/- warning: differentiable_pi -> differentiable_pi is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (Differentiable.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦) (forall (i : ΞΉ), Differentiable.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i))
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {ΞΉ : Type.{u2}} [_inst_10 : Fintype.{u2} ΞΉ] {F' : ΞΉ -> Type.{u1}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u1} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u1} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} (F' i) (_inst_11 i))] {Ξ¦ : E -> (forall (i : ΞΉ), F' i)}, Iff (Differentiable.{u4, u3, max u2 u1} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u2, u1} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u2, u1} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u1} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) Ξ¦) (forall (i : ΞΉ), Differentiable.{u4, u3, u1} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (fun (x : E) => Ξ¦ x i))
+Case conversion may be inaccurate. Consider using '#align differentiable_pi differentiable_piβ'. -/
theorem differentiable_pi : Differentiable π Ξ¦ β β i, Differentiable π fun x => Ξ¦ x i :=
β¨fun h i x => differentiableAt_pi.1 (h x) i, fun h x => differentiableAt_pi.2 fun i => h i xβ©
#align differentiable_pi differentiable_pi
+/- warning: fderiv_within_pi -> fderivWithin_pi is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {s : Set.{u2} E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableWithinAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) s x) -> (UniqueDiffWithinAt.{u1, u2} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) s x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderivWithin.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) s x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderivWithin.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) s x)))
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {s : Set.{u3} E} {ΞΉ : Type.{u1}} [_inst_10 : Fintype.{u1} ΞΉ] {F' : ΞΉ -> Type.{u2}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u2} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u2} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableWithinAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) s x) -> (UniqueDiffWithinAt.{u4, u3} π _inst_1 E (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) s x) -> (Eq.{max (max (succ u3) (succ u1)) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u4, u1, u2} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderivWithin.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u1, u2} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) s x) (ContinuousLinearMap.pi.{u4, u3, u1, u2} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u2} (F' i) (PseudoMetricSpace.toUniformSpace.{u2} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u2} (F' i) (NormedAddCommGroup.toAddCommGroup.{u2} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u2} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderivWithin.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) s x)))
+Case conversion may be inaccurate. Consider using '#align fderiv_within_pi fderivWithin_piβ'. -/
-- TODO: find out which version (`Ο` or `Ξ¦`) works better with `rw`/`simp`
theorem fderivWithin_pi (h : β i, DifferentiableWithinAt π (Ο i) s x)
(hs : UniqueDiffWithinAt π s x) :
@@ -458,6 +834,12 @@ theorem fderivWithin_pi (h : β i, DifferentiableWithinAt π (Ο i) s x)
(hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).fderivWithin hs
#align fderiv_within_pi fderivWithin_pi
+/- warning: fderiv_pi -> fderiv_pi is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E} {ΞΉ : Type.{u3}} [_inst_10 : Fintype.{u3} ΞΉ] {F' : ΞΉ -> Type.{u4}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u4} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableAt.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) x) -> (Eq.{max (succ u2) (succ (max u3 u4))} (ContinuousLinearMap.{u1, u1, u2, max u3 u4} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u3 u4} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, max u3 u4} π (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u3 u4} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderiv.{u1, u2, max u3 u4} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u3, u4} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u1, u3, u4} π ΞΉ (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u4} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) x) (ContinuousLinearMap.pi.{u1, u2, u3, u4} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u4} (F' i) (PseudoMetricSpace.toUniformSpace.{u4} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u4} (F' i) (NormedAddCommGroup.toAddCommGroup.{u4} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u1, u4} π (F' i) (NontriviallyNormedField.toNormedField.{u1} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u4} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderiv.{u1, u2, u4} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) x)))
+but is expected to have type
+ forall {π : Type.{u4}} [_inst_1 : NontriviallyNormedField.{u4} π] {E : Type.{u3}} [_inst_2 : NormedAddCommGroup.{u3} E] [_inst_3 : NormedSpace.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)] {x : E} {ΞΉ : Type.{u1}} [_inst_10 : Fintype.{u1} ΞΉ] {F' : ΞΉ -> Type.{u2}} [_inst_11 : forall (i : ΞΉ), NormedAddCommGroup.{u2} (F' i)] [_inst_12 : forall (i : ΞΉ), NormedSpace.{u4, u2} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))] {Ο : forall (i : ΞΉ), E -> (F' i)}, (forall (i : ΞΉ), DifferentiableAt.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) x) -> (Eq.{max (max (succ u3) (succ u1)) (succ u2)} (ContinuousLinearMap.{u4, u4, u3, max u1 u2} π π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) (RingHom.id.{u4} π (Semiring.toNonAssocSemiring.{u4} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (forall (i : ΞΉ), F' i) (UniformSpace.toTopologicalSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (PseudoMetricSpace.toUniformSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (forall (i : ΞΉ), F' i) (NormedAddCommGroup.toAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)))) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) (NormedSpace.toModule.{u4, max u1 u2} π (forall (i : ΞΉ), F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{max u1 u2} (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i))) (Pi.normedSpace.