analysis.inner_product_space.symmetric
β·
Mathlib.Analysis.InnerProductSpace.Symmetric
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -37,11 +37,11 @@ self-adjoint, symmetric
-/
-open IsROrC
+open RCLike
open scoped ComplexConjugate
-variable {π E E' F G : Type _} [IsROrC π]
+variable {π E E' F G : Type _} [RCLike π]
variable [NormedAddCommGroup E] [InnerProductSpace π E]
@@ -158,9 +158,9 @@ theorem IsSymmetric.restrict_invariant {T : E ββ[π] E} (hT : IsSymmetric
#print LinearMap.IsSymmetric.restrictScalars /-
theorem IsSymmetric.restrictScalars {T : E ββ[π] E} (hT : T.IsSymmetric) :
- @LinearMap.IsSymmetric β E _ _ (InnerProductSpace.isROrCToReal π E)
- (@LinearMap.restrictScalars β π _ _ _ _ _ _ (InnerProductSpace.isROrCToReal π E).toModule
- (InnerProductSpace.isROrCToReal π E).toModule _ _ _ T) :=
+ @LinearMap.IsSymmetric β E _ _ (InnerProductSpace.rclikeToReal π E)
+ (@LinearMap.restrictScalars β π _ _ _ _ _ _ (InnerProductSpace.rclikeToReal π E).toModule
+ (InnerProductSpace.rclikeToReal π E).toModule _ _ _ T) :=
fun x y => by simp [hT x y, real_inner_eq_re_inner, LinearMap.coe_restrictScalars]
#align linear_map.is_symmetric.restrict_scalars LinearMap.IsSymmetric.restrictScalars
-/
@@ -213,7 +213,7 @@ theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymm
simp_rw [h, MulZeroClass.mul_zero, add_zero]
norm_cast
Β· simp_rw [map_add, map_sub, inner_add_left, inner_add_right, inner_sub_left, inner_sub_right,
- LinearMap.map_smul, inner_smul_left, inner_smul_right, IsROrC.conj_I, mul_add, mul_sub,
+ LinearMap.map_smul, inner_smul_left, inner_smul_right, RCLike.conj_I, mul_add, mul_sub,
sub_sub, β mul_assoc, mul_neg, h, neg_neg, one_mul, neg_one_mul]
ring
#align linear_map.is_symmetric.inner_map_polarization LinearMap.IsSymmetric.inner_map_polarization
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2022 Anatole Dedecker. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, FrΓ©dΓ©ric Dupuis, Heather Macbeth
-/
-import Mathbin.Analysis.InnerProductSpace.Basic
-import Mathbin.Analysis.NormedSpace.Banach
-import Mathbin.LinearAlgebra.SesquilinearForm
+import Analysis.InnerProductSpace.Basic
+import Analysis.NormedSpace.Banach
+import LinearAlgebra.SesquilinearForm
#align_import analysis.inner_product_space.symmetric from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2022 Anatole Dedecker. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, FrΓ©dΓ©ric Dupuis, Heather Macbeth
-
-! This file was ported from Lean 3 source module analysis.inner_product_space.symmetric
-! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.InnerProductSpace.Basic
import Mathbin.Analysis.NormedSpace.Banach
import Mathbin.LinearAlgebra.SesquilinearForm
+#align_import analysis.inner_product_space.symmetric from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
+
/-!
# Symmetric linear maps in an inner product space
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -54,7 +54,6 @@ variable [NormedAddCommGroup G] [InnerProductSpace π G]
variable [NormedAddCommGroup E'] [InnerProductSpace β E']
--- mathport name: Β«exprβͺ , β«Β»
local notation "βͺ" x ", " y "β«" => @inner π _ _ x y
namespace LinearMap
@@ -74,39 +73,52 @@ section Real
variable ()
+#print LinearMap.isSymmetric_iff_sesqForm /-
/-- An operator `T` on an inner product space is symmetric if and only if it is
`linear_map.is_self_adjoint` with respect to the sesquilinear form given by the inner product. -/
theorem isSymmetric_iff_sesqForm (T : E ββ[π] E) :
T.IsSymmetric β @LinearMap.IsSelfAdjoint π E _ _ _ (starRingEnd π) sesqFormOfInner T :=
β¨fun h x y => (h y x).symm, fun h x y => (h y x).symmβ©
#align linear_map.is_symmetric_iff_sesq_form LinearMap.isSymmetric_iff_sesqForm
+-/
end Real
+#print LinearMap.IsSymmetric.conj_inner_sym /-
theorem IsSymmetric.conj_inner_sym {T : E ββ[π] E} (hT : IsSymmetric T) (x y : E) :
conj βͺT x, yβ« = βͺT y, xβ« := by rw [hT x y, inner_conj_symm]
#align linear_map.is_symmetric.conj_inner_sym LinearMap.IsSymmetric.conj_inner_sym
+-/
+#print LinearMap.IsSymmetric.apply_clm /-
@[simp]
theorem IsSymmetric.apply_clm {T : E βL[π] E} (hT : IsSymmetric (T : E ββ[π] E)) (x y : E) :
βͺT x, yβ« = βͺx, T yβ« :=
hT x y
#align linear_map.is_symmetric.apply_clm LinearMap.IsSymmetric.apply_clm
+-/
+#print LinearMap.isSymmetric_zero /-
theorem isSymmetric_zero : (0 : E ββ[π] E).IsSymmetric := fun x y =>
(inner_zero_right x : βͺx, 0β« = 0).symm βΈ (inner_zero_left y : βͺ0, yβ« = 0)
#align linear_map.is_symmetric_zero LinearMap.isSymmetric_zero
+-/
+#print LinearMap.isSymmetric_id /-
theorem isSymmetric_id : (LinearMap.id : E ββ[π] E).IsSymmetric := fun x y => rfl
#align linear_map.is_symmetric_id LinearMap.isSymmetric_id
+-/
+#print LinearMap.IsSymmetric.add /-
theorem IsSymmetric.add {T S : E ββ[π] E} (hT : T.IsSymmetric) (hS : S.IsSymmetric) :
(T + S).IsSymmetric := by
intro x y
rw [LinearMap.add_apply, inner_add_left, hT x y, hS x y, β inner_add_right]
rfl
#align linear_map.is_symmetric.add LinearMap.IsSymmetric.add
+-/
+#print LinearMap.IsSymmetric.continuous /-
/-- The **Hellinger--Toeplitz theorem**: if a symmetric operator is defined on a complete space,
then it is automatically continuous. -/
theorem IsSymmetric.continuous [CompleteSpace E] {T : E ββ[π] E} (hT : IsSymmetric T) :
@@ -124,7 +136,9 @@ theorem IsSymmetric.continuous [CompleteSpace E] {T : E ββ[π] E} (hT : Is
rw [β sub_self x]
exact hu.sub_const _
#align linear_map.is_symmetric.continuous LinearMap.IsSymmetric.continuous
+-/
+#print LinearMap.IsSymmetric.coe_reApplyInnerSelf_apply /-
/-- For a symmetric operator `T`, the function `Ξ» x, βͺT x, xβ«` is real-valued. -/
@[simp]
theorem IsSymmetric.coe_reApplyInnerSelf_apply {T : E βL[π] E} (hT : IsSymmetric (T : E ββ[π] E))
@@ -135,24 +149,30 @@ theorem IsSymmetric.coe_reApplyInnerSelf_apply {T : E βL[π] E} (hT : IsSymm
rw [β conj_eq_iff_real]
exact hT.conj_inner_sym x x
#align linear_map.is_symmetric.coe_re_apply_inner_self_apply LinearMap.IsSymmetric.coe_reApplyInnerSelf_apply
+-/
+#print LinearMap.IsSymmetric.restrict_invariant /-
/-- If a symmetric operator preserves a submodule, its restriction to that submodule is
symmetric. -/
theorem IsSymmetric.restrict_invariant {T : E ββ[π] E} (hT : IsSymmetric T) {V : Submodule π E}
(hV : β v β V, T v β V) : IsSymmetric (T.restrict hV) := fun v w => hT v w
#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrict_invariant
+-/
+#print LinearMap.IsSymmetric.restrictScalars /-
theorem IsSymmetric.restrictScalars {T : E ββ[π] E} (hT : T.IsSymmetric) :
@LinearMap.IsSymmetric β E _ _ (InnerProductSpace.isROrCToReal π E)
(@LinearMap.restrictScalars β π _ _ _ _ _ _ (InnerProductSpace.isROrCToReal π E).toModule
(InnerProductSpace.isROrCToReal π E).toModule _ _ _ T) :=
fun x y => by simp [hT x y, real_inner_eq_re_inner, LinearMap.coe_restrictScalars]
#align linear_map.is_symmetric.restrict_scalars LinearMap.IsSymmetric.restrictScalars
+-/
section Complex
variable {V : Type _} [NormedAddCommGroup V] [InnerProductSpace β V]
+#print LinearMap.isSymmetric_iff_inner_map_self_real /-
/-- A linear operator on a complex inner product space is symmetric precisely when
`βͺT v, vβ«_β` is real for all v.-/
theorem isSymmetric_iff_inner_map_self_real (T : V ββ[β] V) :
@@ -172,9 +192,11 @@ theorem isSymmetric_iff_inner_map_self_real (T : V ββ[β] V) :
norm_num
ring
#align linear_map.is_symmetric_iff_inner_map_self_real LinearMap.isSymmetric_iff_inner_map_self_real
+-/
end Complex
+#print LinearMap.IsSymmetric.inner_map_polarization /-
/-- Polarization identity for symmetric linear maps.
