analysis.inner_product_space.conformal_linear_map
⟷
Mathlib.Analysis.InnerProductSpace.ConformalLinearMap
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,8 +3,8 @@ Copyright (c) 2021 Yourong Zang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yourong Zang
-/
-import Mathbin.Analysis.NormedSpace.ConformalLinearMap
-import Mathbin.Analysis.InnerProductSpace.Basic
+import Analysis.NormedSpace.ConformalLinearMap
+import Analysis.InnerProductSpace.Basic
#align_import analysis.inner_product_space.conformal_linear_map from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,15 +2,12 @@
Copyright (c) 2021 Yourong Zang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yourong Zang
-
-! This file was ported from Lean 3 source module analysis.inner_product_space.conformal_linear_map
-! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.NormedSpace.ConformalLinearMap
import Mathbin.Analysis.InnerProductSpace.Basic
+#align_import analysis.inner_product_space.conformal_linear_map from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
+
/-!
# Conformal maps between inner product spaces
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -31,6 +31,7 @@ open LinearIsometry ContinuousLinearMap
open scoped RealInnerProductSpace
+#print isConformalMap_iff /-
/-- A map between two inner product spaces is a conformal map if and only if it preserves inner
products up to a scalar factor, i.e., there exists a positive `c : ℝ` such that `⟪f u, f v⟫ = c *
⟪u, v⟫` for all `u`, `v`. -/
@@ -52,4 +53,5 @@ theorem isConformalMap_iff (f : E →L[ℝ] F) :
· ext1 x
exact (smul_inv_smul₀ hc.ne' (f x)).symm
#align is_conformal_map_iff isConformalMap_iff
+-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -29,7 +29,7 @@ variable [InnerProductSpace ℝ E] [InnerProductSpace ℝ F]
open LinearIsometry ContinuousLinearMap
-open RealInnerProductSpace
+open scoped RealInnerProductSpace
/-- A map between two inner product spaces is a conformal map if and only if it preserves inner
products up to a scalar factor, i.e., there exists a positive `c : ℝ` such that `⟪f u, f v⟫ = c *
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -31,9 +31,6 @@ open LinearIsometry ContinuousLinearMap
open RealInnerProductSpace
-/- warning: is_conformal_map_iff -> isConformalMap_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align is_conformal_map_iff isConformalMap_iffₓ'. -/
/-- A map between two inner product spaces is a conformal map if and only if it preserves inner
products up to a scalar factor, i.e., there exists a positive `c : ℝ` such that `⟪f u, f v⟫ = c *
⟪u, v⟫` for all `u`, `v`. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yourong Zang
! This file was ported from Lean 3 source module analysis.inner_product_space.conformal_linear_map
-! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
+! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -14,6 +14,9 @@ import Mathbin.Analysis.InnerProductSpace.Basic
/-!
# Conformal maps between inner product spaces
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
In an inner product space, a map is conformal iff it preserves inner products up to a scalar factor.
