analysis.calculus.formal_multilinear_series ⟷ Mathlib.Analysis.Calculus.FormalMultilinearSeries

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: SΓ©bastien GouΓ«zel
 -/
-import Analysis.NormedSpace.Multilinear
+import Analysis.NormedSpace.Multilinear.Basic
 
 #align_import analysis.calculus.formal_multilinear_series from "leanprover-community/mathlib"@"61db041ab8e4aaf8cb5c7dc10a7d4ff261997536"
 
Diff
@@ -294,7 +294,7 @@ theorem apply_eq_zero_of_lt_order (hp : n < p.order) : p n = 0 :=
   Β· simp [h]
   Β·
     classical
-    rw [order_eq_find' h] at hp 
+    rw [order_eq_find' h] at hp
     simpa using Nat.find_min _ hp
 #align formal_multilinear_series.apply_eq_zero_of_lt_order FormalMultilinearSeries.apply_eq_zero_of_lt_order
 -/
Diff
@@ -315,11 +315,11 @@ def coeff (p : FormalMultilinearSeries π•œ π•œ E) (n : β„•) : E :=
 #align formal_multilinear_series.coeff FormalMultilinearSeries.coeff
 -/
 
-#print FormalMultilinearSeries.mkPiField_coeff_eq /-
-theorem mkPiField_coeff_eq (p : FormalMultilinearSeries π•œ π•œ E) (n : β„•) :
-    ContinuousMultilinearMap.mkPiField π•œ (Fin n) (p.coeff n) = p n :=
-  (p n).mkPiField_apply_one_eq_self
-#align formal_multilinear_series.mk_pi_field_coeff_eq FormalMultilinearSeries.mkPiField_coeff_eq
+#print FormalMultilinearSeries.mkPiRing_coeff_eq /-
+theorem mkPiRing_coeff_eq (p : FormalMultilinearSeries π•œ π•œ E) (n : β„•) :
+    ContinuousMultilinearMap.mkPiRing π•œ (Fin n) (p.coeff n) = p n :=
+  (p n).mkPiRing_apply_one_eq_self
+#align formal_multilinear_series.mk_pi_field_coeff_eq FormalMultilinearSeries.mkPiRing_coeff_eq
 -/
 
 #print FormalMultilinearSeries.apply_eq_prod_smul_coeff /-
@@ -333,7 +333,7 @@ theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) β€’ p.coeff n :=
 
 #print FormalMultilinearSeries.coeff_eq_zero /-
 theorem coeff_eq_zero : p.coeff n = 0 ↔ p n = 0 := by
-  rw [← mk_pi_field_coeff_eq p, ContinuousMultilinearMap.mkPiField_eq_zero_iff]
+  rw [← mk_pi_field_coeff_eq p, ContinuousMultilinearMap.mkPiRing_eq_zero_iff]
 #align formal_multilinear_series.coeff_eq_zero FormalMultilinearSeries.coeff_eq_zero
 -/
 
@@ -346,7 +346,7 @@ theorem apply_eq_pow_smul_coeff : (p n fun _ => z) = z ^ n β€’ p.coeff n := by s
 #print FormalMultilinearSeries.norm_apply_eq_norm_coef /-
 @[simp]
 theorem norm_apply_eq_norm_coef : β€–p nβ€– = β€–coeff p nβ€– := by
-  rw [← mk_pi_field_coeff_eq p, ContinuousMultilinearMap.norm_mkPiField]
+  rw [← mk_pi_field_coeff_eq p, ContinuousMultilinearMap.norm_mkPiRing]
 #align formal_multilinear_series.norm_apply_eq_norm_coef FormalMultilinearSeries.norm_apply_eq_norm_coef
 -/
 
Diff
@@ -260,7 +260,10 @@ theorem order_eq_find' [DecidablePred fun n => p n β‰  0] (hp : p β‰  0) :
 -/
 
 #print FormalMultilinearSeries.order_eq_zero_iff /-
-theorem order_eq_zero_iff (hp : p β‰  0) : p.order = 0 ↔ p 0 β‰  0 := by classical
+theorem order_eq_zero_iff (hp : p β‰  0) : p.order = 0 ↔ p 0 β‰  0 := by
+  classical
+  have : βˆƒ n, p n β‰  0 := formal_multilinear_series.ne_iff.mp hp
+  simp [order_eq_find this, hp]
 #align formal_multilinear_series.order_eq_zero_iff FormalMultilinearSeries.order_eq_zero_iff
 -/
 
@@ -271,7 +274,10 @@ theorem order_eq_zero_iff' : p.order = 0 ↔ p = 0 ∨ p 0 β‰  0 := by
 -/
 
 #print FormalMultilinearSeries.apply_order_ne_zero /-
-theorem apply_order_ne_zero (hp : p β‰  0) : p p.order β‰  0 := by classical
+theorem apply_order_ne_zero (hp : p β‰  0) : p p.order β‰  0 := by
+  classical
+  let h := formal_multilinear_series.ne_iff.mp hp
+  exact (order_eq_find h).symm β–Έ Nat.find_spec h
 #align formal_multilinear_series.apply_order_ne_zero FormalMultilinearSeries.apply_order_ne_zero
 -/
 
@@ -286,7 +292,10 @@ theorem apply_eq_zero_of_lt_order (hp : n < p.order) : p n = 0 :=
   by
   by_cases p = 0
   Β· simp [h]
-  Β· classical
+  Β·
+    classical
+    rw [order_eq_find' h] at hp 
+    simpa using Nat.find_min _ hp
 #align formal_multilinear_series.apply_eq_zero_of_lt_order FormalMultilinearSeries.apply_eq_zero_of_lt_order
 -/
 
Diff
@@ -260,10 +260,7 @@ theorem order_eq_find' [DecidablePred fun n => p n β‰  0] (hp : p β‰  0) :
 -/
 
 #print FormalMultilinearSeries.order_eq_zero_iff /-
-theorem order_eq_zero_iff (hp : p β‰  0) : p.order = 0 ↔ p 0 β‰  0 := by
-  classical
-  have : βˆƒ n, p n β‰  0 := formal_multilinear_series.ne_iff.mp hp
-  simp [order_eq_find this, hp]
+theorem order_eq_zero_iff (hp : p β‰  0) : p.order = 0 ↔ p 0 β‰  0 := by classical
 #align formal_multilinear_series.order_eq_zero_iff FormalMultilinearSeries.order_eq_zero_iff
 -/
 
@@ -274,10 +271,7 @@ theorem order_eq_zero_iff' : p.order = 0 ↔ p = 0 ∨ p 0 β‰  0 := by
 -/
 
 #print FormalMultilinearSeries.apply_order_ne_zero /-
-theorem apply_order_ne_zero (hp : p β‰  0) : p p.order β‰  0 := by
-  classical
-  let h := formal_multilinear_series.ne_iff.mp hp
-  exact (order_eq_find h).symm β–Έ Nat.find_spec h
+theorem apply_order_ne_zero (hp : p β‰  0) : p p.order β‰  0 := by classical
 #align formal_multilinear_series.apply_order_ne_zero FormalMultilinearSeries.apply_order_ne_zero
 -/
 
@@ -292,10 +286,7 @@ theorem apply_eq_zero_of_lt_order (hp : n < p.order) : p n = 0 :=
   by
   by_cases p = 0
   Β· simp [h]
-  Β·
-    classical
-    rw [order_eq_find' h] at hp 
-    simpa using Nat.find_min _ hp
+  Β· classical
 #align formal_multilinear_series.apply_eq_zero_of_lt_order FormalMultilinearSeries.apply_eq_zero_of_lt_order
 -/
 
Diff
@@ -3,7 +3,7 @@ Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: SΓ©bastien GouΓ«zel
 -/
-import Mathbin.Analysis.NormedSpace.Multilinear
+import Analysis.NormedSpace.Multilinear
 
 #align_import analysis.calculus.formal_multilinear_series from "leanprover-community/mathlib"@"61db041ab8e4aaf8cb5c7dc10a7d4ff261997536"
 
Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: SΓ©bastien GouΓ«zel
-
-! This file was ported from Lean 3 source module analysis.calculus.formal_multilinear_series
-! leanprover-community/mathlib commit 61db041ab8e4aaf8cb5c7dc10a7d4ff261997536
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.NormedSpace.Multilinear
 
+#align_import analysis.calculus.formal_multilinear_series from "leanprover-community/mathlib"@"61db041ab8e4aaf8cb5c7dc10a7d4ff261997536"
+
 /-!
 # Formal multilinear series
 
Diff
@@ -96,10 +96,12 @@ def removeZero (p : FormalMultilinearSeries π•œ E F) : FormalMultilinearSeries
 #align formal_multilinear_series.remove_zero FormalMultilinearSeries.removeZero
 -/
 
+#print FormalMultilinearSeries.removeZero_coeff_zero /-
 @[simp]
 theorem removeZero_coeff_zero (p : FormalMultilinearSeries π•œ E F) : p.removeZero 0 = 0 :=
   rfl
 #align formal_multilinear_series.remove_zero_coeff_zero FormalMultilinearSeries.removeZero_coeff_zero
+-/
 
 #print FormalMultilinearSeries.removeZero_coeff_succ /-
 @[simp]
@@ -132,11 +134,13 @@ def compContinuousLinearMap (p : FormalMultilinearSeries π•œ F G) (u : E β†’L[
 #align formal_multilinear_series.comp_continuous_linear_map FormalMultilinearSeries.compContinuousLinearMap
 -/
 
+#print FormalMultilinearSeries.compContinuousLinearMap_apply /-
 @[simp]
 theorem compContinuousLinearMap_apply (p : FormalMultilinearSeries π•œ F G) (u : E β†’L[π•œ] F) (n : β„•)
     (v : Fin n β†’ E) : (p.compContinuousLinearMap u) n v = p n (u ∘ v) :=
   rfl
 #align formal_multilinear_series.comp_continuous_linear_map_apply FormalMultilinearSeries.compContinuousLinearMap_apply
+-/
 
 variable (π•œ) [CommRing π•œ'] [SMul π•œ π•œ']
 
@@ -207,10 +211,12 @@ theorem compFormalMultilinearSeries_apply (f : F β†’L[π•œ] G) (p : FormalMultil
 #align continuous_linear_map.comp_formal_multilinear_series_apply ContinuousLinearMap.compFormalMultilinearSeries_apply
 -/
 
+#print ContinuousLinearMap.compFormalMultilinearSeries_apply' /-
 theorem compFormalMultilinearSeries_apply' (f : F β†’L[π•œ] G) (p : FormalMultilinearSeries π•œ E F)
     (n : β„•) (v : Fin n β†’ E) : (f.compFormalMultilinearSeries p) n v = f (p n v) :=
   rfl
 #align continuous_linear_map.comp_formal_multilinear_series_apply' ContinuousLinearMap.compFormalMultilinearSeries_apply'
+-/
 
 end ContinuousLinearMap
 
@@ -232,42 +238,59 @@ noncomputable def order (p : FormalMultilinearSeries π•œ E F) : β„• :=
 #align formal_multilinear_series.order FormalMultilinearSeries.order
 -/
 
+#print FormalMultilinearSeries.order_zero /-
 @[simp]
 theorem order_zero : (0 : FormalMultilinearSeries π•œ E F).order = 0 := by simp [order]
 #align formal_multilinear_series.order_zero FormalMultilinearSeries.order_zero
+-/
 
+#print FormalMultilinearSeries.ne_zero_of_order_ne_zero /-
 theorem ne_zero_of_order_ne_zero (hp : p.order β‰  0) : p β‰  0 := fun h => by simpa [h] using hp
 #align formal_multilinear_series.ne_zero_of_order_ne_zero FormalMultilinearSeries.ne_zero_of_order_ne_zero
+-/
 
+#print FormalMultilinearSeries.order_eq_find /-
 theorem order_eq_find [DecidablePred fun n => p n β‰  0] (hp : βˆƒ n, p n β‰  0) :
     p.order = Nat.find hp := by simp [order, Inf, hp]
 #align formal_multilinear_series.order_eq_find FormalMultilinearSeries.order_eq_find
+-/
 
+#print FormalMultilinearSeries.order_eq_find' /-
 theorem order_eq_find' [DecidablePred fun n => p n β‰  0] (hp : p β‰  0) :
     p.order = Nat.find (FormalMultilinearSeries.ne_iff.mp hp) :=
   order_eq_find _
 #align formal_multilinear_series.order_eq_find' FormalMultilinearSeries.order_eq_find'
+-/
 
+#print FormalMultilinearSeries.order_eq_zero_iff /-
 theorem order_eq_zero_iff (hp : p β‰  0) : p.order = 0 ↔ p 0 β‰  0 := by
   classical
   have : βˆƒ n, p n β‰  0 := formal_multilinear_series.ne_iff.mp hp
   simp [order_eq_find this, hp]
 #align formal_multilinear_series.order_eq_zero_iff FormalMultilinearSeries.order_eq_zero_iff
+-/
 
+#print FormalMultilinearSeries.order_eq_zero_iff' /-
 theorem order_eq_zero_iff' : p.order = 0 ↔ p = 0 ∨ p 0 β‰  0 := by
   by_cases h : p = 0 <;> simp [h, order_eq_zero_iff]
 #align formal_multilinear_series.order_eq_zero_iff' FormalMultilinearSeries.order_eq_zero_iff'
+-/
 
+#print FormalMultilinearSeries.apply_order_ne_zero /-
 theorem apply_order_ne_zero (hp : p β‰  0) : p p.order β‰  0 := by
   classical
   let h := formal_multilinear_series.ne_iff.mp hp
   exact (order_eq_find h).symm β–Έ Nat.find_spec h
 #align formal_multilinear_series.apply_order_ne_zero FormalMultilinearSeries.apply_order_ne_zero
+-/
 
+#print FormalMultilinearSeries.apply_order_ne_zero' /-
 theorem apply_order_ne_zero' (hp : p.order β‰  0) : p p.order β‰  0 :=
   apply_order_ne_zero (ne_zero_of_order_ne_zero hp)
 #align formal_multilinear_series.apply_order_ne_zero' FormalMultilinearSeries.apply_order_ne_zero'
+-/
 
+#print FormalMultilinearSeries.apply_eq_zero_of_lt_order /-
 theorem apply_eq_zero_of_lt_order (hp : n < p.order) : p n = 0 :=
   by
   by_cases p = 0
@@ -277,6 +300,7 @@ theorem apply_eq_zero_of_lt_order (hp : n < p.order) : p n = 0 :=
     rw [order_eq_find' h] at hp 
     simpa using Nat.find_min _ hp
 #align formal_multilinear_series.apply_eq_zero_of_lt_order FormalMultilinearSeries.apply_eq_zero_of_lt_order
+-/
 
 end Order
 
@@ -310,13 +334,17 @@ theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) β€’ p.coeff n :=
 #align formal_multilinear_series.apply_eq_prod_smul_coeff FormalMultilinearSeries.apply_eq_prod_smul_coeff
 -/
 
+#print FormalMultilinearSeries.coeff_eq_zero /-
 theorem coeff_eq_zero : p.coeff n = 0 ↔ p n = 0 := by
   rw [← mk_pi_field_coeff_eq p, ContinuousMultilinearMap.mkPiField_eq_zero_iff]
 #align formal_multilinear_series.coeff_eq_zero FormalMultilinearSeries.coeff_eq_zero
+-/
 
+#print FormalMultilinearSeries.apply_eq_pow_smul_coeff /-
 @[simp]
 theorem apply_eq_pow_smul_coeff : (p n fun _ => z) = z ^ n β€’ p.coeff n := by simp
 #align formal_multilinear_series.apply_eq_pow_smul_coeff FormalMultilinearSeries.apply_eq_pow_smul_coeff
+-/
 
 #print FormalMultilinearSeries.norm_apply_eq_norm_coef /-
 @[simp]
@@ -378,12 +406,14 @@ def constFormalMultilinearSeries (π•œ : Type _) [NontriviallyNormedField π•œ]
 #align const_formal_multilinear_series constFormalMultilinearSeries
 -/
 
+#print constFormalMultilinearSeries_apply /-
 @[simp]
 theorem constFormalMultilinearSeries_apply [NontriviallyNormedField π•œ] [NormedAddCommGroup E]
     [NormedAddCommGroup F] [NormedSpace π•œ E] [NormedSpace π•œ F] {c : F} {n : β„•} (hn : n β‰  0) :
     constFormalMultilinearSeries π•œ E c n = 0 :=
   Nat.casesOn n (fun hn => (hn rfl).elim) (fun _ _ => rfl) hn
 #align const_formal_multilinear_series_apply constFormalMultilinearSeries_apply
+-/
 
 end Const
 
Diff
@@ -228,7 +228,7 @@ variable [CommRing π•œ] {n : β„•} [AddCommGroup E] [Module π•œ E] [Topological
   is the order of the isolated zero of an analytic function `f` at a point if `p` is the Taylor
   series of `f` at that point. -/
 noncomputable def order (p : FormalMultilinearSeries π•œ E F) : β„• :=
-  sInf { n | p n β‰  0 }
+  sInf {n | p n β‰  0}
 #align formal_multilinear_series.order FormalMultilinearSeries.order
 -/
 