See `inner_map_polarization` for the complex version without the symmetric assumption. -/
theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymmetric) (x y : E) :
@@ -198,7 +220,9 @@ theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymm
sub_sub, β mul_assoc, mul_neg, h, neg_neg, one_mul, neg_one_mul]
ring
#align linear_map.is_symmetric.inner_map_polarization LinearMap.IsSymmetric.inner_map_polarization
+-/
+#print LinearMap.IsSymmetric.inner_map_self_eq_zero /-
/-- A symmetric linear map `T` is zero if and only if `βͺT x, xβ«_β = 0` for all `x`.
See `inner_map_self_eq_zero` for the complex version without the symmetric assumption. -/
theorem IsSymmetric.inner_map_self_eq_zero {T : E ββ[π] E} (hT : T.IsSymmetric) :
@@ -210,6 +234,7 @@ theorem IsSymmetric.inner_map_self_eq_zero {T : E ββ[π] E} (hT : T.IsSymm
simp_rw [h _]
ring
#align linear_map.is_symmetric.inner_map_self_eq_zero LinearMap.IsSymmetric.inner_map_self_eq_zero
+-/
end LinearMap
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -42,7 +42,7 @@ self-adjoint, symmetric
open IsROrC
-open ComplexConjugate
+open scoped ComplexConjugate
variable {π E E' F G : Type _} [IsROrC π]
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -74,12 +74,6 @@ section Real
variable ()
-/- warning: linear_map.is_symmetric_iff_sesq_form -> LinearMap.isSymmetric_iff_sesqForm is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] (T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))), Iff (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) (LinearMap.IsSelfAdjoint.{u1, u2} π E (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (starRingEnd.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toStarRing.{u1} π _inst_1)) (sesqFormOfInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) T)
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] (T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))), Iff (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) (LinearMap.IsSelfAdjoint.{u2, u1} π E (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (starRingEnd.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toStarRing.{u2} π _inst_1)) (sesqFormOfInner.{u2, u1} π E _inst_1 _inst_2 _inst_3) T)
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric_iff_sesq_form LinearMap.isSymmetric_iff_sesqFormβ'. -/
/-- An operator `T` on an inner product space is symmetric if and only if it is
`linear_map.is_self_adjoint` with respect to the sesquilinear form given by the inner product. -/
theorem isSymmetric_iff_sesqForm (T : E ββ[π] E) :
@@ -89,41 +83,23 @@ theorem isSymmetric_iff_sesqForm (T : E ββ[π] E) :
end Real
-/- warning: linear_map.is_symmetric.conj_inner_sym -> LinearMap.IsSymmetric.conj_inner_sym is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.conj_inner_sym LinearMap.IsSymmetric.conj_inner_symβ'. -/
theorem IsSymmetric.conj_inner_sym {T : E ββ[π] E} (hT : IsSymmetric T) (x y : E) :
conj βͺT x, yβ« = βͺT y, xβ« := by rw [hT x y, inner_conj_symm]
#align linear_map.is_symmetric.conj_inner_sym LinearMap.IsSymmetric.conj_inner_sym
-/- warning: linear_map.is_symmetric.apply_clm -> LinearMap.IsSymmetric.apply_clm is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.apply_clm LinearMap.IsSymmetric.apply_clmβ'. -/
@[simp]
theorem IsSymmetric.apply_clm {T : E βL[π] E} (hT : IsSymmetric (T : E ββ[π] E)) (x y : E) :
βͺT x, yβ« = βͺx, T yβ« :=
hT x y
#align linear_map.is_symmetric.apply_clm LinearMap.IsSymmetric.apply_clm
-/- warning: linear_map.is_symmetric_zero -> LinearMap.isSymmetric_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric_zero LinearMap.isSymmetric_zeroβ'. -/
theorem isSymmetric_zero : (0 : E ββ[π] E).IsSymmetric := fun x y =>
(inner_zero_right x : βͺx, 0β« = 0).symm βΈ (inner_zero_left y : βͺ0, yβ« = 0)
#align linear_map.is_symmetric_zero LinearMap.isSymmetric_zero
-/- warning: linear_map.is_symmetric_id -> LinearMap.isSymmetric_id is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2], LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 (LinearMap.id.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2], LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 (LinearMap.id.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric_id LinearMap.isSymmetric_idβ'. -/
theorem isSymmetric_id : (LinearMap.id : E ββ[π] E).IsSymmetric := fun x y => rfl
#align linear_map.is_symmetric_id LinearMap.isSymmetric_id
-/- warning: linear_map.is_symmetric.add -> LinearMap.IsSymmetric.add is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.add LinearMap.IsSymmetric.addβ'. -/
theorem IsSymmetric.add {T S : E ββ[π] E} (hT : T.IsSymmetric) (hS : S.IsSymmetric) :
(T + S).IsSymmetric := by
intro x y
@@ -131,9 +107,6 @@ theorem IsSymmetric.add {T S : E ββ[π] E} (hT : T.IsSymmetric) (hS : S.Is
rfl
#align linear_map.is_symmetric.add LinearMap.IsSymmetric.add
-/- warning: linear_map.is_symmetric.continuous -> LinearMap.IsSymmetric.continuous is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.continuous LinearMap.IsSymmetric.continuousβ'. -/
/-- The **Hellinger--Toeplitz theorem**: if a symmetric operator is defined on a complete space,
then it is automatically continuous. -/
theorem IsSymmetric.continuous [CompleteSpace E] {T : E ββ[π] E} (hT : IsSymmetric T) :
@@ -152,9 +125,6 @@ theorem IsSymmetric.continuous [CompleteSpace E] {T : E ββ[π] E} (hT : Is
exact hu.sub_const _
#align linear_map.is_symmetric.continuous LinearMap.IsSymmetric.continuous
-/- warning: linear_map.is_symmetric.coe_re_apply_inner_self_apply -> LinearMap.IsSymmetric.coe_reApplyInnerSelf_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.coe_re_apply_inner_self_apply LinearMap.IsSymmetric.coe_reApplyInnerSelf_applyβ'. -/
/-- For a symmetric operator `T`, the function `Ξ» x, βͺT x, xβ«` is real-valued. -/
@[simp]
theorem IsSymmetric.coe_reApplyInnerSelf_apply {T : E βL[π] E} (hT : IsSymmetric (T : E ββ[π] E))
@@ -166,18 +136,12 @@ theorem IsSymmetric.coe_reApplyInnerSelf_apply {T : E βL[π] E} (hT : IsSymm
exact hT.conj_inner_sym x x
#align linear_map.is_symmetric.coe_re_apply_inner_self_apply LinearMap.IsSymmetric.coe_reApplyInnerSelf_apply
-/- warning: linear_map.is_symmetric.restrict_invariant -> LinearMap.IsSymmetric.restrict_invariant is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrict_invariantβ'. -/
/-- If a symmetric operator preserves a submodule, its restriction to that submodule is
symmetric. -/
theorem IsSymmetric.restrict_invariant {T : E ββ[π] E} (hT : IsSymmetric T) {V : Submodule π E}
(hV : β v β V, T v β V) : IsSymmetric (T.restrict hV) := fun v w => hT v w
#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrict_invariant
-/- warning: linear_map.is_symmetric.restrict_scalars -> LinearMap.IsSymmetric.restrictScalars is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.restrict_scalars LinearMap.IsSymmetric.restrictScalarsβ'. -/
theorem IsSymmetric.restrictScalars {T : E ββ[π] E} (hT : T.IsSymmetric) :
@LinearMap.IsSymmetric β E _ _ (InnerProductSpace.isROrCToReal π E)
(@LinearMap.restrictScalars β π _ _ _ _ _ _ (InnerProductSpace.isROrCToReal π E).toModule
@@ -189,9 +153,6 @@ section Complex
variable {V : Type _} [NormedAddCommGroup V] [InnerProductSpace β V]
-/- warning: linear_map.is_symmetric_iff_inner_map_self_real -> LinearMap.isSymmetric_iff_inner_map_self_real is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric_iff_inner_map_self_real LinearMap.isSymmetric_iff_inner_map_self_realβ'. -/
/-- A linear operator on a complex inner product space is symmetric precisely when
`βͺT v, vβ«_β` is real for all v.-/
theorem isSymmetric_iff_inner_map_self_real (T : V ββ[β] V) :
@@ -214,9 +175,6 @@ theorem isSymmetric_iff_inner_map_self_real (T : V ββ[β] V) :
end Complex
-/- warning: linear_map.is_symmetric.inner_map_polarization -> LinearMap.IsSymmetric.inner_map_polarization is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.inner_map_polarization LinearMap.IsSymmetric.inner_map_polarizationβ'. -/
/-- Polarization identity for symmetric linear maps.