{u4, u1, u2} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)))) (fderiv.{u4, u3, max u1 u2} π _inst_1 E _inst_2 _inst_3 (forall (i : ΞΉ), F' i) (Pi.normedAddCommGroup.{u1, u2} ΞΉ (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => _inst_11 i)) (Pi.normedSpace.{u4, u1, u2} π ΞΉ (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (fun (i : ΞΉ) => F' i) _inst_10 (fun (i : ΞΉ) => NormedAddCommGroup.toSeminormedAddCommGroup.{u2} ((fun (i : ΞΉ) => F' i) i) ((fun (i : ΞΉ) => _inst_11 i) i)) (fun (i : ΞΉ) => _inst_12 i)) (fun (x : E) (i : ΞΉ) => Ο i x) x) (ContinuousLinearMap.pi.{u4, u3, u1, u2} π (DivisionSemiring.toSemiring.{u4} π (Semifield.toDivisionSemiring.{u4} π (Field.toSemifield.{u4} π (NormedField.toField.{u4} π (NontriviallyNormedField.toNormedField.{u4} π _inst_1))))) E (UniformSpace.toTopologicalSpace.{u3} E (PseudoMetricSpace.toUniformSpace.{u3} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u3} E (NormedAddCommGroup.toAddCommGroup.{u3} E _inst_2)) (NormedSpace.toModule.{u4, u3} π E (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} E _inst_2) _inst_3) ΞΉ (fun (i : ΞΉ) => F' i) (fun (i : ΞΉ) => UniformSpace.toTopologicalSpace.{u2} (F' i) (PseudoMetricSpace.toUniformSpace.{u2} (F' i) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} (F' i) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i))))) (fun (i : ΞΉ) => AddCommGroup.toAddCommMonoid.{u2} (F' i) (NormedAddCommGroup.toAddCommGroup.{u2} (F' i) (_inst_11 i))) (fun (i : ΞΉ) => NormedSpace.toModule.{u4, u2} π (F' i) (NontriviallyNormedField.toNormedField.{u4} π _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} (F' i) (_inst_11 i)) (_inst_12 i)) (fun (i : ΞΉ) => fderiv.{u4, u3, u2} π _inst_1 E _inst_2 _inst_3 (F' i) (_inst_11 i) (_inst_12 i) (Ο i) x)))
+Case conversion may be inaccurate. Consider using '#align fderiv_pi fderiv_piβ'. -/
theorem fderiv_pi (h : β i, DifferentiableAt π (Ο i) x) :
fderiv π (fun x i => Ο i x) x = pi fun i => fderiv π (Ο i) x :=
(hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).fderiv
mathlib commit https://github.com/leanprover-community/mathlib/commit/33c67ae661dd8988516ff7f247b0be3018cdd952
@@ -61,49 +61,49 @@ section Prod
variable {fβ : E β G} {fβ' : E βL[π] G}
-protected theorem HasStrictFderivAt.prod (hfβ : HasStrictFderivAt fβ fβ' x)
- (hfβ : HasStrictFderivAt fβ fβ' x) :
- HasStrictFderivAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x :=
+protected theorem HasStrictFDerivAt.prod (hfβ : HasStrictFDerivAt fβ fβ' x)
+ (hfβ : HasStrictFDerivAt fβ fβ' x) :
+ HasStrictFDerivAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x :=
hfβ.prodLeft hfβ
-#align has_strict_fderiv_at.prod HasStrictFderivAt.prod
+#align has_strict_fderiv_at.prod HasStrictFDerivAt.prod
-theorem HasFderivAtFilter.prod (hfβ : HasFderivAtFilter fβ fβ' x L)
- (hfβ : HasFderivAtFilter fβ fβ' x L) :
- HasFderivAtFilter (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x L :=
+theorem HasFDerivAtFilter.prod (hfβ : HasFDerivAtFilter fβ fβ' x L)
+ (hfβ : HasFDerivAtFilter fβ fβ' x L) :
+ HasFDerivAtFilter (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x L :=
hfβ.prodLeft hfβ
-#align has_fderiv_at_filter.prod HasFderivAtFilter.prod
+#align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
-theorem HasFderivWithinAt.prod (hfβ : HasFderivWithinAt fβ fβ' s x)
- (hfβ : HasFderivWithinAt fβ fβ' s x) :
- HasFderivWithinAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') s x :=
+theorem HasFDerivWithinAt.prod (hfβ : HasFDerivWithinAt fβ fβ' s x)
+ (hfβ : HasFDerivWithinAt fβ fβ' s x) :
+ HasFDerivWithinAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') s x :=
hfβ.Prod hfβ
-#align has_fderiv_within_at.prod HasFderivWithinAt.prod
+#align has_fderiv_within_at.prod HasFDerivWithinAt.prod
-theorem HasFderivAt.prod (hfβ : HasFderivAt fβ fβ' x) (hfβ : HasFderivAt fβ fβ' x) :
- HasFderivAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x :=
+theorem HasFDerivAt.prod (hfβ : HasFDerivAt fβ fβ' x) (hfβ : HasFDerivAt fβ fβ' x) :
+ HasFDerivAt (fun x => (fβ x, fβ x)) (fβ'.Prod fβ') x :=
hfβ.Prod hfβ
-#align has_fderiv_at.prod HasFderivAt.prod
+#align has_fderiv_at.prod HasFDerivAt.prod
-theorem hasFderivAt_prod_mk_left (eβ : E) (fβ : F) :
- HasFderivAt (fun e : E => (e, fβ)) (inl π E F) eβ :=
- (hasFderivAt_id eβ).Prod (hasFderivAt_const fβ eβ)
-#align has_fderiv_at_prod_mk_left hasFderivAt_prod_mk_left
+theorem hasFDerivAt_prod_mk_left (eβ : E) (fβ : F) :
+ HasFDerivAt (fun e : E => (e, fβ)) (inl π E F) eβ :=
+ (hasFDerivAt_id eβ).Prod (hasFDerivAt_const fβ eβ)
+#align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_left
-theorem hasFderivAt_prod_mk_right (eβ : E) (fβ : F) :
- HasFderivAt (fun f : F => (eβ, f)) (inr π E F) fβ :=
- (hasFderivAt_const eβ fβ).Prod (hasFderivAt_id fβ)
-#align has_fderiv_at_prod_mk_right hasFderivAt_prod_mk_right
+theorem hasFDerivAt_prod_mk_right (eβ : E) (fβ : F) :
+ HasFDerivAt (fun f : F => (eβ, f)) (inr π E F) fβ :=
+ (hasFDerivAt_const eβ fβ).Prod (hasFDerivAt_id fβ)
+#align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_right
theorem DifferentiableWithinAt.prod (hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x : E => (fβ x, fβ x)) s x :=
- (hfβ.HasFderivWithinAt.Prod hfβ.HasFderivWithinAt).DifferentiableWithinAt
+ (hfβ.HasFDerivWithinAt.Prod hfβ.HasFDerivWithinAt).DifferentiableWithinAt
#align differentiable_within_at.prod DifferentiableWithinAt.prod
@[simp]
theorem DifferentiableAt.prod (hfβ : DifferentiableAt π fβ x) (hfβ : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x : E => (fβ x, fβ x)) x :=
- (hfβ.HasFderivAt.Prod hfβ.HasFderivAt).DifferentiableAt
+ (hfβ.HasFDerivAt.Prod hfβ.HasFDerivAt).DifferentiableAt
#align differentiable_at.prod DifferentiableAt.prod
theorem DifferentiableOn.prod (hfβ : DifferentiableOn π fβ s) (hfβ : DifferentiableOn π fβ s) :
@@ -119,14 +119,14 @@ theorem Differentiable.prod (hfβ : Differentiable π fβ) (hfβ : Differen
theorem DifferentiableAt.fderiv_prod (hfβ : DifferentiableAt π fβ x)
(hfβ : DifferentiableAt π fβ x) :
fderiv π (fun x : E => (fβ x, fβ x)) x = (fderiv π fβ x).Prod (fderiv π fβ x) :=
- (hfβ.HasFderivAt.Prod hfβ.HasFderivAt).fderiv
+ (hfβ.HasFDerivAt.Prod hfβ.HasFDerivAt).fderiv
#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
theorem DifferentiableAt.fderivWithin_prod (hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x) (hxs : UniqueDiffWithinAt π s x) :
fderivWithin π (fun x : E => (fβ x, fβ x)) s x =
(fderivWithin π fβ s x).Prod (fderivWithin π fβ s x) :=