-/
@@ -29,10 +32,7 @@ open LinearIsometry ContinuousLinearMap
open RealInnerProductSpace
/- warning: is_conformal_map_iff -> isConformalMap_iff is a dubious translation:
-lean 3 declaration is
- forall {E : Type.{u1}} {F : Type.{u2}} [_inst_1 : NormedAddCommGroup.{u1} E] [_inst_2 : NormedAddCommGroup.{u2} F] [_inst_3 : InnerProductSpace.{0, u1} Real E Real.isROrC _inst_1] [_inst_4 : InnerProductSpace.{0, u2} Real F Real.isROrC _inst_2] (f : ContinuousLinearMap.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))), Iff (IsConformalMap.{0, u1, u2} Real E F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4) f) (Exists.{1} Real (fun (c : Real) => And (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) c) (forall (u : E) (v : E), Eq.{1} Real (Inner.inner.{0, u2} Real F (InnerProductSpace.toHasInner.{0, u2} Real F Real.isROrC _inst_2 _inst_4) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))) (fun (_x : ContinuousLinearMap.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))) => E -> F) (ContinuousLinearMap.toFun.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))) f u) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))) (fun (_x : ContinuousLinearMap.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))) => E -> F) (ContinuousLinearMap.toFun.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))) f v)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) c (Inner.inner.{0, u1} Real E (InnerProductSpace.toHasInner.{0, u1} Real E Real.isROrC _inst_1 _inst_3) u v)))))
-but is expected to have type
- forall {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : NormedAddCommGroup.{u2} E] [_inst_2 : NormedAddCommGroup.{u1} F] [_inst_3 : InnerProductSpace.{0, u2} Real E Real.isROrC _inst_1] [_inst_4 : InnerProductSpace.{0, u1} Real F Real.isROrC _inst_2] (f : ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))), Iff (IsConformalMap.{0, u2, u1} Real E F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4) f) (Exists.{1} Real (fun (c : Real) => And (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) c) (forall (u : E) (v : E), Eq.{1} Real (Inner.inner.{0, u1} Real ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) u) (InnerProductSpace.toInner.{0, u1} Real ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) u) Real.isROrC _inst_2 _inst_4) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, 0, 0, u2, u1} (ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))) Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4)) (ContinuousLinearMap.continuousSemilinearMapClass.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))))) f u) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, 0, 0, u2, u1} (ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))) Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4)) (ContinuousLinearMap.continuousSemilinearMapClass.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))))) f v)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) c (Inner.inner.{0, u2} Real E (InnerProductSpace.toInner.{0, u2} Real E Real.isROrC _inst_1 _inst_3) u v)))))
+<too large>
Case conversion may be inaccurate. Consider using '#align is_conformal_map_iff isConformalMap_iffₓ'. -/
/-- A map between two inner product spaces is a conformal map if and only if it preserves inner
products up to a scalar factor, i.e., there exists a positive `c : ℝ` such that `⟪f u, f v⟫ = c *
mathlib commit https://github.com/leanprover-community/mathlib/commit/e1a18cad9cd462973d760af7de36b05776b8811c
@@ -28,6 +28,12 @@ open LinearIsometry ContinuousLinearMap
open RealInnerProductSpace
+/- warning: is_conformal_map_iff -> isConformalMap_iff is a dubious translation:
+lean 3 declaration is
+ forall {E : Type.{u1}} {F : Type.{u2}} [_inst_1 : NormedAddCommGroup.{u1} E] [_inst_2 : NormedAddCommGroup.{u2} F] [_inst_3 : InnerProductSpace.{0, u1} Real E Real.isROrC _inst_1] [_inst_4 : InnerProductSpace.{0, u2} Real F Real.isROrC _inst_2] (f : ContinuousLinearMap.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))), Iff (IsConformalMap.{0, u1, u2} Real E F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4) f) (Exists.{1} Real (fun (c : Real) => And (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) c) (forall (u : E) (v : E), Eq.{1} Real (Inner.inner.{0, u2} Real F (InnerProductSpace.toHasInner.{0, u2} Real F Real.isROrC _inst_2 _inst_4) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))) (fun (_x : ContinuousLinearMap.