See `inner_map_polarization` for the complex version without the symmetric assumption. -/
theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymmetric) (x y : E) :
@@ -241,9 +199,6 @@ theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymm
ring
#align linear_map.is_symmetric.inner_map_polarization LinearMap.IsSymmetric.inner_map_polarization
-/- warning: linear_map.is_symmetric.inner_map_self_eq_zero -> LinearMap.IsSymmetric.inner_map_self_eq_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.inner_map_self_eq_zero LinearMap.IsSymmetric.inner_map_self_eq_zeroβ'. -/
/-- A symmetric linear map `T` is zero if and only if `βͺT x, xβ«_β = 0` for all `x`.
See `inner_map_self_eq_zero` for the complex version without the symmetric assumption. -/
theorem IsSymmetric.inner_map_self_eq_zero {T : E ββ[π] E} (hT : T.IsSymmetric) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -142,9 +142,7 @@ theorem IsSymmetric.continuous [CompleteSpace E] {T : E ββ[π] E} (hT : Is
-- We prove it by using the closed graph theorem
refine' T.continuous_of_seq_closed_graph fun u x y hu hTu => _
rw [β sub_eq_zero, β @inner_self_eq_zero π]
- have hlhs : β k : β, βͺT (u k) - T x, y - T xβ« = βͺu k - x, T (y - T x)β« :=
- by
- intro k
+ have hlhs : β k : β, βͺT (u k) - T x, y - T xβ« = βͺu k - x, T (y - T x)β« := by intro k;
rw [β T.map_sub, hT]
refine' tendsto_nhds_unique ((hTu.sub_const _).inner tendsto_const_nhds) _
simp_rw [hlhs]
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, FrΓ©dΓ©ric Dupuis, Heather Macbeth
! This file was ported from Lean 3 source module analysis.inner_product_space.symmetric
-! leanprover-community/mathlib commit 3f655f5297b030a87d641ad4e825af8d9679eb0b
+! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -15,6 +15,9 @@ import Mathbin.LinearAlgebra.SesquilinearForm
/-!
# Symmetric linear maps in an inner product space
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
This file defines and proves basic theorems about symmetric **not necessarily bounded** operators
on an inner product space, i.e linear maps `T : E β E` such that `β x y, βͺT x, yβ« = βͺx, T yβ«`.
@@ -87,20 +90,14 @@ theorem isSymmetric_iff_sesqForm (T : E ββ[π] E) :
end Real
/- warning: linear_map.is_symmetric.conj_inner_sym -> LinearMap.IsSymmetric.conj_inner_sym is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (forall (x : E) (y : E), Eq.{succ u1} π (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} π π (Semiring.toNonAssocSemiring.{u1} π (CommSemiring.toSemiring.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u1} π (CommSemiring.toSemiring.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (fun (_x : RingHom.{u1, u1} π π (Semiring.toNonAssocSemiring.{u1} π (CommSemiring.toSemiring.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u1} π (CommSemiring.toSemiring.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) => π -> π) (RingHom.hasCoeToFun.{u1, u1} π π (Semiring.toNonAssocSemiring.{u1} π (CommSemiring.toSemiring.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u1} π (CommSemiring.toSemiring.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (starRingEnd.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toStarRing.{u1} π _inst_1)) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T x) y)) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T y) x))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) -> (forall (x : E) (y : E), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : π) => π) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (a : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) a) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T x) y)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} π π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) π (fun (_x : π) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : π) => π) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} π π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) π π (NonUnitalNonAssocSemiring.toMul.{u2} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NonUnitalNonAssocSemiring.toMul.{u2} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} π π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) π π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} π π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) π π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (RingHom.instRingHomClassRingHom.{u2, u2} π π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))))) (starRingEnd.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toStarRing.{u2} π _inst_1)) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T x) y)) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) y) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) y) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T y) x))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.conj_inner_sym LinearMap.IsSymmetric.conj_inner_symβ'. -/
theorem IsSymmetric.conj_inner_sym {T : E ββ[π] E} (hT : IsSymmetric T) (x y : E) :
conj βͺT x, yβ« = βͺT y, xβ« := by rw [hT x y, inner_conj_symm]
#align linear_map.is_symmetric.conj_inner_sym LinearMap.IsSymmetric.conj_inner_sym
/- warning: linear_map.is_symmetric.apply_clm -> LinearMap.IsSymmetric.apply_clm is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (HasLiftT.mk.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (CoeTCβ.coe.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (coeBase.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (ContinuousLinearMap.LinearMap.coe.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) T)) -> (forall (x : E) (y : E), Eq.{succ u1} π (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (ContinuousLinearMap.toFun.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) T x) y) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) x (coeFn.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (ContinuousLinearMap.toFun.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) T y)))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 (ContinuousLinearMap.toLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) T)) -> (forall (x : E) (y : E), Eq.{succ u2} π (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) x) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) x) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) _x) (ContinuousMapClass.toFunLike.{u1, u1, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{u1, u2, u2, u1, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))) T x) y) (Inner.inner.{u2, u1} π E (InnerProductSpace.toInner.{u2, u1} π E _inst_1 _inst_2 _inst_3) x (FunLike.coe.{succ u1, succ u1, succ u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) _x) (ContinuousMapClass.toFunLike.{u1, u1, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{u1, u2, u2, u1, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))) T y)))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.apply_clm LinearMap.IsSymmetric.apply_clmβ'. -/
@[simp]
theorem IsSymmetric.apply_clm {T : E βL[π] E} (hT : IsSymmetric (T : E ββ[π] E)) (x y : E) :
@@ -109,10 +106,7 @@ theorem IsSymmetric.apply_clm {T : E βL[π] E} (hT : IsSymmetric (T : E β
#align linear_map.is_symmetric.apply_clm LinearMap.IsSymmetric.apply_clm
/- warning: linear_map.is_symmetric_zero -> LinearMap.isSymmetric_zero is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2], LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) 0 (OfNat.mk.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) 0 (Zero.zero.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.hasZero.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2], LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) 0 (Zero.toOfNat0.{u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (LinearMap.instZeroLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric_zero LinearMap.isSymmetric_zeroβ'. -/
theorem isSymmetric_zero : (0 : E ββ[π] E).IsSymmetric := fun x y =>
(inner_zero_right x : βͺx, 0β« = 0).symm βΈ (inner_zero_left y : βͺ0, yβ« = 0)
@@ -128,10 +122,7 @@ theorem isSymmetric_id : (LinearMap.id : E ββ[π] E).IsSymmetric := fun x
#align linear_map.is_symmetric_id LinearMap.isSymmetric_id
/- warning: linear_map.is_symmetric.add -> LinearMap.IsSymmetric.add is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))} {S : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 S) -> (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 (HAdd.hAdd.{u2, u2, u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (instHAdd.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.hasAdd.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) T S))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))} {S : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) -> (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 S) -> (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 (HAdd.hAdd.{u1, u1, u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (instHAdd.{u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (LinearMap.instAddLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))))) T S))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.add LinearMap.IsSymmetric.addβ'. -/
theorem IsSymmetric.add {T S : E ββ[π] E} (hT : T.IsSymmetric) (hS : S.IsSymmetric) :
(T + S).IsSymmetric := by
@@ -141,10 +132,7 @@ theorem IsSymmetric.add {T S : E ββ[π] E} (hT : T.IsSymmetric) (hS : S.Is
#align linear_map.is_symmetric.add LinearMap.IsSymmetric.add
/- warning: linear_map.is_symmetric.continuous -> LinearMap.IsSymmetric.continuous is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] [_inst_10 : CompleteSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (Continuous.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T))
-but is expected to have type
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] [_inst_10 : CompleteSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))] {T : LinearMap.{u1, u1, u2, u2} π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (Continuous.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (FunLike.coe.{succ u2, succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u2, u2} π π E E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.continuous LinearMap.IsSymmetric.continuousβ'. -/
/-- The **Hellinger--Toeplitz theorem**: if a symmetric operator is defined on a complete space,
then it is automatically continuous. -/
@@ -167,10 +155,7 @@ theorem IsSymmetric.continuous [CompleteSpace E] {T : E ββ[π] E} (hT : Is
#align linear_map.is_symmetric.continuous LinearMap.IsSymmetric.continuous