@@ -250,8 +250,8 @@ theorem order_eq_find' [DecidablePred fun n => p n β‰  0] (hp : p β‰  0) :
 
 theorem order_eq_zero_iff (hp : p β‰  0) : p.order = 0 ↔ p 0 β‰  0 := by
   classical
-    have : βˆƒ n, p n β‰  0 := formal_multilinear_series.ne_iff.mp hp
-    simp [order_eq_find this, hp]
+  have : βˆƒ n, p n β‰  0 := formal_multilinear_series.ne_iff.mp hp
+  simp [order_eq_find this, hp]
 #align formal_multilinear_series.order_eq_zero_iff FormalMultilinearSeries.order_eq_zero_iff
 
 theorem order_eq_zero_iff' : p.order = 0 ↔ p = 0 ∨ p 0 β‰  0 := by
@@ -260,8 +260,8 @@ theorem order_eq_zero_iff' : p.order = 0 ↔ p = 0 ∨ p 0 β‰  0 := by
 
 theorem apply_order_ne_zero (hp : p β‰  0) : p p.order β‰  0 := by
   classical
-    let h := formal_multilinear_series.ne_iff.mp hp
-    exact (order_eq_find h).symm β–Έ Nat.find_spec h
+  let h := formal_multilinear_series.ne_iff.mp hp
+  exact (order_eq_find h).symm β–Έ Nat.find_spec h
 #align formal_multilinear_series.apply_order_ne_zero FormalMultilinearSeries.apply_order_ne_zero
 
 theorem apply_order_ne_zero' (hp : p.order β‰  0) : p p.order β‰  0 :=
@@ -274,8 +274,8 @@ theorem apply_eq_zero_of_lt_order (hp : n < p.order) : p n = 0 :=
   Β· simp [h]
   Β·
     classical
-      rw [order_eq_find' h] at hp 
-      simpa using Nat.find_min _ hp
+    rw [order_eq_find' h] at hp 
+    simpa using Nat.find_min _ hp
 #align formal_multilinear_series.apply_eq_zero_of_lt_order FormalMultilinearSeries.apply_eq_zero_of_lt_order
 
 end Order
@@ -305,7 +305,7 @@ theorem mkPiField_coeff_eq (p : FormalMultilinearSeries π•œ π•œ E) (n : β„•) :
 @[simp]
 theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) β€’ p.coeff n :=
   by
-  convert(p n).toMultilinearMap.map_smul_univ y 1
+  convert (p n).toMultilinearMap.map_smul_univ y 1
   funext <;> simp only [Pi.one_apply, Algebra.id.smul_eq_mul, mul_one]
 #align formal_multilinear_series.apply_eq_prod_smul_coeff FormalMultilinearSeries.apply_eq_prod_smul_coeff
 -/
Diff
@@ -54,7 +54,8 @@ def FormalMultilinearSeries (π•œ : Type _) (E : Type _) (F : Type _) [Ring π•œ
     [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π•œ E]
     [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F]
     [ContinuousConstSMul π•œ F] :=
-  βˆ€ n : β„•, E[Γ—n]β†’L[π•œ] F deriving AddCommGroup
+  βˆ€ n : β„•, E[Γ—n]β†’L[π•œ] F
+deriving AddCommGroup
 #align formal_multilinear_series FormalMultilinearSeries
 -/
 
@@ -273,7 +274,7 @@ theorem apply_eq_zero_of_lt_order (hp : n < p.order) : p n = 0 :=
   Β· simp [h]
   Β·
     classical
-      rw [order_eq_find' h] at hp
+      rw [order_eq_find' h] at hp 
       simpa using Nat.find_min _ hp
 #align formal_multilinear_series.apply_eq_zero_of_lt_order FormalMultilinearSeries.apply_eq_zero_of_lt_order
 
@@ -351,7 +352,10 @@ theorem coeff_fslope : p.fslope.coeff n = p.coeff (n + 1) :=
 #print FormalMultilinearSeries.coeff_iterate_fslope /-
 @[simp]
 theorem coeff_iterate_fslope (k n : β„•) : ((fslope^[k]) p).coeff n = p.coeff (n + k) := by
-  induction' k with k ih generalizing p <;> first |rfl|simpa [ih]
+  induction' k with k ih generalizing p <;>
+    first
+    | rfl
+    | simpa [ih]
 #align formal_multilinear_series.coeff_iterate_fslope FormalMultilinearSeries.coeff_iterate_fslope
 -/
 
Diff
@@ -35,7 +35,7 @@ noncomputable section
 
 open Set Fin
 
-open Topology
+open scoped Topology
 
 variable {π•œ π•œ' E F G : Type _}
 
@@ -284,7 +284,7 @@ section Coef
 variable [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {s : E}
   {p : FormalMultilinearSeries π•œ π•œ E} {f : π•œ β†’ E} {n : β„•} {z zβ‚€ : π•œ} {y : Fin n β†’ π•œ}
 
-open BigOperators
+open scoped BigOperators
 
 #print FormalMultilinearSeries.coeff /-
 /-- The `n`th coefficient of `p` when seen as a power series. -/
Diff
@@ -95,9 +95,6 @@ def removeZero (p : FormalMultilinearSeries π•œ E F) : FormalMultilinearSeries
 #align formal_multilinear_series.remove_zero FormalMultilinearSeries.removeZero
 -/
 
-/- warning: formal_multilinear_series.remove_zero_coeff_zero -> FormalMultilinearSeries.removeZero_coeff_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.remove_zero_coeff_zero FormalMultilinearSeries.removeZero_coeff_zeroβ‚“'. -/
 @[simp]
 theorem removeZero_coeff_zero (p : FormalMultilinearSeries π•œ E F) : p.removeZero 0 = 0 :=
   rfl
@@ -134,9 +131,6 @@ def compContinuousLinearMap (p : FormalMultilinearSeries π•œ F G) (u : E β†’L[
 #align formal_multilinear_series.comp_continuous_linear_map FormalMultilinearSeries.compContinuousLinearMap
 -/
 
-/- warning: formal_multilinear_series.comp_continuous_linear_map_apply -> FormalMultilinearSeries.compContinuousLinearMap_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.comp_continuous_linear_map_apply FormalMultilinearSeries.compContinuousLinearMap_applyβ‚“'. -/
 @[simp]
 theorem compContinuousLinearMap_apply (p : FormalMultilinearSeries π•œ F G) (u : E β†’L[π•œ] F) (n : β„•)
     (v : Fin n β†’ E) : (p.compContinuousLinearMap u) n v = p n (u ∘ v) :=
@@ -212,9 +206,6 @@ theorem compFormalMultilinearSeries_apply (f : F β†’L[π•œ] G) (p : FormalMultil
 #align continuous_linear_map.comp_formal_multilinear_series_apply ContinuousLinearMap.compFormalMultilinearSeries_apply
 -/
 
-/- warning: continuous_linear_map.comp_formal_multilinear_series_apply' -> ContinuousLinearMap.compFormalMultilinearSeries_apply' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.comp_formal_multilinear_series_apply' ContinuousLinearMap.compFormalMultilinearSeries_apply'β‚“'. -/
 theorem compFormalMultilinearSeries_apply' (f : F β†’L[π•œ] G) (p : FormalMultilinearSeries π•œ E F)
     (n : β„•) (v : Fin n β†’ E) : (f.compFormalMultilinearSeries p) n v = f (p n v) :=
   rfl
@@ -240,69 +231,42 @@ noncomputable def order (p : FormalMultilinearSeries π•œ E F) : β„• :=
 #align formal_multilinear_series.order FormalMultilinearSeries.order
 -/
 
-/- warning: formal_multilinear_series.order_zero -> FormalMultilinearSeries.order_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_zero FormalMultilinearSeries.order_zeroβ‚“'. -/
 @[simp]
 theorem order_zero : (0 : FormalMultilinearSeries π•œ E F).order = 0 := by simp [order]
 #align formal_multilinear_series.order_zero FormalMultilinearSeries.order_zero
 
-/- warning: formal_multilinear_series.ne_zero_of_order_ne_zero -> FormalMultilinearSeries.ne_zero_of_order_ne_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.ne_zero_of_order_ne_zero FormalMultilinearSeries.ne_zero_of_order_ne_zeroβ‚“'. -/
 theorem ne_zero_of_order_ne_zero (hp : p.order β‰  0) : p β‰  0 := fun h => by simpa [h] using hp
 #align formal_multilinear_series.ne_zero_of_order_ne_zero FormalMultilinearSeries.ne_zero_of_order_ne_zero
 
-/- warning: formal_multilinear_series.order_eq_find -> FormalMultilinearSeries.order_eq_find is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_eq_find FormalMultilinearSeries.order_eq_findβ‚“'. -/
 theorem order_eq_find [DecidablePred fun n => p n β‰  0] (hp : βˆƒ n, p n β‰  0) :
     p.order = Nat.find hp := by simp [order, Inf, hp]
 #align formal_multilinear_series.order_eq_find FormalMultilinearSeries.order_eq_find
 
-/- warning: formal_multilinear_series.order_eq_find' -> FormalMultilinearSeries.order_eq_find' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_eq_find' FormalMultilinearSeries.order_eq_find'β‚“'. -/
 theorem order_eq_find' [DecidablePred fun n => p n β‰  0] (hp : p β‰  0) :
     p.order = Nat.find (FormalMultilinearSeries.ne_iff.mp hp) :=
   order_eq_find _
 #align formal_multilinear_series.order_eq_find' FormalMultilinearSeries.order_eq_find'
 
-/- warning: formal_multilinear_series.order_eq_zero_iff -> FormalMultilinearSeries.order_eq_zero_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_eq_zero_iff FormalMultilinearSeries.order_eq_zero_iffβ‚“'. -/
 theorem order_eq_zero_iff (hp : p β‰  0) : p.order = 0 ↔ p 0 β‰  0 := by
   classical
     have : βˆƒ n, p n β‰  0 := formal_multilinear_series.ne_iff.mp hp
     simp [order_eq_find this, hp]
 #align formal_multilinear_series.order_eq_zero_iff FormalMultilinearSeries.order_eq_zero_iff
 
-/- warning: formal_multilinear_series.order_eq_zero_iff' -> FormalMultilinearSeries.order_eq_zero_iff' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_eq_zero_iff' FormalMultilinearSeries.order_eq_zero_iff'β‚“'. -/
 theorem order_eq_zero_iff' : p.order = 0 ↔ p = 0 ∨ p 0 β‰  0 := by
   by_cases h : p = 0 <;> simp [h, order_eq_zero_iff]
 #align formal_multilinear_series.order_eq_zero_iff' FormalMultilinearSeries.order_eq_zero_iff'
 
-/- warning: formal_multilinear_series.apply_order_ne_zero -> FormalMultilinearSeries.apply_order_ne_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_order_ne_zero FormalMultilinearSeries.apply_order_ne_zeroβ‚“'. -/
 theorem apply_order_ne_zero (hp : p β‰  0) : p p.order β‰  0 := by
   classical
     let h := formal_multilinear_series.ne_iff.mp hp
     exact (order_eq_find h).symm β–Έ Nat.find_spec h
 #align formal_multilinear_series.apply_order_ne_zero FormalMultilinearSeries.apply_order_ne_zero
 
-/- warning: formal_multilinear_series.apply_order_ne_zero' -> FormalMultilinearSeries.apply_order_ne_zero' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_order_ne_zero' FormalMultilinearSeries.apply_order_ne_zero'β‚“'. -/
 theorem apply_order_ne_zero' (hp : p.order β‰  0) : p p.order β‰  0 :=
   apply_order_ne_zero (ne_zero_of_order_ne_zero hp)
 #align formal_multilinear_series.apply_order_ne_zero' FormalMultilinearSeries.apply_order_ne_zero'
 
-/- warning: formal_multilinear_series.apply_eq_zero_of_lt_order -> FormalMultilinearSeries.apply_eq_zero_of_lt_order is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_eq_zero_of_lt_order FormalMultilinearSeries.apply_eq_zero_of_lt_orderβ‚“'. -/
 theorem apply_eq_zero_of_lt_order (hp : n < p.order) : p n = 0 :=
   by
   by_cases p = 0
@@ -345,16 +309,10 @@ theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) β€’ p.coeff n :=
 #align formal_multilinear_series.apply_eq_prod_smul_coeff FormalMultilinearSeries.apply_eq_prod_smul_coeff
 -/
 
-/- warning: formal_multilinear_series.coeff_eq_zero -> FormalMultilinearSeries.coeff_eq_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.coeff_eq_zero FormalMultilinearSeries.coeff_eq_zeroβ‚“'. -/
 theorem coeff_eq_zero : p.coeff n = 0 ↔ p n = 0 := by
   rw [← mk_pi_field_coeff_eq p, ContinuousMultilinearMap.mkPiField_eq_zero_iff]
 #align formal_multilinear_series.coeff_eq_zero FormalMultilinearSeries.coeff_eq_zero
 
-/- warning: formal_multilinear_series.apply_eq_pow_smul_coeff -> FormalMultilinearSeries.apply_eq_pow_smul_coeff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_eq_pow_smul_coeff FormalMultilinearSeries.apply_eq_pow_smul_coeffβ‚“'. -/
 @[simp]
 theorem apply_eq_pow_smul_coeff : (p n fun _ => z) = z ^ n β€’ p.coeff n := by simp
 #align formal_multilinear_series.apply_eq_pow_smul_coeff FormalMultilinearSeries.apply_eq_pow_smul_coeff
@@ -416,9 +374,6 @@ def constFormalMultilinearSeries (π•œ : Type _) [NontriviallyNormedField π•œ]
 #align const_formal_multilinear_series constFormalMultilinearSeries
 -/
 
-/- warning: const_formal_multilinear_series_apply -> constFormalMultilinearSeries_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align const_formal_multilinear_series_apply constFormalMultilinearSeries_applyβ‚“'. -/
 @[simp]
 theorem constFormalMultilinearSeries_apply [NontriviallyNormedField π•œ] [NormedAddCommGroup E]
     [NormedAddCommGroup F] [NormedSpace π•œ E] [NormedSpace π•œ F] {c : F} {n : β„•} (hn : n β‰  0) :
Diff
@@ -113,9 +113,7 @@ theorem removeZero_coeff_succ (p : FormalMultilinearSeries π•œ E F) (n : β„•) :
 
 #print FormalMultilinearSeries.removeZero_of_pos /-
 theorem removeZero_of_pos (p : FormalMultilinearSeries π•œ E F) {n : β„•} (h : 0 < n) :
-    p.removeZero n = p n := by
-  rw [← Nat.succ_pred_eq_of_pos h]
-  rfl
+    p.removeZero n = p n := by rw [← Nat.succ_pred_eq_of_pos h]; rfl
 #align formal_multilinear_series.remove_zero_of_pos FormalMultilinearSeries.removeZero_of_pos
 -/
 
@@ -124,10 +122,7 @@ theorem removeZero_of_pos (p : FormalMultilinearSeries π•œ E F) {n : β„•} (h :
 multilinear series are equal, then the values are also equal. -/
 theorem congr (p : FormalMultilinearSeries π•œ E F) {m n : β„•} {v : Fin m β†’ E} {w : Fin n β†’ E}
     (h1 : m = n) (h2 : βˆ€ (i : β„•) (him : i < m) (hin : i < n), v ⟨i, him⟩ = w ⟨i, hin⟩) :
-    p m v = p n w := by
-  cases h1
-  congr with ⟨i, hi⟩
-  exact h2 i hi hi
+    p m v = p n w := by cases h1; congr with ⟨i, hi⟩; exact h2 i hi hi
 #align formal_multilinear_series.congr FormalMultilinearSeries.congr
 -/
 
Diff
@@ -96,10 +96,7 @@ def removeZero (p : FormalMultilinearSeries π•œ E F) : FormalMultilinearSeries
 -/
 
 /- warning: formal_multilinear_series.remove_zero_coeff_zero -> FormalMultilinearSeries.removeZero_coeff_zero is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] (p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11), Eq.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => _inst_4) _inst_9) (FormalMultilinearSeries.removeZero.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] (p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11), Eq.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) (FormalMultilinearSeries.removeZero.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.remove_zero_coeff_zero FormalMultilinearSeries.removeZero_coeff_zeroβ‚“'. -/
 @[simp]
 theorem removeZero_coeff_zero (p : FormalMultilinearSeries π•œ E F) : p.removeZero 0 = 0 :=
@@ -143,10 +140,7 @@ def compContinuousLinearMap (p : FormalMultilinearSeries π•œ F G) (u : E β†’L[
 -/
 