- (hfβ.HasFderivWithinAt.Prod hfβ.HasFderivWithinAt).fderivWithin hxs
+ (hfβ.HasFDerivWithinAt.Prod hfβ.HasFDerivWithinAt).fderivWithin hxs
#align differentiable_at.fderiv_within_prod DifferentiableAt.fderivWithin_prod
end Prod
@@ -135,46 +135,46 @@ section Fst
variable {fβ : E β F Γ G} {fβ' : E βL[π] F Γ G} {p : E Γ F}
-theorem hasStrictFderivAt_fst : HasStrictFderivAt (@Prod.fst E F) (fst π E F) p :=
- (fst π E F).HasStrictFderivAt
-#align has_strict_fderiv_at_fst hasStrictFderivAt_fst
+theorem hasStrictFDerivAt_fst : HasStrictFDerivAt (@Prod.fst E F) (fst π E F) p :=
+ (fst π E F).HasStrictFDerivAt
+#align has_strict_fderiv_at_fst hasStrictFDerivAt_fst
-protected theorem HasStrictFderivAt.fst (h : HasStrictFderivAt fβ fβ' x) :
- HasStrictFderivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
- hasStrictFderivAt_fst.comp x h
-#align has_strict_fderiv_at.fst HasStrictFderivAt.fst
+protected theorem HasStrictFDerivAt.fst (h : HasStrictFDerivAt fβ fβ' x) :
+ HasStrictFDerivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
+ hasStrictFDerivAt_fst.comp x h
+#align has_strict_fderiv_at.fst HasStrictFDerivAt.fst
-theorem hasFderivAtFilter_fst {L : Filter (E Γ F)} :
- HasFderivAtFilter (@Prod.fst E F) (fst π E F) p L :=
- (fst π E F).HasFderivAtFilter
-#align has_fderiv_at_filter_fst hasFderivAtFilter_fst
+theorem hasFDerivAtFilter_fst {L : Filter (E Γ F)} :
+ HasFDerivAtFilter (@Prod.fst E F) (fst π E F) p L :=
+ (fst π E F).HasFDerivAtFilter
+#align has_fderiv_at_filter_fst hasFDerivAtFilter_fst
-protected theorem HasFderivAtFilter.fst (h : HasFderivAtFilter fβ fβ' x L) :
- HasFderivAtFilter (fun x => (fβ x).1) ((fst π F G).comp fβ') x L :=
- hasFderivAtFilter_fst.comp x h tendsto_map
-#align has_fderiv_at_filter.fst HasFderivAtFilter.fst
+protected theorem HasFDerivAtFilter.fst (h : HasFDerivAtFilter fβ fβ' x L) :
+ HasFDerivAtFilter (fun x => (fβ x).1) ((fst π F G).comp fβ') x L :=
+ hasFDerivAtFilter_fst.comp x h tendsto_map
+#align has_fderiv_at_filter.fst HasFDerivAtFilter.fst
-theorem hasFderivAt_fst : HasFderivAt (@Prod.fst E F) (fst π E F) p :=
- hasFderivAtFilter_fst
-#align has_fderiv_at_fst hasFderivAt_fst
+theorem hasFDerivAt_fst : HasFDerivAt (@Prod.fst E F) (fst π E F) p :=
+ hasFDerivAtFilter_fst
+#align has_fderiv_at_fst hasFDerivAt_fst
-protected theorem HasFderivAt.fst (h : HasFderivAt fβ fβ' x) :
- HasFderivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
+protected theorem HasFDerivAt.fst (h : HasFDerivAt fβ fβ' x) :
+ HasFDerivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
h.fst
-#align has_fderiv_at.fst HasFderivAt.fst
+#align has_fderiv_at.fst HasFDerivAt.fst
-theorem hasFderivWithinAt_fst {s : Set (E Γ F)} :
- HasFderivWithinAt (@Prod.fst E F) (fst π E F) s p :=
- hasFderivAtFilter_fst
-#align has_fderiv_within_at_fst hasFderivWithinAt_fst
+theorem hasFDerivWithinAt_fst {s : Set (E Γ F)} :
+ HasFDerivWithinAt (@Prod.fst E F) (fst π E F) s p :=
+ hasFDerivAtFilter_fst
+#align has_fderiv_within_at_fst hasFDerivWithinAt_fst
-protected theorem HasFderivWithinAt.fst (h : HasFderivWithinAt fβ fβ' s x) :
- HasFderivWithinAt (fun x => (fβ x).1) ((fst π F G).comp fβ') s x :=
+protected theorem HasFDerivWithinAt.fst (h : HasFDerivWithinAt fβ fβ' s x) :
+ HasFDerivWithinAt (fun x => (fβ x).1) ((fst π F G).comp fβ') s x :=
h.fst
-#align has_fderiv_within_at.fst HasFderivWithinAt.fst
+#align has_fderiv_within_at.fst HasFDerivWithinAt.fst
theorem differentiableAt_fst : DifferentiableAt π Prod.fst p :=
- hasFderivAt_fst.DifferentiableAt
+ hasFDerivAt_fst.DifferentiableAt
#align differentiable_at_fst differentiableAt_fst
@[simp]
@@ -212,22 +212,22 @@ protected theorem DifferentiableOn.fst (h : DifferentiableOn π fβ s) :
#align differentiable_on.fst DifferentiableOn.fst
theorem fderiv_fst : fderiv π Prod.fst p = fst π E F :=
- hasFderivAt_fst.fderiv
+ hasFDerivAt_fst.fderiv
#align fderiv_fst fderiv_fst
theorem fderiv.fst (h : DifferentiableAt π fβ x) :
fderiv π (fun x => (fβ x).1) x = (fst π F G).comp (fderiv π fβ x) :=
- h.HasFderivAt.fst.fderiv
+ h.HasFDerivAt.fst.fderiv
#align fderiv.fst fderiv.fst
theorem fderivWithin_fst {s : Set (E Γ F)} (hs : UniqueDiffWithinAt π s p) :
fderivWithin π Prod.fst s p = fst π E F :=
- hasFderivWithinAt_fst.fderivWithin hs
+ hasFDerivWithinAt_fst.fderivWithin hs
#align fderiv_within_fst fderivWithin_fst
theorem fderivWithin.fst (hs : UniqueDiffWithinAt π s x) (h : DifferentiableWithinAt π fβ s x) :
fderivWithin π (fun x => (fβ x).1) s x = (fst π F G).comp (fderivWithin π fβ s x) :=
- h.HasFderivWithinAt.fst.fderivWithin hs
+ h.HasFDerivWithinAt.fst.fderivWithin hs
#align fderiv_within.fst fderivWithin.fst
end Fst
@@ -236,46 +236,46 @@ section Snd
variable {fβ : E β F Γ G} {fβ' : E βL[π] F Γ G} {p : E Γ F}
-theorem hasStrictFderivAt_snd : HasStrictFderivAt (@Prod.snd E F) (snd π E F) p :=
- (snd π E F).HasStrictFderivAt
-#align has_strict_fderiv_at_snd hasStrictFderivAt_snd
+theorem hasStrictFDerivAt_snd : HasStrictFDerivAt (@Prod.snd E F) (snd π E F) p :=
+ (snd π E F).HasStrictFDerivAt
+#align has_strict_fderiv_at_snd hasStrictFDerivAt_snd
-protected theorem HasStrictFderivAt.snd (h : HasStrictFderivAt fβ fβ' x) :
- HasStrictFderivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
- hasStrictFderivAt_snd.comp x h
-#align has_strict_fderiv_at.snd HasStrictFderivAt.snd
+protected theorem HasStrictFDerivAt.snd (h : HasStrictFDerivAt fβ fβ' x) :
+ HasStrictFDerivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
+ hasStrictFDerivAt_snd.comp x h
+#align has_strict_fderiv_at.snd HasStrictFDerivAt.snd
-theorem hasFderivAtFilter_snd {L : Filter (E Γ F)} :
- HasFderivAtFilter (@Prod.snd E F) (snd π E F) p L :=
- (snd π E F).HasFderivAtFilter
-#align has_fderiv_at_filter_snd hasFderivAtFilter_snd
+theorem hasFDerivAtFilter_snd {L : Filter (E Γ F)} :
+ HasFDerivAtFilter (@Prod.snd E F) (snd π E F) p L :=
+ (snd π E F).HasFDerivAtFilter
+#align has_fderiv_at_filter_snd hasFDerivAtFilter_snd
-protected theorem HasFderivAtFilter.snd (h : HasFderivAtFilter fβ fβ' x L) :
- HasFderivAtFilter (fun x => (fβ x).2) ((snd π F G).comp fβ') x L :=
- hasFderivAtFilter_snd.comp x h tendsto_map
-#align has_fderiv_at_filter.snd HasFderivAtFilter.snd
+protected theorem HasFDerivAtFilter.snd (h : HasFDerivAtFilter fβ fβ' x L) :
+ HasFDerivAtFilter (fun x => (fβ x).2) ((snd π F G).comp fβ') x L :=
+ hasFDerivAtFilter_snd.comp x h tendsto_map
+#align has_fderiv_at_filter.snd HasFDerivAtFilter.snd
-theorem hasFderivAt_snd : HasFderivAt (@Prod.snd E F) (snd π E F) p :=