/- warning: linear_map.is_symmetric.coe_re_apply_inner_self_apply -> LinearMap.IsSymmetric.coe_reApplyInnerSelf_apply is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (HasLiftT.mk.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (CoeTCβ.coe.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (coeBase.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (ContinuousLinearMap.LinearMap.coe.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) T)) -> (forall (x : E), Eq.{succ u1} π ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π (HasLiftT.mk.{1, succ u1} Real π (CoeTCβ.coe.{1, succ u1} Real π (IsROrC.algebraMapCoe.{u1} π _inst_1))) (ContinuousLinearMap.reApplyInnerSelf.{u1, u2} π E _inst_1 _inst_2 _inst_3 T x)) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (ContinuousLinearMap.toFun.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) T x) x))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 (ContinuousLinearMap.toLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) T)) -> (forall (x : E), Eq.{succ u2} π (IsROrC.ofReal.{u2} π _inst_1 (ContinuousLinearMap.reApplyInnerSelf.{u2, u1} π E _inst_1 _inst_2 _inst_3 T x)) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) x) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) x) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) _x) (ContinuousMapClass.toFunLike.{u1, u1, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{u1, u2, u2, u1, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))) T x) x))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.coe_re_apply_inner_self_apply LinearMap.IsSymmetric.coe_reApplyInnerSelf_applyβ'. -/
/-- For a symmetric operator `T`, the function `Ξ» x, βͺT x, xβ«` is real-valued. -/
@[simp]
@@ -184,10 +169,7 @@ theorem IsSymmetric.coe_reApplyInnerSelf_apply {T : E βL[π] E} (hT : IsSymm
#align linear_map.is_symmetric.coe_re_apply_inner_self_apply LinearMap.IsSymmetric.coe_reApplyInnerSelf_apply
/- warning: linear_map.is_symmetric.restrict_invariant -> LinearMap.IsSymmetric.restrict_invariant is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (forall {V : Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))} (hV : forall (v : E), (Membership.Mem.{u2, u2} E (Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (SetLike.hasMem.{u2, u2} (Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) E (Submodule.setLike.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))) v V) -> (Membership.Mem.{u2, u2} E (Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (SetLike.hasMem.{u2, u2} (Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) E (Submodule.setLike.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T v) V)), LinearMap.IsSymmetric.{u1, u2} π (coeSort.{succ u2, succ (succ u2)} (Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) Type.{u2} (SetLike.hasCoeToSort.{u2, u2} (Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) E (Submodule.setLike.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))) V) _inst_1 (Submodule.normedAddCommGroup.{u1, u2} π E (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) _inst_2 (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) V) (Submodule.innerProductSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3 V) (LinearMap.restrict.{u1, u2, u2} π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) T V V hV))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) -> (forall {V : Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))} (hV : forall (v : E), (Membership.mem.{u1, u1} E (Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (SetLike.instMembership.{u1, u1} (Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (Submodule.setLike.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))) v V) -> (Membership.mem.{u1, u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) v) (Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (SetLike.instMembership.{u1, u1} (Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (Submodule.setLike.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T v) V)), LinearMap.IsSymmetric.{u2, u1} π (Subtype.{succ u1} E (fun (x : E) => Membership.mem.{u1, u1} E (Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (SetLike.instMembership.{u1, u1} (Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (Submodule.setLike.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))) x V)) _inst_1 (Submodule.normedAddCommGroup.{u2, u1} π E (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) _inst_2 (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) V) (Submodule.innerProductSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3 V) (LinearMap.restrict.{u2, u1, u1} π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) T V V hV))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrict_invariantβ'. -/
/-- If a symmetric operator preserves a submodule, its restriction to that submodule is
symmetric. -/
@@ -196,10 +178,7 @@ theorem IsSymmetric.restrict_invariant {T : E ββ[π] E} (hT : IsSymmetric
#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrict_invariant
/- warning: linear_map.is_symmetric.restrict_scalars -> LinearMap.IsSymmetric.restrictScalars is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (LinearMap.IsSymmetric.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3) (LinearMap.restrictScalars.{0, u1, u2, u2} Real π E E Real.semiring (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (LinearMap.IsScalarTower.compatibleSMul.{u2, u2, 0, u1} E E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) Real π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (CommSemiring.toSemiring.{0} Real Real.commSemiring))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (CommSemiring.toSemiring.{0} Real Real.commSemiring)) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π (CommSemiring.toSemiring.{0} Real Real.commSemiring) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (Algebra.toModule.{0, u1} Real π Real.commSemiring (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u1} Real π Real.normedField (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))))))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (Real.isScalarTower.{u2, u1} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (BoundedSMul.continuousSMul.{0, u2} Real E Real.pseudoMetricSpace (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{0} Real (NonUnitalNonAssocSemiring.toMulZeroClass.{0} Real (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{0} Real (NonAssocRing.toNonUnitalNonAssocRing.{0} Real (Ring.toNonAssocRing.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.boundedSMul.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3)))) (T25Space.t2Space.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (T3Space.t25Space.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (separated_t3.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (MetricSpace.to_separated.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))))) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (NormedAlgebra.toAlgebra.{0, u1} Real π Real.normedField (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π _inst_1)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (BoundedSMul.continuousSMul.{0, u1} Real π Real.pseudoMetricSpace (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (MulZeroClass.toHasZero.{0} Real (NonUnitalNonAssocSemiring.toMulZeroClass.{0} Real (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{0} Real (NonAssocRing.toNonUnitalNonAssocRing.{0} Real (Ring.toNonAssocRing.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (SubNegMonoid.toAddMonoid.{u1} π (AddGroup.toSubNegMonoid.{u1} π (SeminormedAddGroup.toAddGroup.{u1} π (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))))) (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (CommSemiring.toSemiring.{0} Real Real.commSemiring))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (CommSemiring.toSemiring.{0} Real Real.commSemiring)) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π (CommSemiring.toSemiring.{0} Real Real.commSemiring) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (Algebra.toModule.{0, u1} Real π Real.commSemiring (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u1} Real π Real.normedField (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))))))) (NormedSpace.boundedSMul.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π _inst_1)))) (BoundedSMul.continuousSMul.{u1, u2} π E (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) (NormedSpace.boundedSMul.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (Real.isScalarTower.{u2, u1} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (BoundedSMul.continuousSMul.{0, u2} Real E Real.pseudoMetricSpace (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{0} Real (NonUnitalNonAssocSemiring.toMulZeroClass.{0} Real (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{0} Real (NonAssocRing.toNonUnitalNonAssocRing.{0} Real (Ring.toNonAssocRing.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.boundedSMul.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3)))) (T25Space.t2Space.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (T3Space.t25Space.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (separated_t3.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (MetricSpace.to_separated.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))))) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (NormedAlgebra.toAlgebra.{0, u1} Real π Real.normedField (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π _inst_1)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (BoundedSMul.continuousSMul.{0, u1} Real π Real.pseudoMetricSpace (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (MulZeroClass.toHasZero.{0} Real (NonUnitalNonAssocSemiring.toMulZeroClass.{0} Real (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{0} Real (NonAssocRing.toNonUnitalNonAssocRing.{0} Real (Ring.toNonAssocRing.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (SubNegMonoid.toAddMonoid.{u1} π (AddGroup.toSubNegMonoid.{u1} π (SeminormedAddGroup.toAddGroup.{u1} π (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))))) (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (CommSemiring.toSemiring.{0} Real Real.commSemiring))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (CommSemiring.toSemiring.{0} Real Real.commSemiring)) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π (CommSemiring.toSemiring.{0} Real Real.commSemiring) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (Algebra.toModule.{0, u1} Real π Real.commSemiring (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u1} Real π Real.normedField (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))))))) (NormedSpace.boundedSMul.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π _inst_1)))) (BoundedSMul.continuousSMul.{u1, u2} π E (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) (NormedSpace.boundedSMul.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))))) T))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) -> (LinearMap.IsSymmetric.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3) (LinearMap.restrictScalars.{0, u2, u1, u1} Real π E E (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (LinearMap.IsScalarTower.compatibleSMul.{u1, u1, 0, u2} E E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) Real π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (Algebra.toSMul.{0, u2} Real π Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1))) (SMulZeroClass.toSMul.{0, u1} Real E (AddMonoid.toZero.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E (MonoidWithZero.toZero.{0} Real (Semiring.toMonoidWithZero.{0} Real (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)))))))) (AddMonoid.toZero.