 /- warning: formal_multilinear_series.comp_continuous_linear_map_apply -> FormalMultilinearSeries.compContinuousLinearMap_apply is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {G : Type.{u4}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] [_inst_12 : AddCommGroup.{u4} G] [_inst_13 : Module.{u1, u4} π•œ G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)] [_inst_14 : TopologicalSpace.{u4} G] [_inst_15 : TopologicalAddGroup.{u4} G _inst_14 (AddCommGroup.toAddGroup.{u4} G _inst_12)] [_inst_16 : ContinuousConstSMul.{u1, u4} π•œ G _inst_14 (SMulZeroClass.toHasSmul.{u1, u4} π•œ G (AddZeroClass.toHasZero.{u4} G (AddMonoid.toAddZeroClass.{u4} G (AddCommMonoid.toAddMonoid.{u4} G (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)))) (SMulWithZero.toSmulZeroClass.{u1, u4} π•œ G (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u4} G (AddMonoid.toAddZeroClass.{u4} G (AddCommMonoid.toAddMonoid.{u4} G (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ G (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u4} G (AddMonoid.toAddZeroClass.{u4} G (AddCommMonoid.toAddMonoid.{u4} G (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)))) (Module.toMulActionWithZero.{u1, u4} π•œ G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_13))))] (p : FormalMultilinearSeries.{u1, u3, u4} π•œ F G (CommRing.toRing.{u1} π•œ _inst_1) _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16) (u : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) (n : Nat) (v : (Fin n) -> E), Eq.{succ u4} G (coeFn.{max 1 (succ u2) (succ u4), max (succ u2) (succ u4)} (ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_3) _inst_13 (fun (i : Fin n) => _inst_4) _inst_14) (fun (_x : ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_3) _inst_13 (fun (i : Fin n) => _inst_4) _inst_14) => ((Fin n) -> E) -> G) (ContinuousMultilinearMap.hasCoeToFun.{u1, 0, u2, u4} π•œ (Fin n) (fun (i : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_3) _inst_13 (fun (i : Fin n) => _inst_4) _inst_14) (FormalMultilinearSeries.compContinuousLinearMap.{u1, u2, u3, u4} π•œ E F G _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 p u n) v) (coeFn.{max 1 (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousMultilinearMap.{u1, 0, u3, u4} π•œ (Fin n) (fun (i : Fin n) => F) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u3} ((fun (i : Fin n) => F) i) _inst_7) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_8) _inst_13 (fun (i : Fin n) => _inst_9) _inst_14) (fun (_x : ContinuousMultilinearMap.{u1, 0, u3, u4} π•œ (Fin n) (fun (i : Fin n) => F) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u3} ((fun (i : Fin n) => F) i) _inst_7) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_8) _inst_13 (fun (i : Fin n) => _inst_9) _inst_14) => ((Fin n) -> F) -> G) (ContinuousMultilinearMap.hasCoeToFun.{u1, 0, u3, u4} π•œ (Fin n) (fun (i : Fin n) => F) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u3} ((fun (i : Fin n) => F) i) _inst_7) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_8) _inst_13 (fun (i : Fin n) => _inst_9) _inst_14) (p n) (Function.comp.{1, succ u2, succ u3} (Fin n) E F (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) u) v))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {G : Type.{u4}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] [_inst_12 : AddCommGroup.{u4} G] [_inst_13 : Module.{u1, u4} π•œ G (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)] [_inst_14 : TopologicalSpace.{u4} G] [_inst_15 : TopologicalAddGroup.{u4} G _inst_14 (AddCommGroup.toAddGroup.{u4} G _inst_12)] [_inst_16 : ContinuousConstSMul.{u1, u4} π•œ G _inst_14 (SMulZeroClass.toSMul.{u1, u4} π•œ G (NegZeroClass.toZero.{u4} G (SubNegZeroMonoid.toNegZeroClass.{u4} G (SubtractionMonoid.toSubNegZeroMonoid.{u4} G (SubtractionCommMonoid.toSubtractionMonoid.{u4} G (AddCommGroup.toDivisionAddCommMonoid.{u4} G _inst_12))))) (SMulWithZero.toSMulZeroClass.{u1, u4} π•œ G (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u4} G (SubNegZeroMonoid.toNegZeroClass.{u4} G (SubtractionMonoid.toSubNegZeroMonoid.{u4} G (SubtractionCommMonoid.toSubtractionMonoid.{u4} G (AddCommGroup.toDivisionAddCommMonoid.{u4} G _inst_12))))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ G (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u4} G (SubNegZeroMonoid.toNegZeroClass.{u4} G (SubtractionMonoid.toSubNegZeroMonoid.{u4} G (SubtractionCommMonoid.toSubtractionMonoid.{u4} G (AddCommGroup.toDivisionAddCommMonoid.{u4} G _inst_12))))) (Module.toMulActionWithZero.{u1, u4} π•œ G (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_13))))] (p : FormalMultilinearSeries.{u1, u3, u4} π•œ F G (CommRing.toRing.{u1} π•œ _inst_1) _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16) (u : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) (n : Nat) (v : (Fin n) -> E), Eq.{succ u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => G) v) (FunLike.coe.{max (succ u2) (succ u4), succ u2, succ u4} (ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_14) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (fun (_x : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => G) _x) (ContinuousMapClass.toFunLike.{max u2 u4, u2, u4} (ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_14) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) G (Pi.topologicalSpace.{0, u2} (Fin n) (fun (i : Fin n) => (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (fun (a : Fin n) => (fun (i : Fin n) => _inst_4) a)) _inst_14 (ContinuousMultilinearMap.continuousMapClass.{u1, 0, u2, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_14)) (FormalMultilinearSeries.compContinuousLinearMap.{u1, u2, u3, u4} π•œ E F G _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 p u n) v) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousMultilinearMap.{u1, 0, u3, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u3} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) _inst_7) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_8) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_9) i) _inst_14) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) (fun (_x : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) => G) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousMultilinearMap.{u1, 0, u3, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u3} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) _inst_7) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_8) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_9) i) _inst_14) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) G (Pi.topologicalSpace.{0, u3} (Fin n) (fun (i : Fin n) => (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) (fun (a : Fin n) => (fun (i : Fin n) => _inst_9) a)) _inst_14 (ContinuousMultilinearMap.continuousMapClass.{u1, 0, u3, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u3} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) _inst_7) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_8) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_9) i) _inst_14)) (p n) (Function.comp.{1, succ u2, succ u3} (Fin n) E F (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u3, u2, u3} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) E F _inst_4 _inst_9 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u3, u1, u1, u2, u3} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u1, u1, u2, u3} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8))) u) v))
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.comp_continuous_linear_map_apply FormalMultilinearSeries.compContinuousLinearMap_applyβ‚“'. -/
 @[simp]
 theorem compContinuousLinearMap_apply (p : FormalMultilinearSeries π•œ F G) (u : E β†’L[π•œ] F) (n : β„•)
@@ -224,10 +218,7 @@ theorem compFormalMultilinearSeries_apply (f : F β†’L[π•œ] G) (p : FormalMultil
 -/
 
 /- warning: continuous_linear_map.comp_formal_multilinear_series_apply' -> ContinuousLinearMap.compFormalMultilinearSeries_apply' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {G : Type.{u4}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] [_inst_12 : AddCommGroup.{u4} G] [_inst_13 : Module.{u1, u4} π•œ G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)] [_inst_14 : TopologicalSpace.{u4} G] [_inst_15 : TopologicalAddGroup.{u4} G _inst_14 (AddCommGroup.toAddGroup.{u4} G _inst_12)] [_inst_16 : ContinuousConstSMul.{u1, u4} π•œ G _inst_14 (SMulZeroClass.toHasSmul.{u1, u4} π•œ G (AddZeroClass.toHasZero.{u4} G (AddMonoid.toAddZeroClass.{u4} G (AddCommMonoid.toAddMonoid.{u4} G (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)))) (SMulWithZero.toSmulZeroClass.{u1, u4} π•œ G (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u4} G (AddMonoid.toAddZeroClass.{u4} G (AddCommMonoid.toAddMonoid.{u4} G (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ G (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u4} G (AddMonoid.toAddZeroClass.{u4} G (AddCommMonoid.toAddMonoid.{u4} G (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)))) (Module.toMulActionWithZero.{u1, u4} π•œ G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_13))))] (f : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) (p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (n : Nat) (v : (Fin n) -> E), Eq.{succ u4} G (coeFn.{max 1 (succ u2) (succ u4), max (succ u2) (succ u4)} (ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_3) _inst_13 (fun (i : Fin n) => _inst_4) _inst_14) (fun (_x : ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_3) _inst_13 (fun (i : Fin n) => _inst_4) _inst_14) => ((Fin n) -> E) -> G) (ContinuousMultilinearMap.hasCoeToFun.{u1, 0, u2, u4} π•œ (Fin n) (fun (i : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_3) _inst_13 (fun (i : Fin n) => _inst_4) _inst_14) (ContinuousLinearMap.compFormalMultilinearSeries.{u1, u2, u3, u4} π•œ E F G _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 f p n) v) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) (fun (_x : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) => F -> G) (ContinuousLinearMap.toFun.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) f (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (fun (_x : ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) => ((Fin n) -> E) -> F) (ContinuousMultilinearMap.hasCoeToFun.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) v))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {G : Type.{u4}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] [_inst_12 : AddCommGroup.{u4} G] [_inst_13 : Module.{u1, u4} π•œ G (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)] [_inst_14 : TopologicalSpace.{u4} G] [_inst_15 : TopologicalAddGroup.{u4} G _inst_14 (AddCommGroup.toAddGroup.{u4} G _inst_12)] [_inst_16 : ContinuousConstSMul.{u1, u4} π•œ G _inst_14 (SMulZeroClass.toSMul.{u1, u4} π•œ G (NegZeroClass.toZero.{u4} G (SubNegZeroMonoid.toNegZeroClass.{u4} G (SubtractionMonoid.toSubNegZeroMonoid.{u4} G (SubtractionCommMonoid.toSubtractionMonoid.{u4} G (AddCommGroup.toDivisionAddCommMonoid.{u4} G _inst_12))))) (SMulWithZero.toSMulZeroClass.{u1, u4} π•œ G (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u4} G (SubNegZeroMonoid.toNegZeroClass.{u4} G (SubtractionMonoid.toSubNegZeroMonoid.{u4} G (SubtractionCommMonoid.toSubtractionMonoid.{u4} G (AddCommGroup.toDivisionAddCommMonoid.{u4} G _inst_12))))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ G (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u4} G (SubNegZeroMonoid.toNegZeroClass.{u4} G (SubtractionMonoid.toSubNegZeroMonoid.{u4} G (SubtractionCommMonoid.toSubtractionMonoid.{u4} G (AddCommGroup.toDivisionAddCommMonoid.{u4} G _inst_12))))) (Module.toMulActionWithZero.{u1, u4} π•œ G (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_13))))] (f : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) (p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (n : Nat) (v : (Fin n) -> E), Eq.{succ u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => G) v) (FunLike.coe.{max (succ u2) (succ u4), succ u2, succ u4} (ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_14) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (fun (_x : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => G) _x) (ContinuousMapClass.toFunLike.{max u2 u4, u2, u4} (ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_14) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) G (Pi.topologicalSpace.{0, u2} (Fin n) (fun (i : Fin n) => (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (fun (a : Fin n) => (fun (i : Fin n) => _inst_4) a)) _inst_14 (ContinuousMultilinearMap.continuousMapClass.{u1, 0, u2, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_14)) (ContinuousLinearMap.compFormalMultilinearSeries.{u1, u2, u3, u4} π•œ E F G _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 f p n) v) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) F (fun (_x : F) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : F) => G) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) F G _inst_9 _inst_14 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u1, u1, u3, u4} (ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13 (ContinuousLinearMap.continuousSemilinearMapClass.{u1, u1, u3, u4} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13))) f (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_8 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_9) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (fun (_x : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u3, u2, u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_8 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_9) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) F (Pi.topologicalSpace.{0, u2} (Fin n) (fun (i : Fin n) => (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (fun (a : Fin n) => (fun (i : Fin n) => _inst_4) a)) _inst_9 (ContinuousMultilinearMap.continuousMapClass.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_8 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_9)) (p n) v))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.comp_formal_multilinear_series_apply' ContinuousLinearMap.compFormalMultilinearSeries_apply'β‚“'. -/
 theorem compFormalMultilinearSeries_apply' (f : F β†’L[π•œ] G) (p : FormalMultilinearSeries π•œ E F)
     (n : β„•) (v : Fin n β†’ E) : (f.compFormalMultilinearSeries p) n v = f (p n v) :=
@@ -255,39 +246,27 @@ noncomputable def order (p : FormalMultilinearSeries π•œ E F) : β„• :=
 -/
 
 /- warning: formal_multilinear_series.order_zero -> FormalMultilinearSeries.order_zero is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))], Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))], Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_zero FormalMultilinearSeries.order_zeroβ‚“'. -/
 @[simp]
 theorem order_zero : (0 : FormalMultilinearSeries π•œ E F).order = 0 := by simp [order]
 #align formal_multilinear_series.order_zero FormalMultilinearSeries.order_zero
 
 /- warning: formal_multilinear_series.ne_zero_of_order_ne_zero -> FormalMultilinearSeries.ne_zero_of_order_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (Ne.{max 1 (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (Ne.{max (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.ne_zero_of_order_ne_zero FormalMultilinearSeries.ne_zero_of_order_ne_zeroβ‚“'. -/
 theorem ne_zero_of_order_ne_zero (hp : p.order β‰  0) : p β‰  0 := fun h => by simpa [h] using hp
 #align formal_multilinear_series.ne_zero_of_order_ne_zero FormalMultilinearSeries.ne_zero_of_order_ne_zero
 
 /- warning: formal_multilinear_series.order_eq_find -> FormalMultilinearSeries.order_eq_find is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11} [_inst_12 : DecidablePred.{1} Nat (fun (n : Nat) => Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9)))))] (hp : Exists.{1} Nat (fun (n : Nat) => Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9)))))), Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (Nat.find (fun (n : Nat) => Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9))))) (fun (a : Nat) => _inst_12 a) hp)
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11} [_inst_12 : DecidablePred.{1} Nat (fun (n : Nat) => Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9))))] (hp : Exists.{1} Nat (fun (n : Nat) => Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9))))), Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (Nat.find (fun (n : Nat) => Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9)))) (fun (a : Nat) => _inst_12 a) hp)
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_eq_find FormalMultilinearSeries.order_eq_findβ‚“'. -/
 theorem order_eq_find [DecidablePred fun n => p n β‰  0] (hp : βˆƒ n, p n β‰  0) :
     p.order = Nat.find hp := by simp [order, Inf, hp]
 #align formal_multilinear_series.order_eq_find FormalMultilinearSeries.order_eq_find
 
 /- warning: formal_multilinear_series.order_eq_find' -> FormalMultilinearSeries.order_eq_find' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11} [_inst_12 : DecidablePred.{1} Nat (fun (n : Nat) => Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9)))))] (hp : Ne.{max 1 (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))), Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (Nat.find (fun (n : Nat) => Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))) n)) (fun (a : Nat) => _inst_12 a) (Iff.mp (Ne.{max 1 (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))) (Exists.{1} Nat (fun (n : Nat) => Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))) n))) (FormalMultilinearSeries.ne_iff.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))) hp))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11} [_inst_12 : DecidablePred.{1} Nat (fun (n : Nat) => Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9))))] (hp : Ne.{max (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))), Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (Nat.find (fun (n : Nat) => Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))) n)) (fun (a : Nat) => _inst_12 a) (Iff.mp (Ne.{max (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))) (Exists.{1} Nat (fun (n : Nat) => Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))) n))) (FormalMultilinearSeries.ne_iff.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))) hp))
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_eq_find' FormalMultilinearSeries.order_eq_find'β‚“'. -/
 theorem order_eq_find' [DecidablePred fun n => p n β‰  0] (hp : p β‰  0) :
     p.order = Nat.find (FormalMultilinearSeries.ne_iff.mp hp) :=
@@ -295,10 +274,7 @@ theorem order_eq_find' [DecidablePred fun n => p n β‰  0] (hp : p β‰  0) :
 #align formal_multilinear_series.order_eq_find' FormalMultilinearSeries.order_eq_find'
 
 /- warning: formal_multilinear_series.order_eq_zero_iff -> FormalMultilinearSeries.order_eq_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{max 1 (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))) -> (Iff (Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => _inst_4) _inst_9) (p (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{max (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))) -> (Iff (Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) (p (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_eq_zero_iff FormalMultilinearSeries.order_eq_zero_iffβ‚“'. -/
 theorem order_eq_zero_iff (hp : p β‰  0) : p.order = 0 ↔ p 0 β‰  0 := by
   classical
@@ -307,20 +283,14 @@ theorem order_eq_zero_iff (hp : p β‰  0) : p.order = 0 ↔ p 0 β‰  0 := by
 #align formal_multilinear_series.order_eq_zero_iff FormalMultilinearSeries.order_eq_zero_iff
 
 /- warning: formal_multilinear_series.order_eq_zero_iff' -> FormalMultilinearSeries.order_eq_zero_iff' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, Iff (Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Or (Eq.{max 1 (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))) (Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => _inst_4) _inst_9) (p (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, Iff (Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Or (Eq.{max (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))) (Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) (p (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9)))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_eq_zero_iff' FormalMultilinearSeries.order_eq_zero_iff'β‚“'. -/
 theorem order_eq_zero_iff' : p.order = 0 ↔ p = 0 ∨ p 0 β‰  0 := by
   by_cases h : p = 0 <;> simp [h, order_eq_zero_iff]
 #align formal_multilinear_series.order_eq_zero_iff' FormalMultilinearSeries.order_eq_zero_iff'
 
 /- warning: formal_multilinear_series.apply_order_ne_zero -> FormalMultilinearSeries.apply_order_ne_zero is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{max 1 (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))) -> (Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (p (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9)))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{max (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))) -> (Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (p (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_order_ne_zero FormalMultilinearSeries.apply_order_ne_zeroβ‚“'. -/
 theorem apply_order_ne_zero (hp : p β‰  0) : p p.order β‰  0 := by
   classical
@@ -329,20 +299,14 @@ theorem apply_order_ne_zero (hp : p β‰  0) : p p.order β‰  0 := by
 #align formal_multilinear_series.apply_order_ne_zero FormalMultilinearSeries.apply_order_ne_zero
 
 /- warning: formal_multilinear_series.apply_order_ne_zero' -> FormalMultilinearSeries.apply_order_ne_zero' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (p (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9)))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (p (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_order_ne_zero' FormalMultilinearSeries.apply_order_ne_zero'β‚“'. -/
 theorem apply_order_ne_zero' (hp : p.order β‰  0) : p p.order β‰  0 :=
   apply_order_ne_zero (ne_zero_of_order_ne_zero hp)
 #align formal_multilinear_series.apply_order_ne_zero' FormalMultilinearSeries.apply_order_ne_zero'
 
 /- warning: formal_multilinear_series.apply_eq_zero_of_lt_order -> FormalMultilinearSeries.apply_eq_zero_of_lt_order is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] {n : Nat} [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (LT.lt.{0} Nat Nat.hasLt n (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) -> (Eq.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9)))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] {n : Nat} [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (LT.lt.{0} Nat instLTNat n (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_eq_zero_of_lt_order FormalMultilinearSeries.apply_eq_zero_of_lt_orderβ‚“'. -/
 theorem apply_eq_zero_of_lt_order (hp : n < p.order) : p n = 0 :=
   by
@@ -387,20 +351,14 @@ theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) β€’ p.coeff n :=
 -/
 