- hasFderivAtFilter_snd
-#align has_fderiv_at_snd hasFderivAt_snd
+theorem hasFDerivAt_snd : HasFDerivAt (@Prod.snd E F) (snd π E F) p :=
+ hasFDerivAtFilter_snd
+#align has_fderiv_at_snd hasFDerivAt_snd
-protected theorem HasFderivAt.snd (h : HasFderivAt fβ fβ' x) :
- HasFderivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
+protected theorem HasFDerivAt.snd (h : HasFDerivAt fβ fβ' x) :
+ HasFDerivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
h.snd
-#align has_fderiv_at.snd HasFderivAt.snd
+#align has_fderiv_at.snd HasFDerivAt.snd
-theorem hasFderivWithinAt_snd {s : Set (E Γ F)} :
- HasFderivWithinAt (@Prod.snd E F) (snd π E F) s p :=
- hasFderivAtFilter_snd
-#align has_fderiv_within_at_snd hasFderivWithinAt_snd
+theorem hasFDerivWithinAt_snd {s : Set (E Γ F)} :
+ HasFDerivWithinAt (@Prod.snd E F) (snd π E F) s p :=
+ hasFDerivAtFilter_snd
+#align has_fderiv_within_at_snd hasFDerivWithinAt_snd
-protected theorem HasFderivWithinAt.snd (h : HasFderivWithinAt fβ fβ' s x) :
- HasFderivWithinAt (fun x => (fβ x).2) ((snd π F G).comp fβ') s x :=
+protected theorem HasFDerivWithinAt.snd (h : HasFDerivWithinAt fβ fβ' s x) :
+ HasFDerivWithinAt (fun x => (fβ x).2) ((snd π F G).comp fβ') s x :=
h.snd
-#align has_fderiv_within_at.snd HasFderivWithinAt.snd
+#align has_fderiv_within_at.snd HasFDerivWithinAt.snd
theorem differentiableAt_snd : DifferentiableAt π Prod.snd p :=
- hasFderivAt_snd.DifferentiableAt
+ hasFDerivAt_snd.DifferentiableAt
#align differentiable_at_snd differentiableAt_snd
@[simp]
@@ -313,22 +313,22 @@ protected theorem DifferentiableOn.snd (h : DifferentiableOn π fβ s) :
#align differentiable_on.snd DifferentiableOn.snd
theorem fderiv_snd : fderiv π Prod.snd p = snd π E F :=
- hasFderivAt_snd.fderiv
+ hasFDerivAt_snd.fderiv
#align fderiv_snd fderiv_snd
theorem fderiv.snd (h : DifferentiableAt π fβ x) :
fderiv π (fun x => (fβ x).2) x = (snd π F G).comp (fderiv π fβ x) :=
- h.HasFderivAt.snd.fderiv
+ h.HasFDerivAt.snd.fderiv
#align fderiv.snd fderiv.snd
theorem fderivWithin_snd {s : Set (E Γ F)} (hs : UniqueDiffWithinAt π s p) :
fderivWithin π Prod.snd s p = snd π E F :=
- hasFderivWithinAt_snd.fderivWithin hs
+ hasFDerivWithinAt_snd.fderivWithin hs
#align fderiv_within_snd fderivWithin_snd
theorem fderivWithin.snd (hs : UniqueDiffWithinAt π s x) (h : DifferentiableWithinAt π fβ s x) :
fderivWithin π (fun x => (fβ x).2) s x = (snd π F G).comp (fderivWithin π fβ s x) :=
- h.HasFderivWithinAt.snd.fderivWithin hs
+ h.HasFDerivWithinAt.snd.fderivWithin hs
#align fderiv_within.snd fderivWithin.snd
end Snd
@@ -337,15 +337,15 @@ section Prod_map
variable {fβ : G β G'} {fβ' : G βL[π] G'} {y : G} (p : E Γ G)
-protected theorem HasStrictFderivAt.prodMap (hf : HasStrictFderivAt f f' p.1)
- (hfβ : HasStrictFderivAt fβ fβ' p.2) : HasStrictFderivAt (Prod.map f fβ) (f'.Prod_map fβ') p :=
- (hf.comp p hasStrictFderivAt_fst).Prod (hfβ.comp p hasStrictFderivAt_snd)
-#align has_strict_fderiv_at.prod_map HasStrictFderivAt.prodMap
+protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
+ (hfβ : HasStrictFDerivAt fβ fβ' p.2) : HasStrictFDerivAt (Prod.map f fβ) (f'.Prod_map fβ') p :=
+ (hf.comp p hasStrictFDerivAt_fst).Prod (hfβ.comp p hasStrictFDerivAt_snd)
+#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMap
-protected theorem HasFderivAt.prodMap (hf : HasFderivAt f f' p.1) (hfβ : HasFderivAt fβ fβ' p.2) :
- HasFderivAt (Prod.map f fβ) (f'.Prod_map fβ') p :=
- (hf.comp p hasFderivAt_fst).Prod (hfβ.comp p hasFderivAt_snd)
-#align has_fderiv_at.prod_map HasFderivAt.prodMap
+protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ : HasFDerivAt fβ fβ' p.2) :
+ HasFDerivAt (Prod.map f fβ) (f'.Prod_map fβ') p :=
+ (hf.comp p hasFDerivAt_fst).Prod (hfβ.comp p hasFDerivAt_snd)
+#align has_fderiv_at.prod_map HasFDerivAt.prodMap
@[simp]
protected theorem DifferentiableAt.prod_map (hf : DifferentiableAt π f p.1)
@@ -377,69 +377,69 @@ variable {ΞΉ : Type _} [Fintype ΞΉ] {F' : ΞΉ β Type _} [β i, NormedAddCommGr
{Ξ¦' : E βL[π] β i, F' i}
@[simp]
-theorem hasStrictFderivAt_pi' :
- HasStrictFderivAt Ξ¦ Ξ¦' x β β i, HasStrictFderivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
+theorem hasStrictFDerivAt_pi' :
+ HasStrictFDerivAt Ξ¦ Ξ¦' x β β i, HasStrictFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
by
- simp only [HasStrictFderivAt, ContinuousLinearMap.coe_pi]
+ simp only [HasStrictFDerivAt, ContinuousLinearMap.coe_pi]
exact is_o_pi
-#align has_strict_fderiv_at_pi' hasStrictFderivAt_pi'
+#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
@[simp]
-theorem hasStrictFderivAt_pi :
- HasStrictFderivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
- β i, HasStrictFderivAt (Ο i) (Ο' i) x :=
- hasStrictFderivAt_pi'
-#align has_strict_fderiv_at_pi hasStrictFderivAt_pi
+theorem hasStrictFDerivAt_pi :
+ HasStrictFDerivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
+ β i, HasStrictFDerivAt (Ο i) (Ο' i) x :=
+ hasStrictFDerivAt_pi'
+#align has_strict_fderiv_at_pi hasStrictFDerivAt_pi
@[simp]
-theorem hasFderivAtFilter_pi' :
- HasFderivAtFilter Ξ¦ Ξ¦' x L β β i, HasFderivAtFilter (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x L :=
+theorem hasFDerivAtFilter_pi' :
+ HasFDerivAtFilter Ξ¦ Ξ¦' x L β β i, HasFDerivAtFilter (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x L :=
by
- simp only [HasFderivAtFilter, ContinuousLinearMap.coe_pi]
+ simp only [HasFDerivAtFilter, ContinuousLinearMap.coe_pi]
exact is_o_pi
-#align has_fderiv_at_filter_pi' hasFderivAtFilter_pi'
+#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'
-theorem hasFderivAtFilter_pi :
- HasFderivAtFilter (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x L β
- β i, HasFderivAtFilter (Ο i) (Ο' i) x L :=
- hasFderivAtFilter_pi'
-#align has_fderiv_at_filter_pi hasFderivAtFilter_pi
+theorem hasFDerivAtFilter_pi :
+ HasFDerivAtFilter (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x L β
+ β i, HasFDerivAtFilter (Ο i) (Ο' i) x L :=
+ hasFDerivAtFilter_pi'
+#align has_fderiv_at_filter_pi hasFDerivAtFilter_pi
@[simp]
-theorem hasFderivAt_pi' :
- HasFderivAt Ξ¦ Ξ¦' x β β i, HasFderivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
- hasFderivAtFilter_pi'
-#align has_fderiv_at_pi' hasFderivAt_pi'
+theorem hasFDerivAt_pi' :
+ HasFDerivAt Ξ¦ Ξ¦' x β β i, HasFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x :=
+ hasFDerivAtFilter_pi'
+#align has_fderiv_at_pi' hasFDerivAt_pi'
-theorem hasFderivAt_pi :
- HasFderivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
- β i, HasFderivAt (Ο i) (Ο' i) x :=