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E (Semiring.toMonoidWithZero.{0} Real (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC))))))) (AddMonoid.toZero.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (Real.isScalarTower.{u1, u2} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (BoundedSMul.continuousSMul.{0, u1} Real E Real.pseudoMetricSpace (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.boundedSMul.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3)))) (T25Space.t2Space.{u1} E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (T3Space.t25Space.{u1} E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (separated_t3.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (MetricSpace.to_separated.{u1} E (NormedAddCommGroup.toMetricSpace.{u1} E _inst_2))))) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (BoundedSMul.continuousSMul.{0, u2} Real π Real.pseudoMetricSpace (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) Real.instZeroReal (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Algebra.toSMul.{0, u2} Real π Real.instCommSemiringReal (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1))) (NormedSpace.boundedSMul.{0, u2} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u2} Real Real.normedField π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (IsROrC.toNormedAlgebra.{u2} π _inst_1)))) (BoundedSMul.continuousSMul.{u2, u1} π E (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (Module.toMulActionWithZero.{u2, u1} π E (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))))) (NormedSpace.boundedSMul.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))) (SMulZeroClass.toSMul.{0, u1} Real E (AddMonoid.toZero.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E (MonoidWithZero.toZero.{0} Real (Semiring.toMonoidWithZero.{0} Real (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)))))))) (AddMonoid.toZero.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E (Semiring.toMonoidWithZero.{0} Real (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC))))))) (AddMonoid.toZero.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (Real.isScalarTower.{u1, u2} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (BoundedSMul.continuousSMul.{0, u1} Real E Real.pseudoMetricSpace (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.boundedSMul.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3)))) (T25Space.t2Space.{u1} E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (T3Space.t25Space.{u1} E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (separated_t3.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (MetricSpace.to_separated.{u1} E (NormedAddCommGroup.toMetricSpace.{u1} E _inst_2))))) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (BoundedSMul.continuousSMul.{0, u2} Real π Real.pseudoMetricSpace (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) Real.instZeroReal (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Algebra.toSMul.{0, u2} Real π Real.instCommSemiringReal (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1))) (NormedSpace.boundedSMul.{0, u2} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u2} Real Real.normedField π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (IsROrC.toNormedAlgebra.{u2} π _inst_1)))) (BoundedSMul.continuousSMul.{u2, u1} π E (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (Module.toMulActionWithZero.{u2, u1} π E (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))))) (NormedSpace.boundedSMul.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))) T))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.restrict_scalars LinearMap.IsSymmetric.restrictScalarsβ'. -/
theorem IsSymmetric.restrictScalars {T : E ββ[π] E} (hT : T.IsSymmetric) :
@LinearMap.IsSymmetric β E _ _ (InnerProductSpace.isROrCToReal π E)
@@ -213,10 +192,7 @@ section Complex
variable {V : Type _} [NormedAddCommGroup V] [InnerProductSpace β V]
/- warning: linear_map.is_symmetric_iff_inner_map_self_real -> LinearMap.isSymmetric_iff_inner_map_self_real is a dubious translation:
-lean 3 declaration is
- forall {V : Type.{u1}} [_inst_10 : NormedAddCommGroup.{u1} V] [_inst_11 : InnerProductSpace.{0, u1} Complex V Complex.isROrC _inst_10] (T : LinearMap.{0, 0, u1, u1} Complex Complex (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring))) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11))), Iff (LinearMap.IsSymmetric.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11 T) (forall (v : V), Eq.{1} Complex (coeFn.{1, 1} (RingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.commSemiring)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.commSemiring))) (fun (_x : RingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.commSemiring)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.commSemiring))) => Complex -> Complex) (RingHom.hasCoeToFun.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.commSemiring)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.commSemiring))) (starRingEnd.{0} Complex Complex.commSemiring Complex.starRing) (Inner.inner.{0, u1} Complex V (InnerProductSpace.toHasInner.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11) (coeFn.{succ u1, succ u1} (LinearMap.{0, 0, u1, u1} Complex Complex (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring))) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11))) (fun (_x : LinearMap.{0, 0, u1, u1} Complex Complex (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring))) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11))) => V -> V) (LinearMap.hasCoeToFun.{0, 0, u1, u1} Complex Complex V V (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring)))) T v) v)) (Inner.inner.{0, u1} Complex V (InnerProductSpace.toHasInner.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11) (coeFn.{succ u1, succ u1} (LinearMap.{0, 0, u1, u1} Complex Complex (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring))) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11))) (fun (_x : LinearMap.{0, 0, u1, u1} Complex Complex (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring))) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11))) => V -> V) (LinearMap.hasCoeToFun.{0, 0, u1, u1} Complex Complex V V (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring)))) T v) v))
-but is expected to have type
- forall {V : Type.{u1}} [_inst_10 : NormedAddCommGroup.{u1} V] [_inst_11 : InnerProductSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10] (T : LinearMap.{0, 0, u1, u1} Complex Complex Complex.instSemiringComplex Complex.instSemiringComplex (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex)) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11))), Iff (LinearMap.IsSymmetric.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11 T) (forall (v : V), Eq.{1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Complex) => Complex) (Inner.inner.{0, u1} Complex ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) v) (InnerProductSpace.toInner.{0, u1} Complex ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) v) Complex.instIsROrCComplex _inst_10 _inst_11) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} Complex Complex Complex.instSemiringComplex Complex.instSemiringComplex (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex)) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11))) V (fun (a : V) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) a) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} Complex Complex V V Complex.instSemiringComplex Complex.instSemiringComplex (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex))) T v) v)) (FunLike.coe.{1, 1, 1} (RingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex))) Complex (fun (_x : Complex) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Complex) => Complex) _x) (MulHomClass.toFunLike.{0, 0, 0} (RingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex))) Complex Complex (NonUnitalNonAssocSemiring.toMul.{0} Complex (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)))) (NonUnitalNonAssocSemiring.toMul.{0} Complex (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)))) (NonUnitalRingHomClass.toMulHomClass.{0, 0, 0} (RingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex))) Complex Complex (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex))) (RingHomClass.toNonUnitalRingHomClass.{0, 0, 0} (RingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex))) Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (RingHom.instRingHomClassRingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)))))) (starRingEnd.{0} Complex Complex.instCommSemiringComplex Complex.instStarRingComplexToNonUnitalSemiringToNonUnitalCommSemiringToNonUnitalCommRingCommRing) (Inner.inner.{0, u1} Complex ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) v) (InnerProductSpace.toInner.{0, u1} Complex ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) v) Complex.instIsROrCComplex _inst_10 _inst_11) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} Complex Complex Complex.instSemiringComplex Complex.instSemiringComplex (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex)) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11))) V (fun (_x : V) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} Complex Complex V V Complex.instSemiringComplex Complex.instSemiringComplex (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex))) T v) v)) (Inner.inner.{0, u1} Complex ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) v) (InnerProductSpace.toInner.{0, u1} Complex ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) v) Complex.instIsROrCComplex _inst_10 _inst_11) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} Complex Complex Complex.instSemiringComplex Complex.instSemiringComplex (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex)) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11))) V (fun (_x : V) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} Complex Complex V V Complex.instSemiringComplex Complex.instSemiringComplex (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex))) T v) v))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric_iff_inner_map_self_real LinearMap.isSymmetric_iff_inner_map_self_realβ'. -/
/-- A linear operator on a complex inner product space is symmetric precisely when
`βͺT v, vβ«_β` is real for all v.-/
@@ -241,10 +217,7 @@ theorem isSymmetric_iff_inner_map_self_real (T : V ββ[β] V) :
end Complex