 /- warning: formal_multilinear_series.coeff_eq_zero -> FormalMultilinearSeries.coeff_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toHasSmul.{u1, u1} π•œ π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (SMulWithZero.toSmulZeroClass.{u1, u1} π•œ π•œ (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (semi_normed_ring_top_monoid.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat}, Iff (Eq.{succ u2} E (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) (Eq.{max 1 (succ u1) (succ u2)} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (p n) (OfNat.ofNat.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) 0 (OfNat.mk.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) 0 (Zero.zero.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (ContinuousMultilinearMap.hasZero.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toSMul.{u1, u1} π•œ π•œ (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (SMulWithZero.toSMulZeroClass.{u1, u1} π•œ π•œ (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalSemiring.toContinuousMul.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalRing.toTopologicalSemiring.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (TopologicalDivisionRing.toTopologicalRing.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedDivisionRing.to_topologicalDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat}, Iff (Eq.{succ u2} E (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) (Eq.{max (succ u1) (succ u2)} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (p n) (OfNat.ofNat.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) 0 (Zero.toOfNat0.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.coeff_eq_zero FormalMultilinearSeries.coeff_eq_zeroβ‚“'. -/
 theorem coeff_eq_zero : p.coeff n = 0 ↔ p n = 0 := by
   rw [← mk_pi_field_coeff_eq p, ContinuousMultilinearMap.mkPiField_eq_zero_iff]
 #align formal_multilinear_series.coeff_eq_zero FormalMultilinearSeries.coeff_eq_zero
 
 /- warning: formal_multilinear_series.apply_eq_pow_smul_coeff -> FormalMultilinearSeries.apply_eq_pow_smul_coeff is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toHasSmul.{u1, u1} π•œ π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (SMulWithZero.toSmulZeroClass.{u1, u1} π•œ π•œ (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (semi_normed_ring_top_monoid.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat} {z : π•œ}, Eq.{succ u2} E (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (fun (_x : ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) => ((Fin n) -> π•œ) -> E) (ContinuousMultilinearMap.hasCoeToFun.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (p n) (fun (_x : Fin n) => z)) (SMul.smul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (HPow.hPow.{u1, 0, u1} π•œ Nat π•œ (instHPow.{u1, 0} π•œ Nat (Monoid.Pow.{u1} π•œ (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) z n) (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toSMul.{u1, u1} π•œ π•œ (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (SMulWithZero.toSMulZeroClass.{u1, u1} π•œ π•œ (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalSemiring.toContinuousMul.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalRing.toTopologicalSemiring.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (TopologicalDivisionRing.toTopologicalRing.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedDivisionRing.to_topologicalDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat} {z : π•œ}, Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) => E) (fun (x._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.4261 : Fin n) => z)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) i) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (fun (_x : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) => E) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) i) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) E (Pi.topologicalSpace.{0, u1} (Fin n) (fun (i : Fin n) => (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (fun (a : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) a)) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (ContinuousMultilinearMap.continuousMapClass.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) i) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (p n) (fun (_x : Fin n) => z)) (HSMul.hSMul.{u1, u2, u2} π•œ E E (instHSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))))) (HPow.hPow.{u1, 0, u1} π•œ Nat π•œ (instHPow.{u1, 0} π•œ Nat (Monoid.Pow.{u1} π•œ (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) z n) (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n))
+<too large>
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_eq_pow_smul_coeff FormalMultilinearSeries.apply_eq_pow_smul_coeffβ‚“'. -/
 @[simp]
 theorem apply_eq_pow_smul_coeff : (p n fun _ => z) = z ^ n β€’ p.coeff n := by simp
@@ -464,10 +422,7 @@ def constFormalMultilinearSeries (π•œ : Type _) [NontriviallyNormedField π•œ]
 -/
 
 /- warning: const_formal_multilinear_series_apply -> constFormalMultilinearSeries_apply is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedAddCommGroup.{u3} F] [_inst_4 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)] {c : F} {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (Eq.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (constFormalMultilinearSeries.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_4 (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) F _inst_3 (SeminormedAddCommGroup.toTopologicalAddGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) _inst_5 (ContinuousSMul.continuousConstSMul.{u1, u3} π•œ F (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (BoundedSMul.continuousSMul.{u1, u3} π•œ F (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (SubNegMonoid.toAddMonoid.{u3} F (AddGroup.toSubNegMonoid.{u3} F (SeminormedAddGroup.toAddGroup.{u3} F (SeminormedAddCommGroup.toSeminormedAddGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (NormedSpace.boundedSMul.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))) c n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedAddCommGroup.{u3} F] [_inst_4 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)] {c : F} {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (Eq.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (constFormalMultilinearSeries.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_4 (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) F _inst_3 (SeminormedAddCommGroup.toTopologicalAddGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) _inst_5 (ContinuousSMul.continuousConstSMul.{u1, u3} π•œ F (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))) (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (BoundedSMul.continuousSMul.{u1, u3} π•œ F (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (NormedSpace.boundedSMul.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))) c n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align const_formal_multilinear_series_apply constFormalMultilinearSeries_applyβ‚“'. -/
 @[simp]
 theorem constFormalMultilinearSeries_apply [NontriviallyNormedField π•œ] [NormedAddCommGroup E]
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: SΓ©bastien GouΓ«zel
 
 ! This file was ported from Lean 3 source module analysis.calculus.formal_multilinear_series
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 61db041ab8e4aaf8cb5c7dc10a7d4ff261997536
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -13,6 +13,9 @@ import Mathbin.Analysis.NormedSpace.Multilinear
 /-!
 # Formal multilinear series
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 In this file we define `formal_multilinear_series π•œ E F` to be a family of `n`-multilinear maps for
 all `n`, designed to model the sequence of derivatives of a function. In other files we use this
 notion to define `C^n` functions (called `cont_diff` in `mathlib`) and analytic functions.
Diff
@@ -385,9 +385,9 @@ theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) β€’ p.coeff n :=
 
 /- warning: formal_multilinear_series.coeff_eq_zero -> FormalMultilinearSeries.coeff_eq_zero is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toHasSmul.{u1, u1} π•œ π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (SMulWithZero.toSmulZeroClass.{u1, u1} π•œ π•œ (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (semi_normed_ring_top_monoid.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat}, Iff (Eq.{succ u2} E (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) (Eq.{max 1 (succ u1) (succ u2)} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (p n) (OfNat.ofNat.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) 0 (OfNat.mk.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) 0 (Zero.zero.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (ContinuousMultilinearMap.hasZero.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))))))
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toHasSmul.{u1, u1} π•œ π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (SMulWithZero.toSmulZeroClass.{u1, u1} π•œ π•œ (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (semi_normed_ring_top_monoid.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat}, Iff (Eq.{succ u2} E (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) (Eq.{max 1 (succ u1) (succ u2)} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (p n) (OfNat.ofNat.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) 0 (OfNat.mk.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) 0 (Zero.zero.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (ContinuousMultilinearMap.hasZero.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))))))
 but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toSMul.{u1, u1} π•œ π•œ (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (SMulWithZero.toSMulZeroClass.{u1, u1} π•œ π•œ (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalSemiring.toContinuousMul.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalRing.toTopologicalSemiring.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (TopologicalDivisionRing.toTopologicalRing.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedDivisionRing.to_topologicalDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat}, Iff (Eq.{succ u2} E (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) (Eq.{max (succ u1) (succ u2)} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (p n) (OfNat.ofNat.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) 0 (Zero.toOfNat0.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))))
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toSMul.{u1, u1} π•œ π•œ (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (SMulWithZero.toSMulZeroClass.{u1, u1} π•œ π•œ (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalSemiring.toContinuousMul.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalRing.toTopologicalSemiring.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (TopologicalDivisionRing.toTopologicalRing.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedDivisionRing.to_topologicalDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat}, Iff (Eq.{succ u2} E (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) (Eq.{max (succ u1) (succ u2)} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (p n) (OfNat.ofNat.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) 0 (Zero.toOfNat0.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))))
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.coeff_eq_zero FormalMultilinearSeries.coeff_eq_zeroβ‚“'. -/
 theorem coeff_eq_zero : p.coeff n = 0 ↔ p n = 0 := by
   rw [← mk_pi_field_coeff_eq p, ContinuousMultilinearMap.mkPiField_eq_zero_iff]
@@ -395,9 +395,9 @@ theorem coeff_eq_zero : p.coeff n = 0 ↔ p n = 0 := by
 
 /- warning: formal_multilinear_series.apply_eq_pow_smul_coeff -> FormalMultilinearSeries.apply_eq_pow_smul_coeff is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toHasSmul.{u1, u1} π•œ π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (SMulWithZero.toSmulZeroClass.{u1, u1} π•œ π•œ (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (semi_normed_ring_top_monoid.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat} {z : π•œ}, Eq.{succ u2} E (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (fun (_x : ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) => ((Fin n) -> π•œ) -> E) (ContinuousMultilinearMap.hasCoeToFun.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (p n) (fun (_x : Fin n) => z)) (SMul.smul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (HPow.hPow.{u1, 0, u1} π•œ Nat π•œ (instHPow.{u1, 0} π•œ Nat (Monoid.Pow.{u1} π•œ (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) z n) (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n))
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toHasSmul.{u1, u1} π•œ π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (SMulWithZero.toSmulZeroClass.{u1, u1} π•œ π•œ (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (semi_normed_ring_top_monoid.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat} {z : π•œ}, Eq.{succ u2} E (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (fun (_x : ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) => ((Fin n) -> π•œ) -> E) (ContinuousMultilinearMap.hasCoeToFun.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (p n) (fun (_x : Fin n) => z)) (SMul.smul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (HPow.hPow.{u1, 0, u1} π•œ Nat π•œ (instHPow.{u1, 0} π•œ Nat (Monoid.Pow.{u1} π•œ (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) z n) (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n))
 but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toSMul.{u1, u1} π•œ π•œ (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (SMulWithZero.toSMulZeroClass.{u1, u1} π•œ π•œ (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalSemiring.toContinuousMul.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalRing.toTopologicalSemiring.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (TopologicalDivisionRing.toTopologicalRing.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedDivisionRing.to_topologicalDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat} {z : π•œ}, Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) => E) (fun (x._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.4261 : Fin n) => z)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) i) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (fun (_x : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) => E) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) i) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) E (Pi.topologicalSpace.{0, u1} (Fin n) (fun (i : Fin n) => (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (fun (a : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) a)) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (ContinuousMultilinearMap.continuousMapClass.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) i) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (p n) (fun (_x : Fin n) => z)) (HSMul.hSMul.{u1, u2, u2} π•œ E E (instHSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))))) (HPow.hPow.{u1, 0, u1} π•œ Nat π•œ (instHPow.{u1, 0} π•œ Nat (Monoid.Pow.{u1} π•œ (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) z n) (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n))
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toSMul.{u1, u1} π•œ π•œ (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (SMulWithZero.toSMulZeroClass.{u1, u1} π•œ π•œ (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalSemiring.toContinuousMul.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalRing.toTopologicalSemiring.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (TopologicalDivisionRing.toTopologicalRing.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedDivisionRing.to_topologicalDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat} {z : π•œ}, Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) => E) (fun (x._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.4261 : Fin n) => z)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) i) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (fun (_x : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) => E) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) i) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) E (Pi.topologicalSpace.{0, u1} (Fin n) (fun (i : Fin n) => (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (fun (a : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) a)) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (ContinuousMultilinearMap.continuousMapClass.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) i) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (p n) (fun (_x : Fin n) => z)) (HSMul.hSMul.{u1, u2, u2} π•œ E E (instHSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))))) (HPow.hPow.{u1, 0, u1} π•œ Nat π•œ (instHPow.{u1, 0} π•œ Nat (Monoid.Pow.{u1} π•œ (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) z n) (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n))
 Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_eq_pow_smul_coeff FormalMultilinearSeries.apply_eq_pow_smul_coeffβ‚“'. -/
 @[simp]
 theorem apply_eq_pow_smul_coeff : (p n fun _ => z) = z ^ n β€’ p.coeff n := by simp
@@ -462,9 +462,9 @@ def constFormalMultilinearSeries (π•œ : Type _) [NontriviallyNormedField π•œ]
 
 /- warning: const_formal_multilinear_series_apply -> constFormalMultilinearSeries_apply is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedAddCommGroup.{u3} F] [_inst_4 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)] {c : F} {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (Eq.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (constFormalMultilinearSeries.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_4 (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) F _inst_3 (SeminormedAddCommGroup.to_topologicalAddGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) _inst_5 (ContinuousSMul.continuousConstSMul.{u1, u3} π•œ F (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (BoundedSMul.continuousSMul.{u1, u3} π•œ F (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (SubNegMonoid.toAddMonoid.{u3} F (AddGroup.toSubNegMonoid.{u3} F (SeminormedAddGroup.toAddGroup.{u3} F (SeminormedAddCommGroup.toSeminormedAddGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (NormedSpace.boundedSMul.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))) c n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))))))
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedAddCommGroup.{u3} F] [_inst_4 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)] {c : F} {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (Eq.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (constFormalMultilinearSeries.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_4 (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) F _inst_3 (SeminormedAddCommGroup.toTopologicalAddGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) _inst_5 (ContinuousSMul.continuousConstSMul.{u1, u3} π•œ F (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (BoundedSMul.continuousSMul.{u1, u3} π•œ F (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (SubNegMonoid.toAddMonoid.{u3} F (AddGroup.toSubNegMonoid.{u3} F (SeminormedAddGroup.toAddGroup.{u3} F (SeminormedAddCommGroup.toSeminormedAddGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (NormedSpace.boundedSMul.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))) c n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))))))
 but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedAddCommGroup.{u3} F] [_inst_4 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)] {c : F} {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (Eq.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (constFormalMultilinearSeries.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_4 (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) F _inst_3 (SeminormedAddCommGroup.to_topologicalAddGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) _inst_5 (ContinuousSMul.continuousConstSMul.{u1, u3} π•œ F (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))) (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (BoundedSMul.continuousSMul.{u1, u3} π•œ F (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (NormedSpace.boundedSMul.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))) c n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))))))
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedAddCommGroup.{u3} F] [_inst_4 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)] {c : F} {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (Eq.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (constFormalMultilinearSeries.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_4 (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))) (SeminormedAddCommGroup.toTopologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) F _inst_3 (SeminormedAddCommGroup.toTopologicalAddGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) _inst_5 (ContinuousSMul.continuousConstSMul.{u1, u3} π•œ F (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))) (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (BoundedSMul.continuousSMul.{u1, u3} π•œ F (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (NormedSpace.boundedSMul.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))) c n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))))))
 Case conversion may be inaccurate. Consider using '#align const_formal_multilinear_series_apply constFormalMultilinearSeries_applyβ‚“'. -/
 @[simp]
 theorem constFormalMultilinearSeries_apply [NontriviallyNormedField π•œ] [NormedAddCommGroup E]
Diff
@@ -43,6 +43,7 @@ variable [CommRing π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [
   [TopologicalAddGroup F] [ContinuousConstSMul π•œ F] [AddCommGroup G] [Module π•œ G]
   [TopologicalSpace G] [TopologicalAddGroup G] [ContinuousConstSMul π•œ G]
 
+#print FormalMultilinearSeries /-
 /-- A formal multilinear series over a field `π•œ`, from `E` to `F`, is given by a family of
 multilinear maps from `E^n` to `F` for all `n`. -/
 @[nolint unused_arguments]
@@ -52,6 +53,7 @@ def FormalMultilinearSeries (π•œ : Type _) (E : Type _) (F : Type _) [Ring π•œ
     [ContinuousConstSMul π•œ F] :=
   βˆ€ n : β„•, E[Γ—n]β†’L[π•œ] F deriving AddCommGroup
 #align formal_multilinear_series FormalMultilinearSeries
+-/
 
 instance : Inhabited (FormalMultilinearSeries π•œ E F) :=
   ⟨0⟩
@@ -70,37 +72,54 @@ end Module
 
 namespace FormalMultilinearSeries
 
+#print FormalMultilinearSeries.ext_iff /-
 protected theorem ext_iff {p q : FormalMultilinearSeries π•œ E F} : p = q ↔ βˆ€ n, p n = q n :=
   Function.funext_iff
 #align formal_multilinear_series.ext_iff FormalMultilinearSeries.ext_iff
+-/
 
+#print FormalMultilinearSeries.ne_iff /-
 protected theorem ne_iff {p q : FormalMultilinearSeries π•œ E F} : p β‰  q ↔ βˆƒ n, p n β‰  q n :=
   Function.ne_iff
 #align formal_multilinear_series.ne_iff FormalMultilinearSeries.ne_iff
+-/
 
+#print FormalMultilinearSeries.removeZero /-
 /-- Killing the zeroth coefficient in a formal multilinear series -/
 def removeZero (p : FormalMultilinearSeries π•œ E F) : FormalMultilinearSeries π•œ E F
   | 0 => 0
   | n + 1 => p (n + 1)
 #align formal_multilinear_series.remove_zero FormalMultilinearSeries.removeZero
+-/
 
+/- warning: formal_multilinear_series.remove_zero_coeff_zero -> FormalMultilinearSeries.removeZero_coeff_zero is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] (p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11), Eq.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => _inst_4) _inst_9) (FormalMultilinearSeries.removeZero.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] (p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11), Eq.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) (FormalMultilinearSeries.removeZero.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9)))
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.remove_zero_coeff_zero FormalMultilinearSeries.removeZero_coeff_zeroβ‚“'. -/
 @[simp]
 theorem removeZero_coeff_zero (p : FormalMultilinearSeries π•œ E F) : p.removeZero 0 = 0 :=
   rfl
 #align formal_multilinear_series.remove_zero_coeff_zero FormalMultilinearSeries.removeZero_coeff_zero
 
+#print FormalMultilinearSeries.removeZero_coeff_succ /-
 @[simp]
 theorem removeZero_coeff_succ (p : FormalMultilinearSeries π•œ E F) (n : β„•) :
     p.removeZero (n + 1) = p (n + 1) :=
   rfl
 #align formal_multilinear_series.remove_zero_coeff_succ FormalMultilinearSeries.removeZero_coeff_succ
+-/
 
+#print FormalMultilinearSeries.removeZero_of_pos /-
 theorem removeZero_of_pos (p : FormalMultilinearSeries π•œ E F) {n : β„•} (h : 0 < n) :
     p.removeZero n = p n := by
   rw [← Nat.succ_pred_eq_of_pos h]
   rfl
 #align formal_multilinear_series.remove_zero_of_pos FormalMultilinearSeries.removeZero_of_pos
+-/
 