- hasFderivAtFilter_pi
-#align has_fderiv_at_pi hasFderivAt_pi
+theorem hasFDerivAt_pi :
+ HasFDerivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
+ β i, HasFDerivAt (Ο i) (Ο' i) x :=
+ hasFDerivAtFilter_pi
+#align has_fderiv_at_pi hasFDerivAt_pi
@[simp]
-theorem hasFderivWithinAt_pi' :
- HasFderivWithinAt Ξ¦ Ξ¦' s x β β i, HasFderivWithinAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') s x :=
- hasFderivAtFilter_pi'
-#align has_fderiv_within_at_pi' hasFderivWithinAt_pi'
+theorem hasFDerivWithinAt_pi' :
+ HasFDerivWithinAt Ξ¦ Ξ¦' s x β β i, HasFDerivWithinAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') s x :=
+ hasFDerivAtFilter_pi'
+#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'
-theorem hasFderivWithinAt_pi :
- HasFderivWithinAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') s x β
- β i, HasFderivWithinAt (Ο i) (Ο' i) s x :=
- hasFderivAtFilter_pi
-#align has_fderiv_within_at_pi hasFderivWithinAt_pi
+theorem hasFDerivWithinAt_pi :
+ HasFDerivWithinAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') s x β
+ β i, HasFDerivWithinAt (Ο i) (Ο' i) s x :=
+ hasFDerivAtFilter_pi
+#align has_fderiv_within_at_pi hasFDerivWithinAt_pi
@[simp]
theorem differentiableWithinAt_pi :
DifferentiableWithinAt π Ξ¦ s x β β i, DifferentiableWithinAt π (fun x => Ξ¦ x i) s x :=
- β¨fun h i => (hasFderivWithinAt_pi'.1 h.HasFderivWithinAt i).DifferentiableWithinAt, fun h =>
- (hasFderivWithinAt_pi.2 fun i => (h i).HasFderivWithinAt).DifferentiableWithinAtβ©
+ β¨fun h i => (hasFDerivWithinAt_pi'.1 h.HasFDerivWithinAt i).DifferentiableWithinAt, fun h =>
+ (hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).DifferentiableWithinAtβ©
#align differentiable_within_at_pi differentiableWithinAt_pi
@[simp]
theorem differentiableAt_pi : DifferentiableAt π Ξ¦ x β β i, DifferentiableAt π (fun x => Ξ¦ x i) x :=
- β¨fun h i => (hasFderivAt_pi'.1 h.HasFderivAt i).DifferentiableAt, fun h =>
- (hasFderivAt_pi.2 fun i => (h i).HasFderivAt).DifferentiableAtβ©
+ β¨fun h i => (hasFDerivAt_pi'.1 h.HasFDerivAt i).DifferentiableAt, fun h =>
+ (hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).DifferentiableAtβ©
#align differentiable_at_pi differentiableAt_pi
theorem differentiableOn_pi : DifferentiableOn π Ξ¦ s β β i, DifferentiableOn π (fun x => Ξ¦ x i) s :=
@@ -455,12 +455,12 @@ theorem differentiable_pi : Differentiable π Ξ¦ β β i, Differentiable
theorem fderivWithin_pi (h : β i, DifferentiableWithinAt π (Ο i) s x)
(hs : UniqueDiffWithinAt π s x) :
fderivWithin π (fun x i => Ο i x) s x = pi fun i => fderivWithin π (Ο i) s x :=
- (hasFderivWithinAt_pi.2 fun i => (h i).HasFderivWithinAt).fderivWithin hs
+ (hasFDerivWithinAt_pi.2 fun i => (h i).HasFDerivWithinAt).fderivWithin hs
#align fderiv_within_pi fderivWithin_pi
theorem fderiv_pi (h : β i, DifferentiableAt π (Ο i) x) :
fderiv π (fun x i => Ο i x) x = pi fun i => fderiv π (Ο i) x :=
- (hasFderivAt_pi.2 fun i => (h i).HasFderivAt).fderiv
+ (hasFDerivAt_pi.2 fun i => (h i).HasFDerivAt).fderiv
#align fderiv_pi fderiv_pi
end Pi
mathlib commit https://github.com/leanprover-community/mathlib/commit/e3fb84046afd187b710170887195d50bada934ee
After the (d)simp
and rw
tactics - hints to find further occurrences welcome.
Co-authored-by: @sven-manthe
@@ -414,7 +414,7 @@ theorem hasStrictFDerivAt_apply (i : ΞΉ) (f : β i, F' i) :
have h := ((hasStrictFDerivAt_pi'
(Ξ¦ := fun (f : β i, F' i) (i' : ΞΉ) => f i') (Ξ¦':=id') (x:=f))).1
have h' : comp (proj i) id' = proj i := by rfl
- rw[β h']; apply h; apply hasStrictFDerivAt_id
+ rw [β h']; apply h; apply hasStrictFDerivAt_id
@[simp 1100] -- Porting note: increased priority to make lint happy
theorem hasStrictFDerivAt_pi :
@@ -477,7 +477,7 @@ theorem hasFDerivWithinAt_apply (i : ΞΉ) (f : β i, F' i) (s' : Set (β i, F'
have h := ((hasFDerivWithinAt_pi'
(Ξ¦ := fun (f : β i, F' i) (i' : ΞΉ) => f i') (Ξ¦':=id') (x:=f) (s:=s'))).1
have h' : comp (proj i) id' = proj i := by rfl
- rw[β h']; apply h; apply hasFDerivWithinAt_id
+ rw [β h']; apply h; apply hasFDerivWithinAt_id
theorem hasFDerivWithinAt_pi :
HasFDerivWithinAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') s x β
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -29,25 +29,15 @@ noncomputable section
section
variable {π : Type*} [NontriviallyNormedField π]
-
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π E]
-
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π F]
-
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace π G]
-
variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace π G']
-
variable {f fβ fβ g : E β F}
-
variable {f' fβ' fβ' g' : E βL[π] F}
-
variable (e : E βL[π] F)
-
variable {x : E}
-
variable {s t : Set E}
-
variable {L Lβ Lβ : Filter E}
section CartesianProduct
Basic setup for fun_prop
for Differentiable(At/On/Within) and HasFDeriv(At/Within/Strict).
Mainly consists of marking theorems with fun_prop
attribute but I had to formulate appropriate _pi
and _apply
theorems. Proofs of _apply
theorems can probably be golfed into neater form.
@@ -71,45 +71,51 @@ theorem HasFDerivAtFilter.prod (hfβ : HasFDerivAtFilter fβ fβ' x L)
.of_isLittleO <| hfβ.isLittleO.prod_left hfβ.isLittleO
#align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
+@[fun_prop]
nonrec theorem HasFDerivWithinAt.prod (hfβ : HasFDerivWithinAt fβ fβ' s x)
(hfβ : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x, fβ x)) (fβ'.prod fβ') s x :=
hfβ.prod hfβ
#align has_fderiv_within_at.prod HasFDerivWithinAt.prod
+@[fun_prop]
nonrec theorem HasFDerivAt.prod (hfβ : HasFDerivAt fβ fβ' x) (hfβ : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x, fβ x)) (fβ'.prod fβ') x :=
hfβ.prod hfβ
#align has_fderiv_at.prod HasFDerivAt.prod
+@[fun_prop]
theorem hasFDerivAt_prod_mk_left (eβ : E) (fβ : F) :
HasFDerivAt (fun e : E => (e, fβ)) (inl π E F) eβ :=
(hasFDerivAt_id eβ).prod (hasFDerivAt_const fβ eβ)
#align has_fderiv_at_prod_mk_left hasFDerivAt_prod_mk_left
+@[fun_prop]
theorem hasFDerivAt_prod_mk_right (eβ : E) (fβ : F) :
HasFDerivAt (fun f : F => (eβ, f)) (inr π E F) fβ :=
(hasFDerivAt_const eβ fβ).prod (hasFDerivAt_id fβ)
#align has_fderiv_at_prod_mk_right hasFDerivAt_prod_mk_right
+@[fun_prop]
theorem DifferentiableWithinAt.prod (hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x : E => (fβ x, fβ x)) s x :=
(hfβ.hasFDerivWithinAt.prod hfβ.hasFDerivWithinAt).differentiableWithinAt
#align differentiable_within_at.prod DifferentiableWithinAt.prod
-@[simp]
+@[simp, fun_prop]