/- warning: linear_map.is_symmetric.inner_map_polarization -> LinearMap.IsSymmetric.inner_map_polarization is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (forall (x : E) (y : E), Eq.{succ u1} π (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T x) y) (HDiv.hDiv.{u1, u1, u1} π π π (instHDiv.{u1} π (DivInvMonoid.toHasDiv.{u1} π (DivisionRing.toDivInvMonoid.{u1} π (NormedDivisionRing.toDivisionRing.{u1} π (NormedField.toNormedDivisionRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (HAdd.hAdd.{u1, u1, u1} π π π (instHAdd.{u1} π (Distrib.toHasAdd.{u1} π (Ring.toDistrib.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (HSub.hSub.{u1, u1, u1} π π π (instHSub.{u1} π (SubNegMonoid.toHasSub.{u1} π (AddGroup.toSubNegMonoid.{u1} π (NormedAddGroup.toAddGroup.{u1} π (NormedAddCommGroup.toNormedAddGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))) (HSub.hSub.{u1, u1, u1} π π π (instHSub.{u1} π (SubNegMonoid.toHasSub.{u1} π (AddGroup.toSubNegMonoid.{u1} π (NormedAddGroup.toAddGroup.{u1} π (NormedAddCommGroup.toNormedAddGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x y)) (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x y)) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x y)) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x y))) (HMul.hMul.{u1, u1, u1} π π π (instHMul.{u1} π (Distrib.toHasMul.{u1} π (Ring.toDistrib.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (IsROrC.i.{u1} π _inst_1) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) (IsROrC.i.{u1} π _inst_1) y))) (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) (IsROrC.i.{u1} π _inst_1) y))))) (HMul.hMul.{u1, u1, u1} π π π (instHMul.{u1} π (Distrib.toHasMul.{u1} π (Ring.toDistrib.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (IsROrC.i.{u1} π _inst_1) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) (IsROrC.i.{u1} π _inst_1) y))) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) (IsROrC.i.{u1} π _inst_1) y))))) (OfNat.ofNat.{u1} π 4 (OfNat.mk.{u1} π 4 (bit0.{u1} π (Distrib.toHasAdd.{u1} π (Ring.toDistrib.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (bit0.{u1} π (Distrib.toHasAdd.{u1} π (Ring.toDistrib.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (One.one.{u1} π (AddMonoidWithOne.toOne.{u1} π (AddGroupWithOne.toAddMonoidWithOne.{u1} π (AddCommGroupWithOne.toAddGroupWithOne.{u1} π (Ring.toAddCommGroupWithOne.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))))))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) -> (forall (x : E) (y : E), Eq.{succ u2} π (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T x) y) (HDiv.hDiv.{u2, u2, u2} π π π (instHDiv.{u2} π (Field.toDiv.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (HAdd.hAdd.{u2, u2, u2} π π π (instHAdd.{u2} π (Distrib.toAdd.{u2} π (NonUnitalNonAssocSemiring.toDistrib.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))))) (HSub.hSub.{u2, u2, u2} π π π (instHSub.{u2} π (Ring.toSub.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (HSub.hSub.{u2, u2, u2} π π π (instHSub.{u2} π (Ring.toSub.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x y)) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x y)) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x y)) (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x y)) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x y)) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x y)) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x y)) (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x y))) (HMul.hMul.{u2, u2, u2} π π π (instHMul.{u2} π (NonUnitalNonAssocRing.toMul.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (IsROrC.I.{u2} π _inst_1) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))) (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))))) (HMul.hMul.{u2, u2, u2} π π π (instHMul.{u2} π (NonUnitalNonAssocRing.toMul.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (IsROrC.I.{u2} π _inst_1) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))) (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))))) (OfNat.ofNat.{u2} π 4 (instOfNat.{u2} π 4 (Semiring.toNatCast.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.inner_map_polarization LinearMap.IsSymmetric.inner_map_polarizationβ'. -/
/-- Polarization identity for symmetric linear maps.
See `inner_map_polarization` for the complex version without the symmetric assumption. -/
@@ -271,10 +244,7 @@ theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymm
#align linear_map.is_symmetric.inner_map_polarization LinearMap.IsSymmetric.inner_map_polarization
/- warning: linear_map.is_symmetric.inner_map_self_eq_zero -> LinearMap.IsSymmetric.inner_map_self_eq_zero is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (Iff (forall (x : E), Eq.{succ u1} π (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T x) x) (OfNat.ofNat.{u1} π 0 (OfNat.mk.{u1} π 0 (Zero.zero.{u1} π (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))))) (Eq.{succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) T (OfNat.ofNat.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) 0 (OfNat.mk.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) 0 (Zero.zero.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.hasZero.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) -> (Iff (forall (x : E), Eq.{succ u2} π (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T x) x) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))))) (Eq.{succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) T (OfNat.ofNat.{u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) 0 (Zero.toOfNat0.{u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (LinearMap.instZeroLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.inner_map_self_eq_zero LinearMap.IsSymmetric.inner_map_self_eq_zeroβ'. -/
/-- A symmetric linear map `T` is zero if and only if `βͺT x, xβ«_β = 0` for all `x`.
See `inner_map_self_eq_zero` for the complex version without the symmetric assumption. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/e1a18cad9cd462973d760af7de36b05776b8811c
@@ -59,42 +59,80 @@ namespace LinearMap
/-! ### Symmetric operators -/
+#print LinearMap.IsSymmetric /-
/-- A (not necessarily bounded) operator on an inner product space is symmetric, if for all
`x`, `y`, we have `βͺT x, yβ« = βͺx, T yβ«`. -/
def IsSymmetric (T : E ββ[π] E) : Prop :=
β x y, βͺT x, yβ« = βͺx, T yβ«
#align linear_map.is_symmetric LinearMap.IsSymmetric
+-/
section Real
variable ()
+/- warning: linear_map.is_symmetric_iff_sesq_form -> LinearMap.isSymmetric_iff_sesqForm is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] (T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))), Iff (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) (LinearMap.IsSelfAdjoint.{u1, u2} π E (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (starRingEnd.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toStarRing.{u1} π _inst_1)) (sesqFormOfInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) T)
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] (T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))), Iff (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) (LinearMap.IsSelfAdjoint.{u2, u1} π E (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (starRingEnd.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toStarRing.{u2} π _inst_1)) (sesqFormOfInner.{u2, u1} π E _inst_1 _inst_2 _inst_3) T)
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric_iff_sesq_form LinearMap.isSymmetric_iff_sesqFormβ'. -/
/-- An operator `T` on an inner product space is symmetric if and only if it is
`linear_map.is_self_adjoint` with respect to the sesquilinear form given by the inner product. -/
-theorem isSymmetric_iff_sesq_form (T : E ββ[π] E) :
+theorem isSymmetric_iff_sesqForm (T : E ββ[π] E) :
T.IsSymmetric β @LinearMap.IsSelfAdjoint π E _ _ _ (starRingEnd π) sesqFormOfInner T :=
β¨fun h x y => (h y x).symm, fun h x y => (h y x).symmβ©
-#align linear_map.is_symmetric_iff_sesq_form LinearMap.isSymmetric_iff_sesq_form
+#align linear_map.is_symmetric_iff_sesq_form LinearMap.isSymmetric_iff_sesqForm
end Real
+/- warning: linear_map.is_symmetric.conj_inner_sym -> LinearMap.IsSymmetric.conj_inner_sym is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (forall (x : E) (y : E), Eq.{succ u1} π (coeFn.{succ u1, succ u1} (RingHom.{u1, u1} π π (Semiring.toNonAssocSemiring.{u1} π (CommSemiring.toSemiring.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u1} π (CommSemiring.toSemiring.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (fun (_x : RingHom.{u1, u1} π π (Semiring.toNonAssocSemiring.{u1} π (CommSemiring.toSemiring.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u1} π (CommSemiring.toSemiring.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) => π -> π) (RingHom.hasCoeToFun.{u1, u1} π π (Semiring.toNonAssocSemiring.{u1} π (CommSemiring.toSemiring.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u1} π (CommSemiring.toSemiring.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (starRingEnd.{u1} π (Semifield.toCommSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toStarRing.{u1} π _inst_1)) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T x) y)) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T y) x))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) -> (forall (x : E) (y : E), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : π) => π) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (a : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) a) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T x) y)) (FunLike.coe.{succ u2, succ u2, succ u2} (RingHom.{u2, u2} π π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) π (fun (_x : π) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : π) => π) _x) (MulHomClass.toFunLike.{u2, u2, u2} (RingHom.{u2, u2} π π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) π π (NonUnitalNonAssocSemiring.toMul.{u2} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NonUnitalNonAssocSemiring.toMul.{u2} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NonUnitalRingHomClass.toMulHomClass.{u2, u2, u2} (RingHom.{u2, u2} π π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) π π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (RingHomClass.toNonUnitalRingHomClass.{u2, u2, u2} (RingHom.{u2, u2} π π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) π π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (RingHom.instRingHomClassRingHom.{u2, u2} π π (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Semiring.toNonAssocSemiring.{u2} π (CommSemiring.toSemiring.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))))) (starRingEnd.{u2} π (Semifield.toCommSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toStarRing.{u2} π _inst_1)) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T x) y)) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) y) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) y) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T y) x))
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.conj_inner_sym LinearMap.IsSymmetric.conj_inner_symβ'. -/
theorem IsSymmetric.conj_inner_sym {T : E ββ[π] E} (hT : IsSymmetric T) (x y : E) :
conj βͺT x, yβ« = βͺT y, xβ« := by rw [hT x y, inner_conj_symm]
#align linear_map.is_symmetric.conj_inner_sym LinearMap.IsSymmetric.conj_inner_sym