+#print FormalMultilinearSeries.congr /-
 /-- Convenience congruence lemma stating in a dependent setting that, if the arguments to a formal
 multilinear series are equal, then the values are also equal. -/
 theorem congr (p : FormalMultilinearSeries π•œ E F) {m n : β„•} {v : Fin m β†’ E} {w : Fin n β†’ E}
@@ -110,13 +129,22 @@ theorem congr (p : FormalMultilinearSeries π•œ E F) {m n : β„•} {v : Fin m β†’
   congr with ⟨i, hi⟩
   exact h2 i hi hi
 #align formal_multilinear_series.congr FormalMultilinearSeries.congr
+-/
 
+#print FormalMultilinearSeries.compContinuousLinearMap /-
 /-- Composing each term `pβ‚™` in a formal multilinear series with `(u, ..., u)` where `u` is a fixed
 continuous linear map, gives a new formal multilinear series `p.comp_continuous_linear_map u`. -/
 def compContinuousLinearMap (p : FormalMultilinearSeries π•œ F G) (u : E β†’L[π•œ] F) :
     FormalMultilinearSeries π•œ E G := fun n => (p n).compContinuousLinearMap fun i : Fin n => u
 #align formal_multilinear_series.comp_continuous_linear_map FormalMultilinearSeries.compContinuousLinearMap
+-/
 
+/- warning: formal_multilinear_series.comp_continuous_linear_map_apply -> FormalMultilinearSeries.compContinuousLinearMap_apply is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {G : Type.{u4}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] [_inst_12 : AddCommGroup.{u4} G] [_inst_13 : Module.{u1, u4} π•œ G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)] [_inst_14 : TopologicalSpace.{u4} G] [_inst_15 : TopologicalAddGroup.{u4} G _inst_14 (AddCommGroup.toAddGroup.{u4} G _inst_12)] [_inst_16 : ContinuousConstSMul.{u1, u4} π•œ G _inst_14 (SMulZeroClass.toHasSmul.{u1, u4} π•œ G (AddZeroClass.toHasZero.{u4} G (AddMonoid.toAddZeroClass.{u4} G (AddCommMonoid.toAddMonoid.{u4} G (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)))) (SMulWithZero.toSmulZeroClass.{u1, u4} π•œ G (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u4} G (AddMonoid.toAddZeroClass.{u4} G (AddCommMonoid.toAddMonoid.{u4} G (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ G (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u4} G (AddMonoid.toAddZeroClass.{u4} G (AddCommMonoid.toAddMonoid.{u4} G (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)))) (Module.toMulActionWithZero.{u1, u4} π•œ G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_13))))] (p : FormalMultilinearSeries.{u1, u3, u4} π•œ F G (CommRing.toRing.{u1} π•œ _inst_1) _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16) (u : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) (n : Nat) (v : (Fin n) -> E), Eq.{succ u4} G (coeFn.{max 1 (succ u2) (succ u4), max (succ u2) (succ u4)} (ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_3) _inst_13 (fun (i : Fin n) => _inst_4) _inst_14) (fun (_x : ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_3) _inst_13 (fun (i : Fin n) => _inst_4) _inst_14) => ((Fin n) -> E) -> G) (ContinuousMultilinearMap.hasCoeToFun.{u1, 0, u2, u4} π•œ (Fin n) (fun (i : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_3) _inst_13 (fun (i : Fin n) => _inst_4) _inst_14) (FormalMultilinearSeries.compContinuousLinearMap.{u1, u2, u3, u4} π•œ E F G _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 p u n) v) (coeFn.{max 1 (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousMultilinearMap.{u1, 0, u3, u4} π•œ (Fin n) (fun (i : Fin n) => F) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u3} ((fun (i : Fin n) => F) i) _inst_7) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_8) _inst_13 (fun (i : Fin n) => _inst_9) _inst_14) (fun (_x : ContinuousMultilinearMap.{u1, 0, u3, u4} π•œ (Fin n) (fun (i : Fin n) => F) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u3} ((fun (i : Fin n) => F) i) _inst_7) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_8) _inst_13 (fun (i : Fin n) => _inst_9) _inst_14) => ((Fin n) -> F) -> G) (ContinuousMultilinearMap.hasCoeToFun.{u1, 0, u3, u4} π•œ (Fin n) (fun (i : Fin n) => F) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u3} ((fun (i : Fin n) => F) i) _inst_7) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_8) _inst_13 (fun (i : Fin n) => _inst_9) _inst_14) (p n) (Function.comp.{1, succ u2, succ u3} (Fin n) E F (coeFn.{max (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) => E -> F) (ContinuousLinearMap.toFun.{u1, u1, u2, u3} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) u) v))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {G : Type.{u4}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] [_inst_12 : AddCommGroup.{u4} G] [_inst_13 : Module.{u1, u4} π•œ G (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)] [_inst_14 : TopologicalSpace.{u4} G] [_inst_15 : TopologicalAddGroup.{u4} G _inst_14 (AddCommGroup.toAddGroup.{u4} G _inst_12)] [_inst_16 : ContinuousConstSMul.{u1, u4} π•œ G _inst_14 (SMulZeroClass.toSMul.{u1, u4} π•œ G (NegZeroClass.toZero.{u4} G (SubNegZeroMonoid.toNegZeroClass.{u4} G (SubtractionMonoid.toSubNegZeroMonoid.{u4} G (SubtractionCommMonoid.toSubtractionMonoid.{u4} G (AddCommGroup.toDivisionAddCommMonoid.{u4} G _inst_12))))) (SMulWithZero.toSMulZeroClass.{u1, u4} π•œ G (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u4} G (SubNegZeroMonoid.toNegZeroClass.{u4} G (SubtractionMonoid.toSubNegZeroMonoid.{u4} G (SubtractionCommMonoid.toSubtractionMonoid.{u4} G (AddCommGroup.toDivisionAddCommMonoid.{u4} G _inst_12))))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ G (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u4} G (SubNegZeroMonoid.toNegZeroClass.{u4} G (SubtractionMonoid.toSubNegZeroMonoid.{u4} G (SubtractionCommMonoid.toSubtractionMonoid.{u4} G (AddCommGroup.toDivisionAddCommMonoid.{u4} G _inst_12))))) (Module.toMulActionWithZero.{u1, u4} π•œ G (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_13))))] (p : FormalMultilinearSeries.{u1, u3, u4} π•œ F G (CommRing.toRing.{u1} π•œ _inst_1) _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16) (u : ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) (n : Nat) (v : (Fin n) -> E), Eq.{succ u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => G) v) (FunLike.coe.{max (succ u2) (succ u4), succ u2, succ u4} (ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_14) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (fun (_x : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => G) _x) (ContinuousMapClass.toFunLike.{max u2 u4, u2, u4} (ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_14) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) G (Pi.topologicalSpace.{0, u2} (Fin n) (fun (i : Fin n) => (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (fun (a : Fin n) => (fun (i : Fin n) => _inst_4) a)) _inst_14 (ContinuousMultilinearMap.continuousMapClass.{u1, 0, u2, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_14)) (FormalMultilinearSeries.compContinuousLinearMap.{u1, u2, u3, u4} π•œ E F G _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 p u n) v) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousMultilinearMap.{u1, 0, u3, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u3} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) _inst_7) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_8) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_9) i) _inst_14) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) (fun (_x : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) => G) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousMultilinearMap.{u1, 0, u3, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u3} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) _inst_7) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_8) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_9) i) _inst_14) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) G (Pi.topologicalSpace.{0, u3} (Fin n) (fun (i : Fin n) => (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) (fun (a : Fin n) => (fun (i : Fin n) => _inst_9) a)) _inst_14 (ContinuousMultilinearMap.continuousMapClass.{u1, 0, u3, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u3} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => F) i) _inst_7) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_8) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_9) i) _inst_14)) (p n) (Function.comp.{1, succ u2, succ u3} (Fin n) E F (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u3, u2, u3} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) E F _inst_4 _inst_9 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u3, u1, u1, u2, u3} (ContinuousLinearMap.{u1, u1, u2, u3} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8) π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8 (ContinuousLinearMap.continuousSemilinearMapClass.{u1, u1, u2, u3} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) E _inst_4 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_3 _inst_8))) u) v))
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.comp_continuous_linear_map_apply FormalMultilinearSeries.compContinuousLinearMap_applyβ‚“'. -/
 @[simp]
 theorem compContinuousLinearMap_apply (p : FormalMultilinearSeries π•œ F G) (u : E β†’L[π•œ] F) (n : β„•)
     (v : Fin n β†’ E) : (p.compContinuousLinearMap u) n v = p n (u ∘ v) :=
@@ -129,11 +157,13 @@ variable [Module π•œ' E] [ContinuousConstSMul π•œ' E] [IsScalarTower π•œ π•œ
 
 variable [Module π•œ' F] [ContinuousConstSMul π•œ' F] [IsScalarTower π•œ π•œ' F]
 
+#print FormalMultilinearSeries.restrictScalars /-
 /-- Reinterpret a formal `π•œ'`-multilinear series as a formal `π•œ`-multilinear series. -/
 @[simp]
 protected def restrictScalars (p : FormalMultilinearSeries π•œ' E F) :
     FormalMultilinearSeries π•œ E F := fun n => (p n).restrictScalars π•œ
 #align formal_multilinear_series.restrict_scalars FormalMultilinearSeries.restrictScalars
+-/
 
 end FormalMultilinearSeries
 
@@ -146,12 +176,15 @@ variable [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ
 
 variable (p : FormalMultilinearSeries π•œ E F)
 
+#print FormalMultilinearSeries.shift /-
 /-- Forgetting the zeroth term in a formal multilinear series, and interpreting the following terms
 as multilinear maps into `E β†’L[π•œ] F`. If `p` corresponds to the Taylor series of a function, then
 `p.shift` is the Taylor series of the derivative of the function. -/
 def shift : FormalMultilinearSeries π•œ E (E β†’L[π•œ] F) := fun n => (p n.succ).curryRight
 #align formal_multilinear_series.shift FormalMultilinearSeries.shift
+-/
 
+#print FormalMultilinearSeries.unshift /-
 /-- Adding a zeroth term to a formal multilinear series taking values in `E β†’L[π•œ] F`. This
 corresponds to starting from a Taylor series for the derivative of a function, and building a Taylor
 series for the function itself. -/
@@ -159,6 +192,7 @@ def unshift (q : FormalMultilinearSeries π•œ E (E β†’L[π•œ] F)) (z : F) : Form
   | 0 => (continuousMultilinearCurryFin0 π•œ E F).symm z
   | n + 1 => continuousMultilinearCurryRightEquiv' π•œ n E F (q n)
 #align formal_multilinear_series.unshift FormalMultilinearSeries.unshift
+-/
 
 end FormalMultilinearSeries
 
@@ -169,19 +203,29 @@ variable [CommRing π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [
   [TopologicalAddGroup F] [ContinuousConstSMul π•œ F] [AddCommGroup G] [Module π•œ G]
   [TopologicalSpace G] [TopologicalAddGroup G] [ContinuousConstSMul π•œ G]
 
+#print ContinuousLinearMap.compFormalMultilinearSeries /-
 /-- Composing each term `pβ‚™` in a formal multilinear series with a continuous linear map `f` on the
 left gives a new formal multilinear series `f.comp_formal_multilinear_series p` whose general term
 is `f ∘ pβ‚™`. -/
 def compFormalMultilinearSeries (f : F β†’L[π•œ] G) (p : FormalMultilinearSeries π•œ E F) :
     FormalMultilinearSeries π•œ E G := fun n => f.compContinuousMultilinearMap (p n)
 #align continuous_linear_map.comp_formal_multilinear_series ContinuousLinearMap.compFormalMultilinearSeries
+-/
 
+#print ContinuousLinearMap.compFormalMultilinearSeries_apply /-
 @[simp]
 theorem compFormalMultilinearSeries_apply (f : F β†’L[π•œ] G) (p : FormalMultilinearSeries π•œ E F)
     (n : β„•) : (f.compFormalMultilinearSeries p) n = f.compContinuousMultilinearMap (p n) :=
   rfl
 #align continuous_linear_map.comp_formal_multilinear_series_apply ContinuousLinearMap.compFormalMultilinearSeries_apply
+-/
 
+/- warning: continuous_linear_map.comp_formal_multilinear_series_apply' -> ContinuousLinearMap.compFormalMultilinearSeries_apply' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {G : Type.{u4}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] [_inst_12 : AddCommGroup.{u4} G] [_inst_13 : Module.{u1, u4} π•œ G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)] [_inst_14 : TopologicalSpace.{u4} G] [_inst_15 : TopologicalAddGroup.{u4} G _inst_14 (AddCommGroup.toAddGroup.{u4} G _inst_12)] [_inst_16 : ContinuousConstSMul.{u1, u4} π•œ G _inst_14 (SMulZeroClass.toHasSmul.{u1, u4} π•œ G (AddZeroClass.toHasZero.{u4} G (AddMonoid.toAddZeroClass.{u4} G (AddCommMonoid.toAddMonoid.{u4} G (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)))) (SMulWithZero.toSmulZeroClass.{u1, u4} π•œ G (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u4} G (AddMonoid.toAddZeroClass.{u4} G (AddCommMonoid.toAddMonoid.{u4} G (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ G (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u4} G (AddMonoid.toAddZeroClass.{u4} G (AddCommMonoid.toAddMonoid.{u4} G (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)))) (Module.toMulActionWithZero.{u1, u4} π•œ G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_13))))] (f : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) (p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (n : Nat) (v : (Fin n) -> E), Eq.{succ u4} G (coeFn.{max 1 (succ u2) (succ u4), max (succ u2) (succ u4)} (ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_3) _inst_13 (fun (i : Fin n) => _inst_4) _inst_14) (fun (_x : ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_3) _inst_13 (fun (i : Fin n) => _inst_4) _inst_14) => ((Fin n) -> E) -> G) (ContinuousMultilinearMap.hasCoeToFun.{u1, 0, u2, u4} π•œ (Fin n) (fun (i : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => _inst_3) _inst_13 (fun (i : Fin n) => _inst_4) _inst_14) (ContinuousLinearMap.compFormalMultilinearSeries.{u1, u2, u3, u4} π•œ E F G _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 f p n) v) (coeFn.{max (succ u3) (succ u4), max (succ u3) (succ u4)} (ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) (fun (_x : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) => F -> G) (ContinuousLinearMap.toFun.{u1, u1, u3, u4} π•œ π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) f (coeFn.{max 1 (succ u2) (succ u3), max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (fun (_x : ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) => ((Fin n) -> E) -> F) (ContinuousMultilinearMap.hasCoeToFun.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) v))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} {G : Type.{u4}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] [_inst_12 : AddCommGroup.{u4} G] [_inst_13 : Module.{u1, u4} π•œ G (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12)] [_inst_14 : TopologicalSpace.{u4} G] [_inst_15 : TopologicalAddGroup.{u4} G _inst_14 (AddCommGroup.toAddGroup.{u4} G _inst_12)] [_inst_16 : ContinuousConstSMul.{u1, u4} π•œ G _inst_14 (SMulZeroClass.toSMul.{u1, u4} π•œ G (NegZeroClass.toZero.{u4} G (SubNegZeroMonoid.toNegZeroClass.{u4} G (SubtractionMonoid.toSubNegZeroMonoid.{u4} G (SubtractionCommMonoid.toSubtractionMonoid.{u4} G (AddCommGroup.toDivisionAddCommMonoid.{u4} G _inst_12))))) (SMulWithZero.toSMulZeroClass.{u1, u4} π•œ G (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u4} G (SubNegZeroMonoid.toNegZeroClass.{u4} G (SubtractionMonoid.toSubNegZeroMonoid.{u4} G (SubtractionCommMonoid.toSubtractionMonoid.{u4} G (AddCommGroup.toDivisionAddCommMonoid.{u4} G _inst_12))))) (MulActionWithZero.toSMulWithZero.{u1, u4} π•œ G (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u4} G (SubNegZeroMonoid.toNegZeroClass.{u4} G (SubtractionMonoid.toSubNegZeroMonoid.{u4} G (SubtractionCommMonoid.toSubtractionMonoid.{u4} G (AddCommGroup.toDivisionAddCommMonoid.{u4} G _inst_12))))) (Module.toMulActionWithZero.{u1, u4} π•œ G (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_13))))] (f : ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) (p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (n : Nat) (v : (Fin n) -> E), Eq.{succ u4} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => G) v) (FunLike.coe.{max (succ u2) (succ u4), succ u2, succ u4} (ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_14) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (fun (_x : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => G) _x) (ContinuousMapClass.toFunLike.{max u2 u4, u2, u4} (ContinuousMultilinearMap.{u1, 0, u2, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_14) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) G (Pi.topologicalSpace.{0, u2} (Fin n) (fun (i : Fin n) => (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (fun (a : Fin n) => (fun (i : Fin n) => _inst_4) a)) _inst_14 (ContinuousMultilinearMap.continuousMapClass.{u1, 0, u2, u4} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) G (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_13 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_14)) (ContinuousLinearMap.compFormalMultilinearSeries.{u1, u2, u3, u4} π•œ E F G _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 _inst_12 _inst_13 _inst_14 _inst_15 _inst_16 f p n) v) (FunLike.coe.{max (succ u3) (succ u4), succ u3, succ u4} (ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) F (fun (_x : F) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : F) => G) _x) (ContinuousMapClass.toFunLike.{max u3 u4, u3, u4} (ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) F G _inst_9 _inst_14 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u3 u4, u1, u1, u3, u4} (ContinuousLinearMap.{u1, u1, u3, u4} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13) π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13 (ContinuousLinearMap.continuousSemilinearMapClass.{u1, u1, u3, u4} π•œ π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)))) F _inst_9 (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) G _inst_14 (AddCommGroup.toAddCommMonoid.{u4} G _inst_12) _inst_8 _inst_13))) f (FunLike.coe.{max (succ u2) (succ u3), succ u2, succ u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_8 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_9) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (fun (_x : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u3, u2, u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_8 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_9) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) F (Pi.topologicalSpace.{0, u2} (Fin n) (fun (i : Fin n) => (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (fun (a : Fin n) => (fun (i : Fin n) => _inst_4) a)) _inst_9 (ContinuousMultilinearMap.continuousMapClass.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) i) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => (fun (i : Fin n) => _inst_3) i) _inst_8 (fun (i : Fin n) => (fun (i : Fin n) => _inst_4) i) _inst_9)) (p n) v))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.comp_formal_multilinear_series_apply' ContinuousLinearMap.compFormalMultilinearSeries_apply'β‚“'. -/
 theorem compFormalMultilinearSeries_apply' (f : F β†’L[π•œ] G) (p : FormalMultilinearSeries π•œ E F)
     (n : β„•) (v : Fin n β†’ E) : (f.compFormalMultilinearSeries p) n v = f (p n v) :=
   rfl
@@ -198,49 +242,105 @@ variable [CommRing π•œ] {n : β„•} [AddCommGroup E] [Module π•œ E] [Topological
   [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul π•œ F]
   {p : FormalMultilinearSeries π•œ E F}
 