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))) => E -> F) (ContinuousLinearMap.toFun.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))) f u) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))) (fun (_x : ContinuousLinearMap.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))) => E -> F) (ContinuousLinearMap.toFun.{0, 0, u1, u2} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} F (NormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u2} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real F Real.isROrC _inst_2 _inst_4))) f v)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) c (Inner.inner.{0, u1} Real E (InnerProductSpace.toHasInner.{0, u1} Real E Real.isROrC _inst_1 _inst_3) u v)))))
+but is expected to have type
+ forall {E : Type.{u2}} {F : Type.{u1}} [_inst_1 : NormedAddCommGroup.{u2} E] [_inst_2 : NormedAddCommGroup.{u1} F] [_inst_3 : InnerProductSpace.{0, u2} Real E Real.isROrC _inst_1] [_inst_4 : InnerProductSpace.{0, u1} Real F Real.isROrC _inst_2] (f : ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))), Iff (IsConformalMap.{0, u2, u1} Real E F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4) f) (Exists.{1} Real (fun (c : Real) => And (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) c) (forall (u : E) (v : E), Eq.{1} Real (Inner.inner.{0, u1} Real ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) u) (InnerProductSpace.toInner.{0, u1} Real ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) u) Real.isROrC _inst_2 _inst_4) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, 0, 0, u2, u1} (ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))) Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4)) (ContinuousLinearMap.continuousSemilinearMapClass.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))))) f u) (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))) E F (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, 0, 0, u2, u1} (ContinuousLinearMap.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))) Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4)) (ContinuousLinearMap.continuousSemilinearMapClass.{0, 0, u2, u1} Real Real Real.semiring Real.semiring (RingHom.id.{0} Real (Semiring.toNonAssocSemiring.{0} Real Real.semiring)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} F (NormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_1) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_1 _inst_3)) (NormedSpace.toModule.{0, u1} Real F Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} F _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real F Real.isROrC _inst_2 _inst_4))))) f v)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) c (Inner.inner.{0, u2} Real E (InnerProductSpace.toInner.{0, u2} Real E Real.isROrC _inst_1 _inst_3) u v)))))
+Case conversion may be inaccurate. Consider using '#align is_conformal_map_iff isConformalMap_iffₓ'. -/
/-- A map between two inner product spaces is a conformal map if and only if it preserves inner
products up to a scalar factor, i.e., there exists a positive `c : ℝ` such that `⟪f u, f v⟫ = c *
⟪u, v⟫` for all `u`, `v`. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/55d771df074d0dd020139ee1cd4b95521422df9f
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yourong Zang
! This file was ported from Lean 3 source module analysis.inner_product_space.conformal_linear_map
-! leanprover-community/mathlib commit a148d797a1094ab554ad4183a4ad6f130358ef64
+! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -18,7 +18,11 @@ In an inner product space, a map is conformal iff it preserves inner products up
-/
-variable {E F : Type _} [InnerProductSpace ℝ E] [InnerProductSpace ℝ F]
+variable {E F : Type _}
+
+variable [NormedAddCommGroup E] [NormedAddCommGroup F]
+
+variable [InnerProductSpace ℝ E] [InnerProductSpace ℝ F]
open LinearIsometry ContinuousLinearMap
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
This adds the notation √r
for Real.sqrt r
. The precedence is such that √x⁻¹
is parsed as √(x⁻¹)
; not because this is particularly desirable, but because it's the default and the choice doesn't really matter.
This is extracted from #7907, which adds a more general nth root typeclass.
The idea is to perform all the boring substitutions downstream quickly, so that we can play around with custom elaborators with a much slower rate of code-rot.
This PR also won't rot as quickly, as it does not forbid writing x.sqrt
as that PR does.