+/- warning: linear_map.is_symmetric.apply_clm -> LinearMap.IsSymmetric.apply_clm is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (HasLiftT.mk.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (CoeTCβ.coe.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (coeBase.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (ContinuousLinearMap.LinearMap.coe.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) T)) -> (forall (x : E) (y : E), Eq.{succ u1} π (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (ContinuousLinearMap.toFun.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) T x) y) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) x (coeFn.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (ContinuousLinearMap.toFun.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) T y)))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 (ContinuousLinearMap.toLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) T)) -> (forall (x : E) (y : E), Eq.{succ u2} π (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) x) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) x) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) _x) (ContinuousMapClass.toFunLike.{u1, u1, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{u1, u2, u2, u1, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))) T x) y) (Inner.inner.{u2, u1} π E (InnerProductSpace.toInner.{u2, u1} π E _inst_1 _inst_2 _inst_3) x (FunLike.coe.{succ u1, succ u1, succ u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) _x) (ContinuousMapClass.toFunLike.{u1, u1, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{u1, u2, u2, u1, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))) T y)))
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.apply_clm LinearMap.IsSymmetric.apply_clmβ'. -/
@[simp]
theorem IsSymmetric.apply_clm {T : E βL[π] E} (hT : IsSymmetric (T : E ββ[π] E)) (x y : E) :
βͺT x, yβ« = βͺx, T yβ« :=
hT x y
#align linear_map.is_symmetric.apply_clm LinearMap.IsSymmetric.apply_clm
+/- warning: linear_map.is_symmetric_zero -> LinearMap.isSymmetric_zero is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2], LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) 0 (OfNat.mk.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) 0 (Zero.zero.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.hasZero.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2], LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 (OfNat.ofNat.{u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) 0 (Zero.toOfNat0.{u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (LinearMap.instZeroLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))))))
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric_zero LinearMap.isSymmetric_zeroβ'. -/
theorem isSymmetric_zero : (0 : E ββ[π] E).IsSymmetric := fun x y =>
(inner_zero_right x : βͺx, 0β« = 0).symm βΈ (inner_zero_left y : βͺ0, yβ« = 0)
#align linear_map.is_symmetric_zero LinearMap.isSymmetric_zero
+/- warning: linear_map.is_symmetric_id -> LinearMap.isSymmetric_id is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2], LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 (LinearMap.id.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2], LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 (LinearMap.id.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric_id LinearMap.isSymmetric_idβ'. -/
theorem isSymmetric_id : (LinearMap.id : E ββ[π] E).IsSymmetric := fun x y => rfl
#align linear_map.is_symmetric_id LinearMap.isSymmetric_id
+/- warning: linear_map.is_symmetric.add -> LinearMap.IsSymmetric.add is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))} {S : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 S) -> (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 (HAdd.hAdd.{u2, u2, u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (instHAdd.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.hasAdd.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) T S))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))} {S : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) -> (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 S) -> (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 (HAdd.hAdd.{u1, u1, u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (instHAdd.{u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (LinearMap.instAddLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))))) T S))
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.add LinearMap.IsSymmetric.addβ'. -/
theorem IsSymmetric.add {T S : E ββ[π] E} (hT : T.IsSymmetric) (hS : S.IsSymmetric) :
(T + S).IsSymmetric := by
intro x y
@@ -102,6 +140,12 @@ theorem IsSymmetric.add {T S : E ββ[π] E} (hT : T.IsSymmetric) (hS : S.Is
rfl
#align linear_map.is_symmetric.add LinearMap.IsSymmetric.add
+/- warning: linear_map.is_symmetric.continuous -> LinearMap.IsSymmetric.continuous is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] [_inst_10 : CompleteSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (Continuous.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T))
+but is expected to have type
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] [_inst_10 : CompleteSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))] {T : LinearMap.{u1, u1, u2, u2} π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (Continuous.{u2, u2} E E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (FunLike.coe.{succ u2, succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u1, u1, u2, u2} π π E E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T))
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.continuous LinearMap.IsSymmetric.continuousβ'. -/
/-- The **Hellinger--Toeplitz theorem**: if a symmetric operator is defined on a complete space,
then it is automatically continuous. -/
theorem IsSymmetric.continuous [CompleteSpace E] {T : E ββ[π] E} (hT : IsSymmetric T) :
@@ -122,6 +166,12 @@ theorem IsSymmetric.continuous [CompleteSpace E] {T : E ββ[π] E} (hT : Is
exact hu.sub_const _
#align linear_map.is_symmetric.continuous LinearMap.IsSymmetric.continuous
+/- warning: linear_map.is_symmetric.coe_re_apply_inner_self_apply -> LinearMap.IsSymmetric.coe_reApplyInnerSelf_apply is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (HasLiftT.mk.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (CoeTCβ.coe.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (coeBase.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (ContinuousLinearMap.LinearMap.coe.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) T)) -> (forall (x : E), Eq.{succ u1} π ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π (HasLiftT.mk.{1, succ u1} Real π (CoeTCβ.coe.{1, succ u1} Real π (IsROrC.algebraMapCoe.{u1} π _inst_1))) (ContinuousLinearMap.reApplyInnerSelf.{u1, u2} π E _inst_1 _inst_2 _inst_3 T x)) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (ContinuousLinearMap.toFun.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) T x) x))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 (ContinuousLinearMap.toLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) T)) -> (forall (x : E), Eq.{succ u2} π (IsROrC.ofReal.{u2} π _inst_1 (ContinuousLinearMap.reApplyInnerSelf.{u2, u1} π E _inst_1 _inst_2 _inst_3 T x)) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) x) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) x) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => E) _x) (ContinuousMapClass.toFunLike.{u1, u1, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (ContinuousSemilinearMapClass.toContinuousMapClass.{u1, u2, u2, u1, u1} (ContinuousLinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))) T x) x))
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.coe_re_apply_inner_self_apply LinearMap.IsSymmetric.coe_reApplyInnerSelf_applyβ'. -/
/-- For a symmetric operator `T`, the function `Ξ» x, βͺT x, xβ«` is real-valued. -/
@[simp]
theorem IsSymmetric.coe_reApplyInnerSelf_apply {T : E βL[π] E} (hT : IsSymmetric (T : E ββ[π] E))
@@ -133,12 +183,24 @@ theorem IsSymmetric.coe_reApplyInnerSelf_apply {T : E βL[π] E} (hT : IsSymm
exact hT.conj_inner_sym x x
#align linear_map.is_symmetric.coe_re_apply_inner_self_apply LinearMap.IsSymmetric.coe_reApplyInnerSelf_apply
+/- warning: linear_map.is_symmetric.restrict_invariant -> LinearMap.IsSymmetric.restrict_invariant is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (forall {V : Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))} (hV : forall (v : E), (Membership.Mem.{u2, u2} E (Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (SetLike.hasMem.{u2, u2} (Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) E (Submodule.setLike.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))) v V) -> (Membership.Mem.{u2, u2} E (Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (SetLike.hasMem.{u2, u2} (Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) E (Submodule.setLike.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T v) V)), LinearMap.IsSymmetric.{u1, u2} π (coeSort.{succ u2, succ (succ u2)} (Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) Type.{u2} (SetLike.hasCoeToSort.{u2, u2} (Submodule.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) E (Submodule.setLike.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))) V) _inst_1 (Submodule.normedAddCommGroup.{u1, u2} π E (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) _inst_2 (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) V) (Submodule.innerProductSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3 V) (LinearMap.restrict.{u1, u2, u2} π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) T V V hV))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) -> (forall {V : Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))} (hV : forall (v : E), (Membership.mem.{u1, u1} E (Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (SetLike.instMembership.{u1, u1} (Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (Submodule.setLike.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))) v V) -> (Membership.mem.{u1, u1} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) v) (Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (SetLike.instMembership.{u1, u1} (Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (Submodule.setLike.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T v) V)), LinearMap.IsSymmetric.{u2, u1} π (Subtype.{succ u1} E (fun (x : E) => Membership.mem.{u1, u1} E (Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (SetLike.instMembership.{u1, u1} (Submodule.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (Submodule.setLike.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))) x V)) _inst_1 (Submodule.normedAddCommGroup.{u2, u1} π E (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) _inst_2 (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) V) (Submodule.innerProductSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3 V) (LinearMap.restrict.{u2, u1, u1} π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) T V V hV))
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrict_invariantβ'. -/
/-- If a symmetric operator preserves a submodule, its restriction to that submodule is
symmetric. -/
theorem IsSymmetric.restrict_invariant {T : E ββ[π] E} (hT : IsSymmetric T) {V : Submodule π E}
(hV : β v β V, T v β V) : IsSymmetric (T.restrict hV) := fun v w => hT v w
#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrict_invariant