+#print FormalMultilinearSeries.order /-
 /-- The index of the first non-zero coefficient in `p` (or `0` if all coefficients are zero). This
   is the order of the isolated zero of an analytic function `f` at a point if `p` is the Taylor
   series of `f` at that point. -/
 noncomputable def order (p : FormalMultilinearSeries π•œ E F) : β„• :=
   sInf { n | p n β‰  0 }
 #align formal_multilinear_series.order FormalMultilinearSeries.order
+-/
 
+/- warning: formal_multilinear_series.order_zero -> FormalMultilinearSeries.order_zero is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))], Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))], Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_zero FormalMultilinearSeries.order_zeroβ‚“'. -/
 @[simp]
 theorem order_zero : (0 : FormalMultilinearSeries π•œ E F).order = 0 := by simp [order]
 #align formal_multilinear_series.order_zero FormalMultilinearSeries.order_zero
 
+/- warning: formal_multilinear_series.ne_zero_of_order_ne_zero -> FormalMultilinearSeries.ne_zero_of_order_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (Ne.{max 1 (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (Ne.{max (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.ne_zero_of_order_ne_zero FormalMultilinearSeries.ne_zero_of_order_ne_zeroβ‚“'. -/
 theorem ne_zero_of_order_ne_zero (hp : p.order β‰  0) : p β‰  0 := fun h => by simpa [h] using hp
 #align formal_multilinear_series.ne_zero_of_order_ne_zero FormalMultilinearSeries.ne_zero_of_order_ne_zero
 
+/- warning: formal_multilinear_series.order_eq_find -> FormalMultilinearSeries.order_eq_find is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11} [_inst_12 : DecidablePred.{1} Nat (fun (n : Nat) => Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9)))))] (hp : Exists.{1} Nat (fun (n : Nat) => Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9)))))), Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (Nat.find (fun (n : Nat) => Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9))))) (fun (a : Nat) => _inst_12 a) hp)
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11} [_inst_12 : DecidablePred.{1} Nat (fun (n : Nat) => Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9))))] (hp : Exists.{1} Nat (fun (n : Nat) => Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9))))), Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (Nat.find (fun (n : Nat) => Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9)))) (fun (a : Nat) => _inst_12 a) hp)
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_eq_find FormalMultilinearSeries.order_eq_findβ‚“'. -/
 theorem order_eq_find [DecidablePred fun n => p n β‰  0] (hp : βˆƒ n, p n β‰  0) :
     p.order = Nat.find hp := by simp [order, Inf, hp]
 #align formal_multilinear_series.order_eq_find FormalMultilinearSeries.order_eq_find
 
+/- warning: formal_multilinear_series.order_eq_find' -> FormalMultilinearSeries.order_eq_find' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11} [_inst_12 : DecidablePred.{1} Nat (fun (n : Nat) => Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9)))))] (hp : Ne.{max 1 (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))), Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (Nat.find (fun (n : Nat) => Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))) n)) (fun (a : Nat) => _inst_12 a) (Iff.mp (Ne.{max 1 (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))) (Exists.{1} Nat (fun (n : Nat) => Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))) n))) (FormalMultilinearSeries.ne_iff.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))) hp))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11} [_inst_12 : DecidablePred.{1} Nat (fun (n : Nat) => Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9))))] (hp : Ne.{max (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))), Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (Nat.find (fun (n : Nat) => Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))) n)) (fun (a : Nat) => _inst_12 a) (Iff.mp (Ne.{max (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))) (Exists.{1} Nat (fun (n : Nat) => Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))) n))) (FormalMultilinearSeries.ne_iff.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))) hp))
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_eq_find' FormalMultilinearSeries.order_eq_find'β‚“'. -/
 theorem order_eq_find' [DecidablePred fun n => p n β‰  0] (hp : p β‰  0) :
     p.order = Nat.find (FormalMultilinearSeries.ne_iff.mp hp) :=
   order_eq_find _
 #align formal_multilinear_series.order_eq_find' FormalMultilinearSeries.order_eq_find'
 
+/- warning: formal_multilinear_series.order_eq_zero_iff -> FormalMultilinearSeries.order_eq_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{max 1 (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))) -> (Iff (Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => _inst_4) _inst_9) (p (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{max (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))) -> (Iff (Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) (p (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9)))))
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_eq_zero_iff FormalMultilinearSeries.order_eq_zero_iffβ‚“'. -/
 theorem order_eq_zero_iff (hp : p β‰  0) : p.order = 0 ↔ p 0 β‰  0 := by
   classical
     have : βˆƒ n, p n β‰  0 := formal_multilinear_series.ne_iff.mp hp
     simp [order_eq_find this, hp]
 #align formal_multilinear_series.order_eq_zero_iff FormalMultilinearSeries.order_eq_zero_iff
 
+/- warning: formal_multilinear_series.order_eq_zero_iff' -> FormalMultilinearSeries.order_eq_zero_iff' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, Iff (Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (Or (Eq.{max 1 (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))) (Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) => _inst_4) _inst_9) (p (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin (Zero.zero.{0} Nat Nat.hasZero)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_3) _inst_8 (fun (i : Fin (Zero.zero.{0} Nat Nat.hasZero)) => _inst_4) _inst_9))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, Iff (Eq.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (Or (Eq.{max (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))) (Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) (p (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_3) _inst_8 (fun (i : Fin (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) => _inst_4) _inst_9)))))
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.order_eq_zero_iff' FormalMultilinearSeries.order_eq_zero_iff'β‚“'. -/
 theorem order_eq_zero_iff' : p.order = 0 ↔ p = 0 ∨ p 0 β‰  0 := by
   by_cases h : p = 0 <;> simp [h, order_eq_zero_iff]
 #align formal_multilinear_series.order_eq_zero_iff' FormalMultilinearSeries.order_eq_zero_iff'
 
+/- warning: formal_multilinear_series.apply_order_ne_zero -> FormalMultilinearSeries.apply_order_ne_zero is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{max 1 (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (OfNat.mk.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.zero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddZeroClass.toHasZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddMonoid.toAddZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegMonoid.toAddMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddGroup.toSubNegMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toAddGroup.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (FormalMultilinearSeries.addCommGroup.{u1, u3, u2} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11)))))))))) -> (Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (p (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9)))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{max (succ u2) (succ u3)} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) p (OfNat.ofNat.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) 0 (Zero.toOfNat0.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (NegZeroClass.toZero.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubNegZeroMonoid.toNegZeroClass.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u3} (FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11) (instAddCommGroupFormalMultilinearSeriesToRing.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11))))))))) -> (Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (p (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9))))
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_order_ne_zero FormalMultilinearSeries.apply_order_ne_zeroβ‚“'. -/
 theorem apply_order_ne_zero (hp : p β‰  0) : p p.order β‰  0 := by
   classical
     let h := formal_multilinear_series.ne_iff.mp hp
     exact (order_eq_find h).symm β–Έ Nat.find_spec h
 #align formal_multilinear_series.apply_order_ne_zero FormalMultilinearSeries.apply_order_ne_zero
 
+/- warning: formal_multilinear_series.apply_order_ne_zero' -> FormalMultilinearSeries.apply_order_ne_zero' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (Ne.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (p (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9)))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (Ne.{1} Nat (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p) (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (Ne.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (p (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_3) _inst_8 (fun (i : Fin (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) => _inst_4) _inst_9))))
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_order_ne_zero' FormalMultilinearSeries.apply_order_ne_zero'β‚“'. -/
 theorem apply_order_ne_zero' (hp : p.order β‰  0) : p p.order β‰  0 :=
   apply_order_ne_zero (ne_zero_of_order_ne_zero hp)
 #align formal_multilinear_series.apply_order_ne_zero' FormalMultilinearSeries.apply_order_ne_zero'
 
+/- warning: formal_multilinear_series.apply_eq_zero_of_lt_order -> FormalMultilinearSeries.apply_eq_zero_of_lt_order is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] {n : Nat} [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (LT.lt.{0} Nat Nat.hasLt n (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) -> (Eq.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9)))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : CommRing.{u1} π•œ] {n : Nat} [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : TopologicalAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousConstSMul.{u1, u2} π•œ E _inst_4 (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_7 : AddCommGroup.{u3} F] [_inst_8 : Module.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7)] [_inst_9 : TopologicalSpace.{u3} F] [_inst_10 : TopologicalAddGroup.{u3} F _inst_9 (AddCommGroup.toAddGroup.{u3} F _inst_7)] [_inst_11 : ContinuousConstSMul.{u1, u3} π•œ F _inst_9 (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommSemiring.toCommMonoidWithZero.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F _inst_7))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (CommSemiring.toSemiring.{u1} π•œ (CommRing.toCommSemiring.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) _inst_8))))] {p : FormalMultilinearSeries.{u1, u2, u3} π•œ E F (CommRing.toRing.{u1} π•œ _inst_1) _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11}, (LT.lt.{0} Nat instLTNat n (FormalMultilinearSeries.order.{u1, u2, u3} π•œ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 _inst_8 _inst_9 _inst_10 _inst_11 p)) -> (Eq.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (p n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (CommRing.toRing.{u1} π•œ _inst_1)) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) _inst_2) (AddCommGroup.toAddCommMonoid.{u3} F _inst_7) (fun (i : Fin n) => _inst_3) _inst_8 (fun (i : Fin n) => _inst_4) _inst_9))))
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_eq_zero_of_lt_order FormalMultilinearSeries.apply_eq_zero_of_lt_orderβ‚“'. -/
 theorem apply_eq_zero_of_lt_order (hp : n < p.order) : p n = 0 :=
   by
   by_cases p = 0
@@ -260,35 +360,55 @@ variable [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ
 
 open BigOperators
 
+#print FormalMultilinearSeries.coeff /-
 /-- The `n`th coefficient of `p` when seen as a power series. -/
 def coeff (p : FormalMultilinearSeries π•œ π•œ E) (n : β„•) : E :=
   p n 1
 #align formal_multilinear_series.coeff FormalMultilinearSeries.coeff
+-/
 
+#print FormalMultilinearSeries.mkPiField_coeff_eq /-
 theorem mkPiField_coeff_eq (p : FormalMultilinearSeries π•œ π•œ E) (n : β„•) :
     ContinuousMultilinearMap.mkPiField π•œ (Fin n) (p.coeff n) = p n :=
   (p n).mkPiField_apply_one_eq_self
 #align formal_multilinear_series.mk_pi_field_coeff_eq FormalMultilinearSeries.mkPiField_coeff_eq
+-/
 
+#print FormalMultilinearSeries.apply_eq_prod_smul_coeff /-
 @[simp]
 theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) β€’ p.coeff n :=
   by
   convert(p n).toMultilinearMap.map_smul_univ y 1
   funext <;> simp only [Pi.one_apply, Algebra.id.smul_eq_mul, mul_one]
 #align formal_multilinear_series.apply_eq_prod_smul_coeff FormalMultilinearSeries.apply_eq_prod_smul_coeff
+-/
 
+/- warning: formal_multilinear_series.coeff_eq_zero -> FormalMultilinearSeries.coeff_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toHasSmul.{u1, u1} π•œ π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (SMulWithZero.toSmulZeroClass.{u1, u1} π•œ π•œ (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (semi_normed_ring_top_monoid.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat}, Iff (Eq.{succ u2} E (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) (Eq.{max 1 (succ u1) (succ u2)} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (p n) (OfNat.ofNat.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) 0 (OfNat.mk.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) 0 (Zero.zero.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (ContinuousMultilinearMap.hasZero.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toSMul.{u1, u1} π•œ π•œ (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (SMulWithZero.toSMulZeroClass.{u1, u1} π•œ π•œ (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalSemiring.toContinuousMul.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalRing.toTopologicalSemiring.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (TopologicalDivisionRing.toTopologicalRing.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedDivisionRing.to_topologicalDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat}, Iff (Eq.{succ u2} E (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) (Eq.{max (succ u1) (succ u2)} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (p n) (OfNat.ofNat.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) 0 (Zero.toOfNat0.{max u1 u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))))
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.coeff_eq_zero FormalMultilinearSeries.coeff_eq_zeroβ‚“'. -/
 theorem coeff_eq_zero : p.coeff n = 0 ↔ p n = 0 := by
   rw [← mk_pi_field_coeff_eq p, ContinuousMultilinearMap.mkPiField_eq_zero_iff]
 #align formal_multilinear_series.coeff_eq_zero FormalMultilinearSeries.coeff_eq_zero
 
+/- warning: formal_multilinear_series.apply_eq_pow_smul_coeff -> FormalMultilinearSeries.apply_eq_pow_smul_coeff is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toHasSmul.{u1, u1} π•œ π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (SMulWithZero.toSmulZeroClass.{u1, u1} π•œ π•œ (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (semi_normed_ring_top_monoid.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat} {z : π•œ}, Eq.{succ u2} E (coeFn.{max 1 (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (fun (_x : ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) => ((Fin n) -> π•œ) -> E) (ContinuousMultilinearMap.hasCoeToFun.{u1, 0, u1, u2} π•œ (Fin n) (fun (i : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (p n) (fun (_x : Fin n) => z)) (SMul.smul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (HPow.hPow.{u1, 0, u1} π•œ Nat π•œ (instHPow.{u1, 0} π•œ Nat (Monoid.Pow.{u1} π•œ (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) z n) (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {p : FormalMultilinearSeries.{u1, u1, u2} π•œ π•œ E (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformContinuousConstSMul.to_continuousConstSMul.{u1, u1} π•œ π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SMulZeroClass.toSMul.{u1, u1} π•œ π•œ (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (SMulWithZero.toSMulZeroClass.{u1, u1} π•œ π•œ (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (MulActionWithZero.toSMulWithZero.{u1, u1} π•œ π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} π•œ (SubNegZeroMonoid.toNegZeroClass.{u1} π•œ (SubtractionMonoid.toSubNegZeroMonoid.{u1} π•œ (SubtractionCommMonoid.toSubtractionMonoid.{u1} π•œ (AddCommGroup.toDivisionAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))))) (Module.toMulActionWithZero.{u1, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.uniformContinuousConstSMul.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (SeminormedAddCommGroup.to_uniformAddGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalSemiring.toContinuousMul.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (TopologicalRing.toTopologicalSemiring.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (TopologicalDivisionRing.toTopologicalRing.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedDivisionRing.to_topologicalDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (MonoidWithZero.toZero.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))} {n : Nat} {z : π•œ}, Eq.{succ u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) => E) (fun (x._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.4261 : Fin n) => z)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) i) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (fun (_x : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) => E) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousMultilinearMap.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) i) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))) (forall (i : Fin n), (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) E (Pi.topologicalSpace.{0, u1} (Fin n) (fun (i : Fin n) => (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (fun (a : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) a)) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (ContinuousMultilinearMap.continuousMapClass.{u1, 0, u1, u2} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u1} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => π•œ) i) (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (fun (i : Fin n) => (fun (i : Fin n) => NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) i) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (fun (i : Fin n) => (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) i) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (p n) (fun (_x : Fin n) => z)) (HSMul.hSMul.{u1, u2, u2} π•œ E E (instHSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))))) (HPow.hPow.{u1, 0, u1} π•œ Nat π•œ (instHPow.{u1, 0} π•œ Nat (Monoid.Pow.{u1} π•œ (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) z n) (FormalMultilinearSeries.coeff.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 p n))
+Case conversion may be inaccurate. Consider using '#align formal_multilinear_series.apply_eq_pow_smul_coeff FormalMultilinearSeries.apply_eq_pow_smul_coeffβ‚“'. -/
 @[simp]
 theorem apply_eq_pow_smul_coeff : (p n fun _ => z) = z ^ n β€’ p.coeff n := by simp
 #align formal_multilinear_series.apply_eq_pow_smul_coeff FormalMultilinearSeries.apply_eq_pow_smul_coeff
 
+#print FormalMultilinearSeries.norm_apply_eq_norm_coef /-
 @[simp]
 theorem norm_apply_eq_norm_coef : β€–p nβ€– = β€–coeff p nβ€– := by
   rw [← mk_pi_field_coeff_eq p, ContinuousMultilinearMap.norm_mkPiField]
 #align formal_multilinear_series.norm_apply_eq_norm_coef FormalMultilinearSeries.norm_apply_eq_norm_coef
+-/
 
 end Coef
 
@@ -297,23 +417,29 @@ section Fslope
 variable [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E]
   {p : FormalMultilinearSeries π•œ π•œ E} {n : β„•}
 
+#print FormalMultilinearSeries.fslope /-
 /-- The formal counterpart of `dslope`, corresponding to the expansion of `(f z - f 0) / z`. If `f`
 has `p` as a power series, then `dslope f` has `fslope p` as a power series. -/
 noncomputable def fslope (p : FormalMultilinearSeries π•œ π•œ E) : FormalMultilinearSeries π•œ π•œ E :=
   fun n => (p (n + 1)).curryLeft 1
 #align formal_multilinear_series.fslope FormalMultilinearSeries.fslope
+-/
 