theorem DifferentiableAt.prod (hfβ : DifferentiableAt π fβ x) (hfβ : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x : E => (fβ x, fβ x)) x :=
(hfβ.hasFDerivAt.prod hfβ.hasFDerivAt).differentiableAt
#align differentiable_at.prod DifferentiableAt.prod
+@[fun_prop]
theorem DifferentiableOn.prod (hfβ : DifferentiableOn π fβ s) (hfβ : DifferentiableOn π fβ s) :
DifferentiableOn π (fun x : E => (fβ x, fβ x)) s := fun x hx =>
DifferentiableWithinAt.prod (hfβ x hx) (hfβ x hx)
#align differentiable_on.prod DifferentiableOn.prod
-@[simp]
+@[simp, fun_prop]
theorem Differentiable.prod (hfβ : Differentiable π fβ) (hfβ : Differentiable π fβ) :
Differentiable π fun x : E => (fβ x, fβ x) := fun x => DifferentiableAt.prod (hfβ x) (hfβ x)
#align differentiable.prod Differentiable.prod
@@ -133,10 +139,12 @@ section Fst
variable {fβ : E β F Γ G} {fβ' : E βL[π] F Γ G} {p : E Γ F}
+@[fun_prop]
theorem hasStrictFDerivAt_fst : HasStrictFDerivAt (@Prod.fst E F) (fst π E F) p :=
(fst π E F).hasStrictFDerivAt
#align has_strict_fderiv_at_fst hasStrictFDerivAt_fst
+@[fun_prop]
protected theorem HasStrictFDerivAt.fst (h : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
hasStrictFDerivAt_fst.comp x h
@@ -152,58 +160,68 @@ protected theorem HasFDerivAtFilter.fst (h : HasFDerivAtFilter fβ fβ' x L) :
hasFDerivAtFilter_fst.comp x h tendsto_map
#align has_fderiv_at_filter.fst HasFDerivAtFilter.fst
+@[fun_prop]
theorem hasFDerivAt_fst : HasFDerivAt (@Prod.fst E F) (fst π E F) p :=
hasFDerivAtFilter_fst
#align has_fderiv_at_fst hasFDerivAt_fst
+@[fun_prop]
protected nonrec theorem HasFDerivAt.fst (h : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x).1) ((fst π F G).comp fβ') x :=
h.fst
#align has_fderiv_at.fst HasFDerivAt.fst
+@[fun_prop]
theorem hasFDerivWithinAt_fst {s : Set (E Γ F)} :
HasFDerivWithinAt (@Prod.fst E F) (fst π E F) s p :=
hasFDerivAtFilter_fst
#align has_fderiv_within_at_fst hasFDerivWithinAt_fst
+@[fun_prop]
protected nonrec theorem HasFDerivWithinAt.fst (h : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x).1) ((fst π F G).comp fβ') s x :=
h.fst
#align has_fderiv_within_at.fst HasFDerivWithinAt.fst
+@[fun_prop]
theorem differentiableAt_fst : DifferentiableAt π Prod.fst p :=
hasFDerivAt_fst.differentiableAt
#align differentiable_at_fst differentiableAt_fst
-@[simp]
+@[simp, fun_prop]
protected theorem DifferentiableAt.fst (h : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x => (fβ x).1) x :=
differentiableAt_fst.comp x h
#align differentiable_at.fst DifferentiableAt.fst
+@[fun_prop]
theorem differentiable_fst : Differentiable π (Prod.fst : E Γ F β E) := fun _ =>
differentiableAt_fst
#align differentiable_fst differentiable_fst
-@[simp]
+@[simp, fun_prop]
protected theorem Differentiable.fst (h : Differentiable π fβ) :
Differentiable π fun x => (fβ x).1 :=
differentiable_fst.comp h
#align differentiable.fst Differentiable.fst
+@[fun_prop]
theorem differentiableWithinAt_fst {s : Set (E Γ F)} : DifferentiableWithinAt π Prod.fst s p :=
differentiableAt_fst.differentiableWithinAt
#align differentiable_within_at_fst differentiableWithinAt_fst
+@[fun_prop]
protected theorem DifferentiableWithinAt.fst (h : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x => (fβ x).1) s x :=
differentiableAt_fst.comp_differentiableWithinAt x h
#align differentiable_within_at.fst DifferentiableWithinAt.fst
+@[fun_prop]
theorem differentiableOn_fst {s : Set (E Γ F)} : DifferentiableOn π Prod.fst s :=
differentiable_fst.differentiableOn
#align differentiable_on_fst differentiableOn_fst
+@[fun_prop]
protected theorem DifferentiableOn.fst (h : DifferentiableOn π fβ s) :
DifferentiableOn π (fun x => (fβ x).1) s :=
differentiable_fst.comp_differentiableOn h
@@ -234,10 +252,12 @@ section Snd
variable {fβ : E β F Γ G} {fβ' : E βL[π] F Γ G} {p : E Γ F}
+@[fun_prop]
theorem hasStrictFDerivAt_snd : HasStrictFDerivAt (@Prod.snd E F) (snd π E F) p :=
(snd π E F).hasStrictFDerivAt
#align has_strict_fderiv_at_snd hasStrictFDerivAt_snd
+@[fun_prop]
protected theorem HasStrictFDerivAt.snd (h : HasStrictFDerivAt fβ fβ' x) :
HasStrictFDerivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
hasStrictFDerivAt_snd.comp x h
@@ -253,58 +273,68 @@ protected theorem HasFDerivAtFilter.snd (h : HasFDerivAtFilter fβ fβ' x L) :
hasFDerivAtFilter_snd.comp x h tendsto_map
#align has_fderiv_at_filter.snd HasFDerivAtFilter.snd
+@[fun_prop]
theorem hasFDerivAt_snd : HasFDerivAt (@Prod.snd E F) (snd π E F) p :=
hasFDerivAtFilter_snd
#align has_fderiv_at_snd hasFDerivAt_snd
+@[fun_prop]
protected nonrec theorem HasFDerivAt.snd (h : HasFDerivAt fβ fβ' x) :
HasFDerivAt (fun x => (fβ x).2) ((snd π F G).comp fβ') x :=
h.snd
#align has_fderiv_at.snd HasFDerivAt.snd
+@[fun_prop]
theorem hasFDerivWithinAt_snd {s : Set (E Γ F)} :
HasFDerivWithinAt (@Prod.snd E F) (snd π E F) s p :=
hasFDerivAtFilter_snd
#align has_fderiv_within_at_snd hasFDerivWithinAt_snd
+@[fun_prop]
protected nonrec theorem HasFDerivWithinAt.snd (h : HasFDerivWithinAt fβ fβ' s x) :
HasFDerivWithinAt (fun x => (fβ x).2) ((snd π F G).comp fβ') s x :=
h.snd
#align has_fderiv_within_at.snd HasFDerivWithinAt.snd
+@[fun_prop]
theorem differentiableAt_snd : DifferentiableAt π Prod.snd p :=
hasFDerivAt_snd.differentiableAt
#align differentiable_at_snd differentiableAt_snd
-@[simp]
+@[simp, fun_prop]
protected theorem DifferentiableAt.snd (h : DifferentiableAt π fβ x) :
DifferentiableAt π (fun x => (fβ x).2) x :=
differentiableAt_snd.comp x h
#align differentiable_at.snd DifferentiableAt.snd
+@[fun_prop]
theorem differentiable_snd : Differentiable π (Prod.snd : E Γ F β F) := fun _ =>
differentiableAt_snd
#align differentiable_snd differentiable_snd
-@[simp]
+@[simp, fun_prop]
protected theorem Differentiable.snd (h : Differentiable π fβ) :
Differentiable π fun x => (fβ x).2 :=
differentiable_snd.comp h
#align differentiable.snd Differentiable.snd
+@[fun_prop]
theorem differentiableWithinAt_snd {s : Set (E Γ F)} : DifferentiableWithinAt π Prod.snd s p :=
differentiableAt_snd.differentiableWithinAt
#align differentiable_within_at_snd differentiableWithinAt_snd
+@[fun_prop]
protected theorem DifferentiableWithinAt.snd (h : DifferentiableWithinAt π fβ s x) :
DifferentiableWithinAt π (fun x => (fβ x).2) s x :=
differentiableAt_snd.comp_differentiableWithinAt x h
#align differentiable_within_at.snd DifferentiableWithinAt.snd
+@[fun_prop]
theorem differentiableOn_snd {s : Set (E Γ F)} : DifferentiableOn π Prod.snd s :=
differentiable_snd.differentiableOn
#align differentiable_on_snd differentiableOn_snd
+@[fun_prop]