While perhaps claiming √
for Real.sqrt
is greedy; it:
NNReal.sqrt
and Nat.sqrt
sqrt
on Float
Co-authored-by: Yury G. Kudryashov <urkud@urkud.name>
@@ -35,7 +35,7 @@ theorem isConformalMap_iff (f : E →L[ℝ] F) :
coe_toContinuousLinearMap, Pi.smul_apply, inner_map_map]
· rintro ⟨c₁, hc₁, huv⟩
obtain ⟨c, hc, rfl⟩ : ∃ c : ℝ, 0 < c ∧ c₁ = c * c :=
- ⟨Real.sqrt c₁, Real.sqrt_pos.2 hc₁, (Real.mul_self_sqrt hc₁.le).symm⟩
+ ⟨√c₁, Real.sqrt_pos.2 hc₁, (Real.mul_self_sqrt hc₁.le).symm⟩
refine' ⟨c, hc.ne', (c⁻¹ • f : E →ₗ[ℝ] F).isometryOfInner fun u v => _, _⟩
· simp only [real_inner_smul_left, real_inner_smul_right, huv, mul_assoc, coe_smul,
inv_mul_cancel_left₀ hc.ne', LinearMap.smul_apply, ContinuousLinearMap.coe_coe]
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -16,9 +16,7 @@ In an inner product space, a map is conformal iff it preserves inner products up
variable {E F : Type*}
-
variable [NormedAddCommGroup E] [NormedAddCommGroup F]
-
variable [InnerProductSpace ℝ E] [InnerProductSpace ℝ F]
open LinearIsometry ContinuousLinearMap
@@ -36,8 +36,8 @@ theorem isConformalMap_iff (f : E →L[ℝ] F) :
simp only [real_inner_smul_left, real_inner_smul_right, mul_assoc, coe_smul',
coe_toContinuousLinearMap, Pi.smul_apply, inner_map_map]
· rintro ⟨c₁, hc₁, huv⟩
- obtain ⟨c, hc, rfl⟩ : ∃ c : ℝ, 0 < c ∧ c₁ = c * c
- exact ⟨Real.sqrt c₁, Real.sqrt_pos.2 hc₁, (Real.mul_self_sqrt hc₁.le).symm⟩
+ obtain ⟨c, hc, rfl⟩ : ∃ c : ℝ, 0 < c ∧ c₁ = c * c :=
+ ⟨Real.sqrt c₁, Real.sqrt_pos.2 hc₁, (Real.mul_self_sqrt hc₁.le).symm⟩
refine' ⟨c, hc.ne', (c⁻¹ • f : E →ₗ[ℝ] F).isometryOfInner fun u v => _, _⟩
· simp only [real_inner_smul_left, real_inner_smul_right, huv, mul_assoc, coe_smul,
inv_mul_cancel_left₀ hc.ne', LinearMap.smul_apply, ContinuousLinearMap.coe_coe]
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -15,7 +15,7 @@ In an inner product space, a map is conformal iff it preserves inner products up
-/
-variable {E F : Type _}
+variable {E F : Type*}
variable [NormedAddCommGroup E] [NormedAddCommGroup F]
@@ -2,15 +2,12 @@
Copyright (c) 2021 Yourong Zang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yourong Zang
-
-! This file was ported from Lean 3 source module analysis.inner_product_space.conformal_linear_map
-! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.NormedSpace.ConformalLinearMap
import Mathlib.Analysis.InnerProductSpace.Basic
+#align_import analysis.inner_product_space.conformal_linear_map from "leanprover-community/mathlib"@"46b633fd842bef9469441c0209906f6dddd2b4f5"
+
/-!
# Conformal maps between inner product spaces
I wrote a script to find lines that contain an odd number of backticks
@@ -29,8 +29,8 @@ open LinearIsometry ContinuousLinearMap
open RealInnerProductSpace
/-- A map between two inner product spaces is a conformal map if and only if it preserves inner
-products up to a scalar factor, i.e., there exists a positive `c : ℝ` such that `⟪f u, f v⟫ = c *
-⟪u, v⟫` for all `u`, `v`. -/
+products up to a scalar factor, i.e., there exists a positive `c : ℝ` such that
+`⟪f u, f v⟫ = c * ⟪u, v⟫` for all `u`, `v`. -/
theorem isConformalMap_iff (f : E →L[ℝ] F) :
IsConformalMap f ↔ ∃ c : ℝ, 0 < c ∧ ∀ u v : E, ⟪f u, f v⟫ = c * ⟪u, v⟫ := by
constructor
The unported dependencies are
algebra.order.module
init.core
linear_algebra.free_module.finite.rank
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
linear_algebra.free_module.rank
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file