+#print FormalMultilinearSeries.coeff_fslope /-
 @[simp]
 theorem coeff_fslope : p.fslope.coeff n = p.coeff (n + 1) :=
   by
   have : @Fin.cons n (fun _ => π•œ) 1 (1 : Fin n β†’ π•œ) = 1 := Fin.cons_self_tail 1
   simp only [fslope, coeff, ContinuousMultilinearMap.curryLeft_apply, this]
 #align formal_multilinear_series.coeff_fslope FormalMultilinearSeries.coeff_fslope
+-/
 
+#print FormalMultilinearSeries.coeff_iterate_fslope /-
 @[simp]
 theorem coeff_iterate_fslope (k n : β„•) : ((fslope^[k]) p).coeff n = p.coeff (n + k) := by
   induction' k with k ih generalizing p <;> first |rfl|simpa [ih]
 #align formal_multilinear_series.coeff_iterate_fslope FormalMultilinearSeries.coeff_iterate_fslope
+-/
 
 end Fslope
 
@@ -321,6 +447,7 @@ end FormalMultilinearSeries
 
 section Const
 
+#print constFormalMultilinearSeries /-
 /-- The formal multilinear series where all terms of positive degree are equal to zero, and the term
 of degree zero is `c`. It is the power series expansion of the constant function equal to `c`
 everywhere. -/
@@ -331,7 +458,14 @@ def constFormalMultilinearSeries (π•œ : Type _) [NontriviallyNormedField π•œ]
   | 0 => ContinuousMultilinearMap.curry0 _ _ c
   | _ => 0
 #align const_formal_multilinear_series constFormalMultilinearSeries
+-/
 
+/- warning: const_formal_multilinear_series_apply -> constFormalMultilinearSeries_apply is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedAddCommGroup.{u3} F] [_inst_4 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)] {c : F} {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (OfNat.mk.{0} Nat 0 (Zero.zero.{0} Nat Nat.hasZero)))) -> (Eq.{max 1 (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (constFormalMultilinearSeries.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_4 (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) F _inst_3 (SeminormedAddCommGroup.to_topologicalAddGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) _inst_5 (ContinuousSMul.continuousConstSMul.{u1, u3} π•œ F (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (BoundedSMul.continuousSMul.{u1, u3} π•œ F (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (SubNegMonoid.toAddMonoid.{u3} F (AddGroup.toSubNegMonoid.{u3} F (SeminormedAddGroup.toAddGroup.{u3} F (SeminormedAddCommGroup.toSeminormedAddGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))))) (SMulZeroClass.toHasSmul.{u1, u3} π•œ F (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ F (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u3} F (AddMonoid.toAddZeroClass.{u3} F (AddCommMonoid.toAddMonoid.{u3} F (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (SeminormedAddCommGroup.toAddCommGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (NormedSpace.boundedSMul.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))) c n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) 0 (OfNat.mk.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) 0 (Zero.zero.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (ContinuousMultilinearMap.hasZero.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {F : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedAddCommGroup.{u3} F] [_inst_4 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_5 : NormedSpace.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)] {c : F} {n : Nat}, (Ne.{1} Nat n (OfNat.ofNat.{0} Nat 0 (instOfNatNat 0))) -> (Eq.{max (succ u2) (succ u3)} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (constFormalMultilinearSeries.{u1, u2, u3} π•œ _inst_1 E _inst_2 _inst_4 (ContinuousSMul.continuousConstSMul.{u1, u2} π•œ E (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (BoundedSMul.continuousSMul.{u1, u2} π•œ E (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))))) (NormedSpace.boundedSMul.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4))) (SeminormedAddCommGroup.to_topologicalAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) F _inst_3 (SeminormedAddCommGroup.to_topologicalAddGroup.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) _inst_5 (ContinuousSMul.continuousConstSMul.{u1, u3} π•œ F (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)))) (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (BoundedSMul.continuousSMul.{u1, u3} π•œ F (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3)) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (SMulZeroClass.toSMul.{u1, u3} π•œ F (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ F (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ F (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u3} F (SubNegZeroMonoid.toNegZeroClass.{u3} F (SubtractionMonoid.toSubNegZeroMonoid.{u3} F (SubtractionCommMonoid.toSubtractionMonoid.{u3} F (AddCommGroup.toDivisionAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)))))) (Module.toMulActionWithZero.{u1, u3} π•œ F (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))))) (NormedSpace.boundedSMul.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5))) c n) (OfNat.ofNat.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) 0 (Zero.toOfNat0.{max u2 u3} (ContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))) (ContinuousMultilinearMap.instZeroContinuousMultilinearMap.{u1, 0, u2, u3} π•œ (Fin n) (fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) F (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (fun (i : Fin n) => AddCommGroup.toAddCommMonoid.{u2} ((fun (i._@.Mathlib.Analysis.Calculus.FormalMultilinearSeries._hyg.203 : Fin n) => E) i) (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u3} F (NormedAddCommGroup.toAddCommGroup.{u3} F _inst_3)) (fun (i : Fin n) => NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_4) (NormedSpace.toModule.{u1, u3} π•œ F (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3) _inst_5) (fun (i : Fin n) => UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u3} F (PseudoMetricSpace.toUniformSpace.{u3} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u3} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u3} F _inst_3))))))))
+Case conversion may be inaccurate. Consider using '#align const_formal_multilinear_series_apply constFormalMultilinearSeries_applyβ‚“'. -/
 @[simp]
 theorem constFormalMultilinearSeries_apply [NontriviallyNormedField π•œ] [NormedAddCommGroup E]
     [NormedAddCommGroup F] [NormedSpace π•œ E] [NormedSpace π•œ F] {c : F} {n : β„•} (hn : n β‰  0) :
Diff
@@ -202,7 +202,7 @@ variable [CommRing π•œ] {n : β„•} [AddCommGroup E] [Module π•œ E] [Topological
   is the order of the isolated zero of an analytic function `f` at a point if `p` is the Taylor
   series of `f` at that point. -/
 noncomputable def order (p : FormalMultilinearSeries π•œ E F) : β„• :=
-  infβ‚› { n | p n β‰  0 }
+  sInf { n | p n β‰  0 }
 #align formal_multilinear_series.order FormalMultilinearSeries.order
 
 @[simp]
Diff
@@ -273,7 +273,7 @@ theorem mkPiField_coeff_eq (p : FormalMultilinearSeries π•œ π•œ E) (n : β„•) :
 @[simp]
 theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) β€’ p.coeff n :=
   by
-  convert (p n).toMultilinearMap.map_smul_univ y 1
+  convert(p n).toMultilinearMap.map_smul_univ y 1
   funext <;> simp only [Pi.one_apply, Algebra.id.smul_eq_mul, mul_one]
 #align formal_multilinear_series.apply_eq_prod_smul_coeff FormalMultilinearSeries.apply_eq_prod_smul_coeff
 

Changes in mathlib4

mathlib3
mathlib4
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -137,9 +137,7 @@ theorem compContinuousLinearMap_apply (p : FormalMultilinearSeries π•œ F G) (u
 #align formal_multilinear_series.comp_continuous_linear_map_apply FormalMultilinearSeries.compContinuousLinearMap_apply
 
 variable (π•œ) [Ring π•œ'] [SMul π•œ π•œ']
-
 variable [Module π•œ' E] [ContinuousConstSMul π•œ' E] [IsScalarTower π•œ π•œ' E]
-
 variable [Module π•œ' F] [ContinuousConstSMul π•œ' F] [IsScalarTower π•œ π•œ' F]
 
 /-- Reinterpret a formal `π•œ'`-multilinear series as a formal `π•œ`-multilinear series. -/
chore: classify new theorem / theorem porting notes (#11432)

Classifies by adding issue number #10756 to porting notes claiming anything equivalent to:

  • "added theorem"
  • "added theorems"
  • "new theorem"
  • "new theorems"
  • "added lemma"
  • "new lemma"
  • "new lemmas"
Diff
@@ -67,13 +67,13 @@ end Module
 
 namespace FormalMultilinearSeries
 
-@[simp] -- Porting note: new; was not needed in Lean 3
+@[simp] -- Porting note (#10756): new theorem; was not needed in Lean 3
 theorem zero_apply (n : β„•) : (0 : FormalMultilinearSeries π•œ E F) n = 0 := rfl
 
-@[simp] -- Porting note: new; was not needed in Lean 3
+@[simp] -- Porting note (#10756): new theorem; was not needed in Lean 3
 theorem neg_apply (f : FormalMultilinearSeries π•œ E F) (n : β„•) : (-f) n = - f n := rfl
 
-@[ext] -- Porting note: new theorem
+@[ext] -- Porting note (#10756): new theorem
 protected theorem ext {p q : FormalMultilinearSeries π•œ E F} (h : βˆ€ n, p n = q n) : p = q :=
   funext h
 
chore: remove unused tactics (#11351)

I removed some of the tactics that were not used and are hopefully uncontroversial arising from the linter at #11308.

As the commit messages should convey, the removed tactics are, essentially,

push_cast
norm_cast
congr
norm_num
dsimp
funext
intro
infer_instance
Diff
@@ -300,7 +300,6 @@ theorem mkPiRing_coeff_eq (p : FormalMultilinearSeries π•œ π•œ E) (n : β„•) :
 @[simp]
 theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) β€’ p.coeff n := by
   convert (p n).toMultilinearMap.map_smul_univ y 1
-  funext
   simp only [Pi.one_apply, Algebra.id.smul_eq_mul, mul_one]
 #align formal_multilinear_series.apply_eq_prod_smul_coeff FormalMultilinearSeries.apply_eq_prod_smul_coeff
 
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -29,7 +29,7 @@ noncomputable section
 
 open Set Fin Topology
 
--- porting note: added explicit universes to fix compile
+-- Porting note: added explicit universes to fix compile
 universe u u' v w x
 variable {π•œ : Type u} {π•œ' : Type u'} {E : Type v} {F : Type w} {G : Type x}
 
@@ -67,13 +67,13 @@ end Module
 
 namespace FormalMultilinearSeries
 
-@[simp] -- porting note: new; was not needed in Lean 3
+@[simp] -- Porting note: new; was not needed in Lean 3
 theorem zero_apply (n : β„•) : (0 : FormalMultilinearSeries π•œ E F) n = 0 := rfl
 
-@[simp] -- porting note: new; was not needed in Lean 3
+@[simp] -- Porting note: new; was not needed in Lean 3
 theorem neg_apply (f : FormalMultilinearSeries π•œ E F) (n : β„•) : (-f) n = - f n := rfl
 
-@[ext] -- porting note: new theorem
+@[ext] -- Porting note: new theorem
 protected theorem ext {p q : FormalMultilinearSeries π•œ E F} (h : βˆ€ n, p n = q n) : p = q :=
   funext h
 
@@ -172,7 +172,7 @@ corresponds to starting from a Taylor series (`HasFTaylorSeriesUpTo`) for the de
 function, and building a Taylor series for the function itself. -/
 def unshift (q : FormalMultilinearSeries π•œ E (E β†’L[π•œ] F)) (z : F) : FormalMultilinearSeries π•œ E F
   | 0 => (continuousMultilinearCurryFin0 π•œ E F).symm z
-  | n + 1 => -- porting note: added type hint here and explicit universes to fix compile
+  | n + 1 => -- Porting note: added type hint here and explicit universes to fix compile
     (continuousMultilinearCurryRightEquiv' π•œ n E F :
       (E [Γ—n]β†’L[π•œ] E β†’L[π•œ] F) β†’ (E [Γ—n.succ]β†’L[π•œ] F)) (q n)
 #align formal_multilinear_series.unshift FormalMultilinearSeries.unshift
chore: bump toolchain to v4.6.0 (#11065)

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -308,7 +308,6 @@ theorem coeff_eq_zero : p.coeff n = 0 ↔ p n = 0 := by
   rw [← mkPiRing_coeff_eq p, ContinuousMultilinearMap.mkPiRing_eq_zero_iff]
 #align formal_multilinear_series.coeff_eq_zero FormalMultilinearSeries.coeff_eq_zero
 
-@[simp]
 theorem apply_eq_pow_smul_coeff : (p n fun _ => z) = z ^ n β€’ p.coeff n := by simp
 #align formal_multilinear_series.apply_eq_pow_smul_coeff FormalMultilinearSeries.apply_eq_pow_smul_coeff
 
feat: generalize ContinuousMultilinearLinearMap.mkPiField to mkPiRing (#9910)

This matches the generality of the non-continuous versions.

The norm_smulRight lemma is the only new result.

Diff
@@ -292,10 +292,10 @@ def coeff (p : FormalMultilinearSeries π•œ π•œ E) (n : β„•) : E :=
   p n 1
 #align formal_multilinear_series.coeff FormalMultilinearSeries.coeff
 
-theorem mkPiField_coeff_eq (p : FormalMultilinearSeries π•œ π•œ E) (n : β„•) :
-    ContinuousMultilinearMap.mkPiField π•œ (Fin n) (p.coeff n) = p n :=
-  (p n).mkPiField_apply_one_eq_self
-#align formal_multilinear_series.mk_pi_field_coeff_eq FormalMultilinearSeries.mkPiField_coeff_eq
+theorem mkPiRing_coeff_eq (p : FormalMultilinearSeries π•œ π•œ E) (n : β„•) :
+    ContinuousMultilinearMap.mkPiRing π•œ (Fin n) (p.coeff n) = p n :=
+  (p n).mkPiRing_apply_one_eq_self
+#align formal_multilinear_series.mk_pi_field_coeff_eq FormalMultilinearSeries.mkPiRing_coeff_eq
 
 @[simp]
 theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) β€’ p.coeff n := by
@@ -305,7 +305,7 @@ theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) β€’ p.coeff n := by
 #align formal_multilinear_series.apply_eq_prod_smul_coeff FormalMultilinearSeries.apply_eq_prod_smul_coeff
 
 theorem coeff_eq_zero : p.coeff n = 0 ↔ p n = 0 := by
-  rw [← mkPiField_coeff_eq p, ContinuousMultilinearMap.mkPiField_eq_zero_iff]
+  rw [← mkPiRing_coeff_eq p, ContinuousMultilinearMap.mkPiRing_eq_zero_iff]
 #align formal_multilinear_series.coeff_eq_zero FormalMultilinearSeries.coeff_eq_zero
 
 @[simp]
@@ -314,7 +314,7 @@ theorem apply_eq_pow_smul_coeff : (p n fun _ => z) = z ^ n β€’ p.coeff n := by s
 
 @[simp]
 theorem norm_apply_eq_norm_coef : β€–p nβ€– = β€–coeff p nβ€– := by
-  rw [← mkPiField_coeff_eq p, ContinuousMultilinearMap.norm_mkPiField]
+  rw [← mkPiRing_coeff_eq p, ContinuousMultilinearMap.norm_mkPiRing]
 #align formal_multilinear_series.norm_apply_eq_norm_coef FormalMultilinearSeries.norm_apply_eq_norm_coef
 
 end Coef
feat: define ContinuousMultilinearMap.linearDeriv and show it's the fderiv (#9846)

Co-authored-by: Sophie Morel

Co-authored-by: Junyan Xu <junyanxu.math@gmail.com> Co-authored-by: morel <smorel@math.princeton.edu>

Diff
@@ -35,7 +35,7 @@ variable {π•œ : Type u} {π•œ' : Type u'} {E : Type v} {F : Type w} {G : Type x
 
 section
 
-variable [CommRing π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E]
+variable [Ring π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E]
   [ContinuousConstSMul π•œ E] [AddCommGroup F] [Module π•œ F] [TopologicalSpace F]
   [TopologicalAddGroup F] [ContinuousConstSMul π•œ F] [AddCommGroup G] [Module π•œ G]
   [TopologicalSpace G] [TopologicalAddGroup G] [ContinuousConstSMul π•œ G]
@@ -59,11 +59,9 @@ instance : Inhabited (FormalMultilinearSeries π•œ E F) :=
 
 section Module
 
-/- `derive` is not able to find the module structure, probably because Lean is confused by the
-dependent types. We register it explicitly. -/
--- Porting note: rewrote with `inferInstanceAs`
-instance : Module π•œ (FormalMultilinearSeries π•œ E F) :=
-  inferInstanceAs <| Module π•œ <| βˆ€ n : β„•, E[Γ—n]β†’L[π•œ] F
+instance (π•œ') [Semiring π•œ'] [Module π•œ' F] [ContinuousConstSMul π•œ' F] [SMulCommClass π•œ π•œ' F] :
+    Module π•œ' (FormalMultilinearSeries π•œ E F) :=
+  inferInstanceAs <| Module π•œ' <| βˆ€ n : β„•, E[Γ—n]β†’L[π•œ] F
 
 end Module
 
@@ -138,7 +136,7 @@ theorem compContinuousLinearMap_apply (p : FormalMultilinearSeries π•œ F G) (u
   rfl
 #align formal_multilinear_series.comp_continuous_linear_map_apply FormalMultilinearSeries.compContinuousLinearMap_apply
 
-variable (π•œ) [CommRing π•œ'] [SMul π•œ π•œ']
+variable (π•œ) [Ring π•œ'] [SMul π•œ π•œ']
 
 variable [Module π•œ' E] [ContinuousConstSMul π•œ' E] [IsScalarTower π•œ π•œ' E]
 
@@ -181,13 +179,15 @@ def unshift (q : FormalMultilinearSeries π•œ E (E β†’L[π•œ] F)) (z : F) : Form
 
 end FormalMultilinearSeries
 
-namespace ContinuousLinearMap
+section
 
-variable [CommRing π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E]
+variable [Ring π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E]
   [ContinuousConstSMul π•œ E] [AddCommGroup F] [Module π•œ F] [TopologicalSpace F]
   [TopologicalAddGroup F] [ContinuousConstSMul π•œ F] [AddCommGroup G] [Module π•œ G]
   [TopologicalSpace G] [TopologicalAddGroup G] [ContinuousConstSMul π•œ G]
 