protected theorem DifferentiableOn.snd (h : DifferentiableOn π fβ s) :
DifferentiableOn π (fun x => (fβ x).2) s :=
differentiable_snd.comp_differentiableOn h
@@ -335,17 +365,19 @@ section Prod_map
variable {fβ : G β G'} {fβ' : G βL[π] G'} {y : G} (p : E Γ G)
+@[fun_prop]
protected theorem HasStrictFDerivAt.prodMap (hf : HasStrictFDerivAt f f' p.1)
(hfβ : HasStrictFDerivAt fβ fβ' p.2) : HasStrictFDerivAt (Prod.map f fβ) (f'.prodMap fβ') p :=
(hf.comp p hasStrictFDerivAt_fst).prod (hfβ.comp p hasStrictFDerivAt_snd)
#align has_strict_fderiv_at.prod_map HasStrictFDerivAt.prodMap
+@[fun_prop]
protected theorem HasFDerivAt.prodMap (hf : HasFDerivAt f f' p.1) (hfβ : HasFDerivAt fβ fβ' p.2) :
HasFDerivAt (Prod.map f fβ) (f'.prodMap fβ') p :=
(hf.comp p hasFDerivAt_fst).prod (hfβ.comp p hasFDerivAt_snd)
#align has_fderiv_at.prod_map HasFDerivAt.prodMap
-@[simp]
+@[simp, fun_prop]
protected theorem DifferentiableAt.prod_map (hf : DifferentiableAt π f p.1)
(hfβ : DifferentiableAt π fβ p.2) : DifferentiableAt π (fun p : E Γ G => (f p.1, fβ p.2)) p :=
(hf.comp p differentiableAt_fst).prod (hfβ.comp p differentiableAt_snd)
@@ -381,6 +413,19 @@ theorem hasStrictFDerivAt_pi' :
exact isLittleO_pi
#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
+@[fun_prop]
+theorem hasStrictFDerivAt_pi'' (hΟ : β i, HasStrictFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x) :
+ HasStrictFDerivAt Ξ¦ Ξ¦' x := hasStrictFDerivAt_pi'.2 hΟ
+
+@[fun_prop]
+theorem hasStrictFDerivAt_apply (i : ΞΉ) (f : β i, F' i) :
+ HasStrictFDerivAt (π:=π) (fun f : β i, F' i => f i) (proj i) f := by
+ let id' := ContinuousLinearMap.id π (β i, F' i)
+ have h := ((hasStrictFDerivAt_pi'
+ (Ξ¦ := fun (f : β i, F' i) (i' : ΞΉ) => f i') (Ξ¦':=id') (x:=f))).1
+ have h' : comp (proj i) id' = proj i := by rfl
+ rw[β h']; apply h; apply hasStrictFDerivAt_id
+
@[simp 1100] -- Porting note: increased priority to make lint happy
theorem hasStrictFDerivAt_pi :
HasStrictFDerivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
@@ -408,6 +453,16 @@ theorem hasFDerivAt_pi' :
hasFDerivAtFilter_pi'
#align has_fderiv_at_pi' hasFDerivAt_pi'
+@[fun_prop]
+theorem hasFDerivAt_pi'' (hΟ : β i, HasFDerivAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x) :
+ HasFDerivAt Ξ¦ Ξ¦' x := hasFDerivAt_pi'.2 hΟ
+
+@[fun_prop]
+theorem hasFDerivAt_apply (i : ΞΉ) (f : β i, F' i) :
+ HasFDerivAt (π:=π) (fun f : β i, F' i => f i) (proj i) f := by
+ apply HasStrictFDerivAt.hasFDerivAt
+ apply hasStrictFDerivAt_apply
+
theorem hasFDerivAt_pi :
HasFDerivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
β i, HasFDerivAt (Ο i) (Ο' i) x :=
@@ -420,6 +475,20 @@ theorem hasFDerivWithinAt_pi' :
hasFDerivAtFilter_pi'
#align has_fderiv_within_at_pi' hasFDerivWithinAt_pi'
+@[fun_prop]
+theorem hasFDerivWithinAt_pi''
+ (hΟ : β i, HasFDerivWithinAt (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') s x) :
+ HasFDerivWithinAt Ξ¦ Ξ¦' s x := hasFDerivWithinAt_pi'.2 hΟ
+
+@[fun_prop]
+theorem hasFDerivWithinAt_apply (i : ΞΉ) (f : β i, F' i) (s' : Set (β i, F' i)) :
+ HasFDerivWithinAt (π:=π) (fun f : β i, F' i => f i) (proj i) s' f := by
+ let id' := ContinuousLinearMap.id π (β i, F' i)
+ have h := ((hasFDerivWithinAt_pi'
+ (Ξ¦ := fun (f : β i, F' i) (i' : ΞΉ) => f i') (Ξ¦':=id') (x:=f) (s:=s'))).1
+ have h' : comp (proj i) id' = proj i := by rfl
+ rw[β h']; apply h; apply hasFDerivWithinAt_id
+
theorem hasFDerivWithinAt_pi :
HasFDerivWithinAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') s x β
β i, HasFDerivWithinAt (Ο i) (Ο' i) s x :=
@@ -433,21 +502,61 @@ theorem differentiableWithinAt_pi :
(hasFDerivWithinAt_pi.2 fun i => (h i).hasFDerivWithinAt).differentiableWithinAtβ©
#align differentiable_within_at_pi differentiableWithinAt_pi
+@[fun_prop]
+theorem differentiableWithinAt_pi'' (hΟ : β i, DifferentiableWithinAt π (fun x => Ξ¦ x i) s x) :
+ DifferentiableWithinAt π Ξ¦ s x := differentiableWithinAt_pi.2 hΟ
+
+@[fun_prop]
+theorem differentiableWithinAt_apply (i : ΞΉ) (f : β i, F' i) (s' : Set (β i, F' i)) :
+ DifferentiableWithinAt (π:=π) (fun f : β i, F' i => f i) s' f := by
+ apply HasFDerivWithinAt.differentiableWithinAt
+ fun_prop
+
@[simp]
theorem differentiableAt_pi : DifferentiableAt π Ξ¦ x β β i, DifferentiableAt π (fun x => Ξ¦ x i) x :=
β¨fun h i => (hasFDerivAt_pi'.1 h.hasFDerivAt i).differentiableAt, fun h =>
(hasFDerivAt_pi.2 fun i => (h i).hasFDerivAt).differentiableAtβ©
#align differentiable_at_pi differentiableAt_pi
+@[fun_prop]
+theorem differentiableAt_pi'' (hΟ : β i, DifferentiableAt π (fun x => Ξ¦ x i) x) :
+ DifferentiableAt π Ξ¦ x := differentiableAt_pi.2 hΟ
+
+@[fun_prop]
+theorem differentiableAt_apply (i : ΞΉ) (f : β i, F' i) :
+ DifferentiableAt (π:=π) (fun f : β i, F' i => f i) f := by
+ have h := ((differentiableAt_pi (π:=π)
+ (Ξ¦ := fun (f : β i, F' i) (i' : ΞΉ) => f i') (x:=f))).1
+ apply h; apply differentiableAt_id
+
theorem differentiableOn_pi : DifferentiableOn π Ξ¦ s β β i, DifferentiableOn π (fun x => Ξ¦ x i) s :=
β¨fun h i x hx => differentiableWithinAt_pi.1 (h x hx) i, fun h x hx =>
differentiableWithinAt_pi.2 fun i => h i x hxβ©
#align differentiable_on_pi differentiableOn_pi
+@[fun_prop]
+theorem differentiableOn_pi'' (hΟ : β i, DifferentiableOn π (fun x => Ξ¦ x i) s) :
+ DifferentiableOn π Ξ¦ s := differentiableOn_pi.2 hΟ
+
+@[fun_prop]
+theorem differentiableOn_apply (i : ΞΉ) (s' : Set (β i, F' i)) :
+ DifferentiableOn (π:=π) (fun f : β i, F' i => f i) s' := by
+ have h := ((differentiableOn_pi (π:=π)
+ (Ξ¦ := fun (f : β i, F' i) (i' : ΞΉ) => f i') (s:=s'))).1
+ apply h; apply differentiableOn_id
+
theorem differentiable_pi : Differentiable π Ξ¦ β β i, Differentiable π fun x => Ξ¦ x i :=
β¨fun h i x => differentiableAt_pi.1 (h x) i, fun h x => differentiableAt_pi.2 fun i => h i xβ©
#align differentiable_pi differentiable_pi
+@[fun_prop]
+theorem differentiable_pi'' (hΟ : β i, Differentiable π fun x => Ξ¦ x i) :
+ Differentiable π Ξ¦ := differentiable_pi.2 hΟ
+
+@[fun_prop]
+theorem differentiable_apply (i : ΞΉ) :
+ Differentiable (π:=π) (fun f : β i, F' i => f i) := by intro x; apply differentiableAt_apply
+
-- TODO: find out which version (`Ο` or `Ξ¦`) works better with `rw`/`simp`
theorem fderivWithin_pi (h : β i, DifferentiableWithinAt π (Ο i) s x)
(hs : UniqueDiffWithinAt π s x) :
open Classical
(#11199)
We remove all but one open Classical
s, instead preferring to use open scoped Classical
. The only real side-effect this led to is moving a couple declarations to use Exists.choose
instead of Classical.choose
.
The first few commits are explicitly labelled regex replaces for ease of review.
@@ -21,7 +21,8 @@ cartesian products of functions, and functions into Pi-types.
open Filter Asymptotics ContinuousLinearMap Set Metric
-open Topology Classical NNReal Filter Asymptotics ENNReal
+open scoped Classical
+open Topology NNReal Filter Asymptotics ENNReal
noncomputable section
Homogenises porting notes via capitalisation and addition of whitespace.
It makes the following changes:
@@ -380,7 +380,7 @@ theorem hasStrictFDerivAt_pi' :
exact isLittleO_pi
#align has_strict_fderiv_at_pi' hasStrictFDerivAt_pi'
-@[simp 1100] -- porting note: increased priority to make lint happy
+@[simp 1100] -- Porting note: increased priority to make lint happy
theorem hasStrictFDerivAt_pi :
HasStrictFDerivAt (fun x i => Ο i x) (ContinuousLinearMap.pi Ο') x β
β i, HasStrictFDerivAt (Ο i) (Ο' i) x :=
structure
(#8907)
This way we can easily change the definition so that it works for topological vector spaces without generalizing any of the theorems right away.
@@ -67,7 +67,7 @@ protected theorem HasStrictFDerivAt.prod (hfβ : HasStrictFDerivAt fβ fβ' x
theorem HasFDerivAtFilter.prod (hfβ : HasFDerivAtFilter fβ fβ' x L)
(hfβ : HasFDerivAtFilter fβ fβ' x L) :
HasFDerivAtFilter (fun x => (fβ x, fβ x)) (fβ'.prod fβ') x L :=
- hfβ.prod_left hfβ
+ .of_isLittleO <| hfβ.isLittleO.prod_left hfβ.isLittleO
#align has_fderiv_at_filter.prod HasFDerivAtFilter.prod
nonrec theorem HasFDerivWithinAt.prod (hfβ : HasFDerivWithinAt fβ fβ' s x)
@@ -391,7 +391,7 @@ theorem hasStrictFDerivAt_pi :
theorem hasFDerivAtFilter_pi' :
HasFDerivAtFilter Ξ¦ Ξ¦' x L β
β i, HasFDerivAtFilter (fun x => Ξ¦ x i) ((proj i).comp Ξ¦') x L := by
- simp only [HasFDerivAtFilter, ContinuousLinearMap.coe_pi]
+ simp only [hasFDerivAtFilter_iff_isLittleO, ContinuousLinearMap.coe_pi]
exact isLittleO_pi
#align has_fderiv_at_filter_pi' hasFDerivAtFilter_pi'
@@ -357,7 +357,7 @@ section Pi
/-!
### Derivatives of functions `f : E β Ξ i, F' i`
-In this section we formulate `has_*fderiv*_pi` theorems as `iff`s, and provide two versions of each
+In this section we formulate `has*FDeriv*_pi` theorems as `iff`s, and provide two versions of each
theorem:
* the version without `'` deals with `Ο : Ξ i, E β F' i` and `Ο' : Ξ i, E βL[π] F' i`
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -27,15 +27,15 @@ noncomputable section
section
-variable {π : Type _} [NontriviallyNormedField π]
+variable {π : Type*} [NontriviallyNormedField π]
-variable {E : Type _} [NormedAddCommGroup E] [NormedSpace π E]
+variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π E]
-variable {F : Type _} [NormedAddCommGroup F] [NormedSpace π F]
+variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π F]
-variable {G : Type _} [NormedAddCommGroup G] [NormedSpace π G]
+variable {G : Type*} [NormedAddCommGroup G] [NormedSpace π G]
-variable {G' : Type _} [NormedAddCommGroup G'] [NormedSpace π G']
+variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace π G']
variable {f fβ fβ g : E β F}
@@ -369,7 +369,7 @@ theorem:
-/
-variable {ΞΉ : Type _} [Fintype ΞΉ] {F' : ΞΉ β Type _} [β i, NormedAddCommGroup (F' i)]
+variable {ΞΉ : Type*} [Fintype ΞΉ] {F' : ΞΉ β Type*} [β i, NormedAddCommGroup (F' i)]
[β i, NormedSpace π (F' i)] {Ο : β i, E β F' i} {Ο' : β i, E βL[π] F' i} {Ξ¦ : E β β i, F' i}
{Ξ¦' : E βL[π] β i, F' i}
@@ -2,15 +2,12 @@
Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
-
-! This file was ported from Lean 3 source module analysis.calculus.fderiv.prod
-! leanprover-community/mathlib commit e354e865255654389cc46e6032160238df2e0f40
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.Calculus.FDeriv.Linear
import Mathlib.Analysis.Calculus.FDeriv.Comp
+#align_import analysis.calculus.fderiv.prod from "leanprover-community/mathlib"@"e354e865255654389cc46e6032160238df2e0f40"
+
/-!
# Derivative of the cartesian product of functions
@@ -364,10 +364,10 @@ In this section we formulate `has_*fderiv*_pi` theorems as `iff`s, and provide t
theorem:
* the version without `'` deals with `Ο : Ξ i, E β F' i` and `Ο' : Ξ i, E βL[π] F' i`
- and is designed to deduce differentiability of `Ξ» x i, Ο i x` from differentiability
+ and is designed to deduce differentiability of `fun x i β¦ Ο i x` from differentiability
of each `Ο i`;
* the version with `'` deals with `Ξ¦ : E β Ξ i, F' i` and `Ξ¦' : E βL[π] Ξ i, F' i`
- and is designed to deduce differentiability of the components `Ξ» x, Ξ¦ x i` from
+ and is designed to deduce differentiability of the components `fun x β¦ Ξ¦ x i` from
differentiability of `Ξ¦`.
-/
ContinuousAt.comp_of_eq
(#4904)
Forward-port of leanprover-community/mathlib#18877 (2 files)
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, SΓ©bastien GouΓ«zel, Yury Kudryashov
! This file was ported from Lean 3 source module analysis.calculus.fderiv.prod
-! leanprover-community/mathlib commit e3fb84046afd187b710170887195d50bada934ee
+! leanprover-community/mathlib commit e354e865255654389cc46e6032160238df2e0f40
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -122,12 +122,12 @@ theorem DifferentiableAt.fderiv_prod (hfβ : DifferentiableAt π fβ x)
(hfβ.hasFDerivAt.prod hfβ.hasFDerivAt).fderiv
#align differentiable_at.fderiv_prod DifferentiableAt.fderiv_prod
-theorem DifferentiableAt.fderivWithin_prod (hfβ : DifferentiableWithinAt π fβ s x)
+theorem DifferentiableWithinAt.fderivWithin_prod (hfβ : DifferentiableWithinAt π fβ s x)
(hfβ : DifferentiableWithinAt π fβ s x) (hxs : UniqueDiffWithinAt π s x) :
fderivWithin π (fun x : E => (fβ x, fβ x)) s x =
(fderivWithin π fβ s x).prod (fderivWithin π fβ s x) :=
(hfβ.hasFDerivWithinAt.prod hfβ.hasFDerivWithinAt).fderivWithin hxs
-#align differentiable_at.fderiv_within_prod DifferentiableAt.fderivWithin_prod
+#align differentiable_within_at.fderiv_within_prod DifferentiableWithinAt.fderivWithin_prod
end Prod
The unported dependencies are
algebra.order.module
init.core
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file