+namespace ContinuousLinearMap
+
 /-- Composing each term `pβ‚™` in a formal multilinear series with a continuous linear map `f` on the
 left gives a new formal multilinear series `f.compFormalMultilinearSeries p` whose general term
 is `f ∘ pβ‚™`. -/
@@ -208,11 +208,28 @@ theorem compFormalMultilinearSeries_apply' (f : F β†’L[π•œ] G) (p : FormalMulti
 
 end ContinuousLinearMap
 
+namespace ContinuousMultilinearMap
+
+variable {ΞΉ : Type*} {E : ΞΉ β†’ Type*} [βˆ€ i, AddCommGroup (E i)] [βˆ€ i, Module π•œ (E i)]
+  [βˆ€ i, TopologicalSpace (E i)] [βˆ€ i, TopologicalAddGroup (E i)]
+  [βˆ€ i, ContinuousConstSMul π•œ (E i)] [Fintype ΞΉ] (f : ContinuousMultilinearMap π•œ E F)
+
+/-- Realize a ContinuousMultilinearMap on `βˆ€ i : ΞΉ, E i` as the evaluation of a
+FormalMultilinearSeries by choosing an arbitrary identification `ΞΉ ≃ Fin (Fintype.card ΞΉ)`. -/
+noncomputable def toFormalMultilinearSeries : FormalMultilinearSeries π•œ (βˆ€ i, E i) F :=
+  fun n ↦ if h : Fintype.card ΞΉ = n then
+    (f.compContinuousLinearMap .proj).domDomCongr (Fintype.equivFinOfCardEq h)
+  else 0
+
+end ContinuousMultilinearMap
+
+end
+
 namespace FormalMultilinearSeries
 
 section Order
 
-variable [CommRing π•œ] {n : β„•} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E]
+variable [Ring π•œ] {n : β„•} [AddCommGroup E] [Module π•œ E] [TopologicalSpace E]
   [TopologicalAddGroup E] [ContinuousConstSMul π•œ E] [AddCommGroup F] [Module π•œ F]
   [TopologicalSpace F] [TopologicalAddGroup F] [ContinuousConstSMul π•œ F]
   {p : FormalMultilinearSeries π•œ E F}
doc(FormalMultilinearSeries): clarify relationship between shift, sum, derivative and Taylor series (#9373)

Co-authored-by: Junyan Xu <junyanxu.math@gmail.com>

Diff
@@ -162,14 +162,16 @@ variable [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ
 variable (p : FormalMultilinearSeries π•œ E F)
 
 /-- Forgetting the zeroth term in a formal multilinear series, and interpreting the following terms
-as multilinear maps into `E β†’L[π•œ] F`. If `p` corresponds to the Taylor series of a function, then
-`p.shift` is the Taylor series of the derivative of the function. -/
+as multilinear maps into `E β†’L[π•œ] F`. If `p` is the Taylor series (`HasFTaylorSeriesUpTo`) of a
+function, then `p.shift` is the Taylor series of the derivative of the function. Note that the
+`p.sum` of a Taylor series `p` does not give the original function; for a formal multilinear
+series that sums to the derivative of `p.sum`, see `HasFPowerSeriesOnBall.fderiv`. -/
 def shift : FormalMultilinearSeries π•œ E (E β†’L[π•œ] F) := fun n => (p n.succ).curryRight
 #align formal_multilinear_series.shift FormalMultilinearSeries.shift
 
 /-- Adding a zeroth term to a formal multilinear series taking values in `E β†’L[π•œ] F`. This
-corresponds to starting from a Taylor series for the derivative of a function, and building a Taylor
-series for the function itself. -/
+corresponds to starting from a Taylor series (`HasFTaylorSeriesUpTo`) for the derivative of a
+function, and building a Taylor series for the function itself. -/
 def unshift (q : FormalMultilinearSeries π•œ E (E β†’L[π•œ] F)) (z : F) : FormalMultilinearSeries π•œ E F
   | 0 => (continuousMultilinearCurryFin0 π•œ E F).symm z
   | n + 1 => -- porting note: added type hint here and explicit universes to fix compile
chore: tidy various files (#8823)
Diff
@@ -367,11 +367,11 @@ def fpowerSeries (f : E β†’L[π•œ] F) (x : E) : FormalMultilinearSeries π•œ E F
   | _ => 0
 #align continuous_linear_map.fpower_series ContinuousLinearMap.fpowerSeries
 
-theorem fpower_series_apply_zero (f : E β†’L[π•œ] F) (x : E) :
+theorem fpowerSeries_apply_zero (f : E β†’L[π•œ] F) (x : E) :
     f.fpowerSeries x 0 = ContinuousMultilinearMap.curry0 π•œ _ (f x) :=
   rfl
 
-theorem fpower_series_apply_one (f : E β†’L[π•œ] F) (x : E) :
+theorem fpowerSeries_apply_one (f : E β†’L[π•œ] F) (x : E) :
     f.fpowerSeries x 1 = (continuousMultilinearCurryFin1 π•œ E F).symm f :=
   rfl
 
@@ -380,7 +380,7 @@ theorem fpowerSeries_apply_add_two (f : E β†’L[π•œ] F) (x : E) (n : β„•) : f.fp
 #align continuous_linear_map.fpower_series_apply_add_two ContinuousLinearMap.fpowerSeries_apply_add_two
 
 attribute
-  [eqns fpower_series_apply_zero fpower_series_apply_one fpowerSeries_apply_add_two] fpowerSeries
+  [eqns fpowerSeries_apply_zero fpowerSeries_apply_one fpowerSeries_apply_add_two] fpowerSeries
 attribute [simp] fpowerSeries
 
 end ContinuousLinearMap
chore(*/Multilinear): move some files (#8786)

I'm going to add more files, so I need to move some of the existing files to subfolders.

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: SΓ©bastien GouΓ«zel
 -/
-import Mathlib.Analysis.NormedSpace.MultilinearCurrying
+import Mathlib.Analysis.NormedSpace.Multilinear.Curry
 
 #align_import analysis.calculus.formal_multilinear_series from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 
chore: split Analysis.NormedSpace.Multilinear (#8392)

This moves the isomorphisms corresponding to currying or uncurrying variables into a separate file, as they're mostly independent of the rest of the file.

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: SΓ©bastien GouΓ«zel
 -/
-import Mathlib.Analysis.NormedSpace.Multilinear
+import Mathlib.Analysis.NormedSpace.MultilinearCurrying
 
 #align_import analysis.calculus.formal_multilinear_series from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 
feat(Analysis/Analytic): A few lemmas that simple things are analytic (#7677)

We record various simple lemmas that things are analyticAt or analyticOn. There's no hard work here, just corollaries of other results:

  1. id, fst, snd
  2. Power series terms, in the origin (we already know they have power series, this is just the .analyticAt_changeOrigin corollary
  3. Finite sums
  4. Pairs of analytic functions: x ↦ (f x, g x)

We also add a few lemmas for dealing with curried analytic functions. Starting with AnalyticOn π•œ (uncurry h) s,

  1. AnalyticOn.curry_comp composes it with two input analytic functions
  2. AnalyticOn.along_fst/snd show analyticity along each coordinate

Co-authored-by: Mario Carneiro <di.gama@gmail.com> Co-authored-by: David Loeffler <d.loeffler.01@cantab.net>

Diff
@@ -386,18 +386,3 @@ attribute [simp] fpowerSeries
 end ContinuousLinearMap
 
 end Linear
-
-section Geometric
-
-variable (π•œ) [NontriviallyNormedField π•œ]
-  (A : Type*) [NormedRing A] [NormedAlgebra π•œ A] [NormOneClass A]
-
-/-- The geometric series `1 + x + x ^ 2 + ...` as a `FormalMultilinearSeries`.-/
-def formalMultilinearSeries_geometric : FormalMultilinearSeries π•œ A A :=
-  fun n ↦ ContinuousMultilinearMap.mkPiAlgebraFin π•œ n A
-
-lemma formalMultilinearSeries_geometric_apply_norm (n : β„•) :
-    β€–formalMultilinearSeries_geometric π•œ A nβ€– = 1 := by
-  apply @ContinuousMultilinearMap.norm_mkPiAlgebraFin _ _ (fun _ ↦ A)
-
-end Geometric
feat(Analysis/Analytic): some more API for analytic functions (#7552)

This PR adds some basic results about analytic functions: products of analytic functions are analytic, and the inverse map on a normed field is analytic away from 0.

Diff
@@ -57,12 +57,6 @@ instance : AddCommGroup (FormalMultilinearSeries π•œ E F) :=
 instance : Inhabited (FormalMultilinearSeries π•œ E F) :=
   ⟨0⟩
 
-@[simp] -- porting note: new; was not needed in Lean 3
-theorem zero_apply (n : β„•) : (0 : FormalMultilinearSeries π•œ E F) n = 0 := rfl
-
-@[simp] -- porting note: new; was not needed in Lean 3
-theorem neg_apply (f : FormalMultilinearSeries π•œ E F) (n : β„•) : (-f) n = - f n := rfl
-
 section Module
 
 /- `derive` is not able to find the module structure, probably because Lean is confused by the
@@ -75,6 +69,12 @@ end Module
 
 namespace FormalMultilinearSeries
 
+@[simp] -- porting note: new; was not needed in Lean 3
+theorem zero_apply (n : β„•) : (0 : FormalMultilinearSeries π•œ E F) n = 0 := rfl
+
+@[simp] -- porting note: new; was not needed in Lean 3
+theorem neg_apply (f : FormalMultilinearSeries π•œ E F) (n : β„•) : (-f) n = - f n := rfl
+
 @[ext] -- porting note: new theorem
 protected theorem ext {p q : FormalMultilinearSeries π•œ E F} (h : βˆ€ n, p n = q n) : p = q :=
   funext h
@@ -87,6 +87,12 @@ protected theorem ne_iff {p q : FormalMultilinearSeries π•œ E F} : p β‰  q ↔
   Function.ne_iff
 #align formal_multilinear_series.ne_iff FormalMultilinearSeries.ne_iff
 
+/-- Cartesian product of two formal multilinear series (with the same field `π•œ` and the same source
+space, but possibly different target spaces). -/
+def prod (p : FormalMultilinearSeries π•œ E F) (q : FormalMultilinearSeries π•œ E G) :
+    FormalMultilinearSeries π•œ E (F Γ— G)
+  | n => (p n).prod (q n)
+
 /-- Killing the zeroth coefficient in a formal multilinear series -/
 def removeZero (p : FormalMultilinearSeries π•œ E F) : FormalMultilinearSeries π•œ E F
   | 0 => 0
@@ -344,3 +350,54 @@ theorem constFormalMultilinearSeries_apply [NontriviallyNormedField π•œ] [Norme
 #align const_formal_multilinear_series_apply constFormalMultilinearSeries_apply
 
 end Const
+
+section Linear
+
+variable [NontriviallyNormedField π•œ]
+  [NormedAddCommGroup E] [NormedSpace π•œ E]
+  [NormedAddCommGroup F] [NormedSpace π•œ F]
+
+namespace ContinuousLinearMap
+
+/-- Formal power series of a continuous linear map `f : E β†’L[π•œ] F` at `x : E`:
+`f y = f x + f (y - x)`. -/
+def fpowerSeries (f : E β†’L[π•œ] F) (x : E) : FormalMultilinearSeries π•œ E F
+  | 0 => ContinuousMultilinearMap.curry0 π•œ _ (f x)
+  | 1 => (continuousMultilinearCurryFin1 π•œ E F).symm f
+  | _ => 0
+#align continuous_linear_map.fpower_series ContinuousLinearMap.fpowerSeries
+
+theorem fpower_series_apply_zero (f : E β†’L[π•œ] F) (x : E) :
+    f.fpowerSeries x 0 = ContinuousMultilinearMap.curry0 π•œ _ (f x) :=
+  rfl
+
+theorem fpower_series_apply_one (f : E β†’L[π•œ] F) (x : E) :
+    f.fpowerSeries x 1 = (continuousMultilinearCurryFin1 π•œ E F).symm f :=
+  rfl
+
+theorem fpowerSeries_apply_add_two (f : E β†’L[π•œ] F) (x : E) (n : β„•) : f.fpowerSeries x (n + 2) = 0 :=
+  rfl
+#align continuous_linear_map.fpower_series_apply_add_two ContinuousLinearMap.fpowerSeries_apply_add_two
+
+attribute
+  [eqns fpower_series_apply_zero fpower_series_apply_one fpowerSeries_apply_add_two] fpowerSeries
+attribute [simp] fpowerSeries
+
+end ContinuousLinearMap
+
+end Linear
+
+section Geometric
+
+variable (π•œ) [NontriviallyNormedField π•œ]
+  (A : Type*) [NormedRing A] [NormedAlgebra π•œ A] [NormOneClass A]
+
+/-- The geometric series `1 + x + x ^ 2 + ...` as a `FormalMultilinearSeries`.-/
+def formalMultilinearSeries_geometric : FormalMultilinearSeries π•œ A A :=
+  fun n ↦ ContinuousMultilinearMap.mkPiAlgebraFin π•œ n A
+
+lemma formalMultilinearSeries_geometric_apply_norm (n : β„•) :
+    β€–formalMultilinearSeries_geometric π•œ A nβ€– = 1 := by
+  apply @ContinuousMultilinearMap.norm_mkPiAlgebraFin _ _ (fun _ ↦ A)
+
+end Geometric
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -43,7 +43,7 @@ variable [CommRing π•œ] [AddCommGroup E] [Module π•œ E] [TopologicalSpace E] [
 /-- A formal multilinear series over a field `π•œ`, from `E` to `F`, is given by a family of
 multilinear maps from `E^n` to `F` for all `n`. -/
 @[nolint unusedArguments]
-def FormalMultilinearSeries (π•œ : Type _) (E : Type _) (F : Type _) [Ring π•œ] [AddCommGroup E]
+def FormalMultilinearSeries (π•œ : Type*) (E : Type*) (F : Type*) [Ring π•œ] [AddCommGroup E]
     [Module π•œ E] [TopologicalSpace E] [TopologicalAddGroup E] [ContinuousConstSMul π•œ E]
     [AddCommGroup F] [Module π•œ F] [TopologicalSpace F] [TopologicalAddGroup F]
     [ContinuousConstSMul π•œ F] :=
@@ -328,9 +328,9 @@ section Const
 /-- The formal multilinear series where all terms of positive degree are equal to zero, and the term
 of degree zero is `c`. It is the power series expansion of the constant function equal to `c`
 everywhere. -/
-def constFormalMultilinearSeries (π•œ : Type _) [NontriviallyNormedField π•œ] (E : Type _)
+def constFormalMultilinearSeries (π•œ : Type*) [NontriviallyNormedField π•œ] (E : Type*)
     [NormedAddCommGroup E] [NormedSpace π•œ E] [ContinuousConstSMul π•œ E] [TopologicalAddGroup E]
-    {F : Type _} [NormedAddCommGroup F] [TopologicalAddGroup F] [NormedSpace π•œ F]
+    {F : Type*} [NormedAddCommGroup F] [TopologicalAddGroup F] [NormedSpace π•œ F]
     [ContinuousConstSMul π•œ F] (c : F) : FormalMultilinearSeries π•œ E F
   | 0 => ContinuousMultilinearMap.curry0 _ _ c
   | _ => 0
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,14 +2,11 @@
 Copyright (c) 2019 SΓ©bastien GouΓ«zel. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: SΓ©bastien GouΓ«zel
-
-! This file was ported from Lean 3 source module analysis.calculus.formal_multilinear_series
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Analysis.NormedSpace.Multilinear
 
+#align_import analysis.calculus.formal_multilinear_series from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # Formal multilinear series
 
fix precedence of Nat.iterate (#5589)
Diff
@@ -316,7 +316,7 @@ theorem coeff_fslope : p.fslope.coeff n = p.coeff (n + 1) := by
 #align formal_multilinear_series.coeff_fslope FormalMultilinearSeries.coeff_fslope
 
 @[simp]
-theorem coeff_iterate_fslope (k n : β„•) : ((fslope^[k]) p).coeff n = p.coeff (n + k) := by
+theorem coeff_iterate_fslope (k n : β„•) : (fslope^[k] p).coeff n = p.coeff (n + k) := by
   induction k generalizing p with
   | zero => rfl
   | succ k ih => simp [ih, add_assoc]
feat: port Analysis.Analytic.Basic (#4275)

Co-authored-by: adomani <adomani@gmail.com> Co-authored-by: int-y1 <jason_yuen2007@hotmail.com> Co-authored-by: Jireh Loreaux <loreaujy@gmail.com> Co-authored-by: Johan Commelin <johan@commelin.net>

Diff
@@ -63,6 +63,9 @@ instance : Inhabited (FormalMultilinearSeries π•œ E F) :=
 @[simp] -- porting note: new; was not needed in Lean 3
 theorem zero_apply (n : β„•) : (0 : FormalMultilinearSeries π•œ E F) n = 0 := rfl
 
+@[simp] -- porting note: new; was not needed in Lean 3
+theorem neg_apply (f : FormalMultilinearSeries π•œ E F) (n : β„•) : (-f) n = - f n := rfl
+
 section Module
 
 /- `derive` is not able to find the module structure, probably because Lean is confused by the
feat: port Analysis.Calculus.ContDiffDef (#4256)

Co-authored-by: @semorrison

Diff
@@ -75,6 +75,10 @@ end Module
 
 namespace FormalMultilinearSeries
 
+@[ext] -- porting note: new theorem
+protected theorem ext {p q : FormalMultilinearSeries π•œ E F} (h : βˆ€ n, p n = q n) : p = q :=
+  funext h
+
 protected theorem ext_iff {p q : FormalMultilinearSeries π•œ E F} : p = q ↔ βˆ€ n, p n = q n :=
   Function.funext_iff
 #align formal_multilinear_series.ext_iff FormalMultilinearSeries.ext_iff
feat: port Analysis.Calculus.FormalMultilinearSeries (#4114)

Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>

Dependencies 10 + 643

644 files ported (98.5%)
287885 lines ported (98.2%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file