+/- warning: linear_map.is_symmetric.restrict_scalars -> LinearMap.IsSymmetric.restrictScalars is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (LinearMap.IsSymmetric.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3) (LinearMap.restrictScalars.{0, u1, u2, u2} Real π E E Real.semiring (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (LinearMap.IsScalarTower.compatibleSMul.{u2, u2, 0, u1} E E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) Real π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (CommSemiring.toSemiring.{0} Real Real.commSemiring))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (CommSemiring.toSemiring.{0} Real Real.commSemiring)) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π (CommSemiring.toSemiring.{0} Real Real.commSemiring) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (Algebra.toModule.{0, u1} Real π Real.commSemiring (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u1} Real π Real.normedField (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))))))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (Real.isScalarTower.{u2, u1} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (BoundedSMul.continuousSMul.{0, u2} Real E Real.pseudoMetricSpace (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{0} Real (NonUnitalNonAssocSemiring.toMulZeroClass.{0} Real (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{0} Real (NonAssocRing.toNonUnitalNonAssocRing.{0} Real (Ring.toNonAssocRing.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.boundedSMul.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3)))) (T25Space.t2Space.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (T3Space.t25Space.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (separated_t3.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (MetricSpace.to_separated.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))))) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (NormedAlgebra.toAlgebra.{0, u1} Real π Real.normedField (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π _inst_1)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (BoundedSMul.continuousSMul.{0, u1} Real π Real.pseudoMetricSpace (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (MulZeroClass.toHasZero.{0} Real (NonUnitalNonAssocSemiring.toMulZeroClass.{0} Real (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{0} Real (NonAssocRing.toNonUnitalNonAssocRing.{0} Real (Ring.toNonAssocRing.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (SubNegMonoid.toAddMonoid.{u1} π (AddGroup.toSubNegMonoid.{u1} π (SeminormedAddGroup.toAddGroup.{u1} π (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))))) (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (CommSemiring.toSemiring.{0} Real Real.commSemiring))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (CommSemiring.toSemiring.{0} Real Real.commSemiring)) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π (CommSemiring.toSemiring.{0} Real Real.commSemiring) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (Algebra.toModule.{0, u1} Real π Real.commSemiring (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u1} Real π Real.normedField (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))))))) (NormedSpace.boundedSMul.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π _inst_1)))) (BoundedSMul.continuousSMul.{u1, u2} π E (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) (NormedSpace.boundedSMul.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (Real.isScalarTower.{u2, u1} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (BoundedSMul.continuousSMul.{0, u2} Real E Real.pseudoMetricSpace (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{0} Real (NonUnitalNonAssocSemiring.toMulZeroClass.{0} Real (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{0} Real (NonAssocRing.toNonUnitalNonAssocRing.{0} Real (Ring.toNonAssocRing.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{0, u2} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.boundedSMul.{0, u2} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u2} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u1, u2} π E _inst_1 _inst_2 _inst_3)))) (T25Space.t2Space.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (T3Space.t25Space.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (separated_t3.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (MetricSpace.to_separated.{u2} E (NormedAddCommGroup.toMetricSpace.{u2} E _inst_2))))) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (NormedAlgebra.toAlgebra.{0, u1} Real π Real.normedField (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π _inst_1)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (BoundedSMul.continuousSMul.{0, u1} Real π Real.pseudoMetricSpace (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (MulZeroClass.toHasZero.{0} Real (NonUnitalNonAssocSemiring.toMulZeroClass.{0} Real (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{0} Real (NonAssocRing.toNonUnitalNonAssocRing.{0} Real (Ring.toNonAssocRing.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (SubNegMonoid.toAddMonoid.{u1} π (AddGroup.toSubNegMonoid.{u1} π (SeminormedAddGroup.toAddGroup.{u1} π (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))))) (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (CommSemiring.toSemiring.{0} Real Real.commSemiring))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (CommSemiring.toSemiring.{0} Real Real.commSemiring)) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π (CommSemiring.toSemiring.{0} Real Real.commSemiring) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (Algebra.toModule.{0, u1} Real π Real.commSemiring (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u1} Real π Real.normedField (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))))))) (NormedSpace.boundedSMul.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π _inst_1)))) (BoundedSMul.continuousSMul.{u1, u2} π E (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) (NormedSpace.boundedSMul.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))))) T))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) -> (LinearMap.IsSymmetric.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3) (LinearMap.restrictScalars.{0, u2, u1, u1} Real π E E (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (LinearMap.IsScalarTower.compatibleSMul.{u1, u1, 0, u2} E E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) Real π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (Algebra.toSMul.{0, u2} Real π Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1))) (SMulZeroClass.toSMul.{0, u1} Real E (AddMonoid.toZero.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E (MonoidWithZero.toZero.{0} Real (Semiring.toMonoidWithZero.{0} Real (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)))))))) (AddMonoid.toZero.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E (Semiring.toMonoidWithZero.{0} Real (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC))))))) (AddMonoid.toZero.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (Real.isScalarTower.{u1, u2} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (BoundedSMul.continuousSMul.{0, u1} Real E Real.pseudoMetricSpace (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.boundedSMul.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3)))) (T25Space.t2Space.{u1} E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (T3Space.t25Space.{u1} E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (separated_t3.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (MetricSpace.to_separated.{u1} E (NormedAddCommGroup.toMetricSpace.{u1} E _inst_2))))) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (BoundedSMul.continuousSMul.{0, u2} Real π Real.pseudoMetricSpace (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) Real.instZeroReal (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Algebra.toSMul.{0, u2} Real π Real.instCommSemiringReal (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1))) (NormedSpace.boundedSMul.{0, u2} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u2} Real Real.normedField π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (IsROrC.toNormedAlgebra.{u2} π _inst_1)))) (BoundedSMul.continuousSMul.{u2, u1} π E (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (Module.toMulActionWithZero.{u2, u1} π E (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))))) (NormedSpace.boundedSMul.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))) (SMulZeroClass.toSMul.{0, u1} Real E (AddMonoid.toZero.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E (MonoidWithZero.toZero.{0} Real (Semiring.toMonoidWithZero.{0} Real (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)))))))) (AddMonoid.toZero.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E (Semiring.toMonoidWithZero.{0} Real (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC))))))) (AddMonoid.toZero.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E (DivisionSemiring.toSemiring.{0} Real (Semifield.toDivisionSemiring.{0} Real (Field.toSemifield.{0} Real (NormedField.toField.{0} Real (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (Real.isScalarTower.{u1, u2} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (BoundedSMul.continuousSMul.{0, u1} Real E Real.pseudoMetricSpace (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{0, u1} Real E (DenselyNormedField.toNormedField.{0} Real (IsROrC.toDenselyNormedField.{0} Real Real.isROrC)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (NormedSpace.boundedSMul.{0, u1} Real E Real.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{0, u1} Real E Real.isROrC _inst_2 (InnerProductSpace.isROrCToReal.{u2, u1} π E _inst_1 _inst_2 _inst_3)))) (T25Space.t2Space.{u1} E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (T3Space.t25Space.{u1} E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (separated_t3.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (MetricSpace.to_separated.{u1} E (NormedAddCommGroup.toMetricSpace.{u1} E _inst_2))))) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (BoundedSMul.continuousSMul.{0, u2} Real π Real.pseudoMetricSpace (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) Real.instZeroReal (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Algebra.toSMul.{0, u2} Real π Real.instCommSemiringReal (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1))) (NormedSpace.boundedSMul.{0, u2} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u2} Real Real.normedField π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (IsROrC.toNormedAlgebra.{u2} π _inst_1)))) (BoundedSMul.continuousSMul.{u2, u1} π E (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (MonoidWithZero.toZero.{u2} π (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))))))) (Module.toMulActionWithZero.{u2, u1} π E (Ring.toSemiring.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)))))) (NormedSpace.boundedSMul.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))) T))
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.restrict_scalars LinearMap.IsSymmetric.restrictScalarsβ'. -/
theorem IsSymmetric.restrictScalars {T : E ββ[π] E} (hT : T.IsSymmetric) :
@LinearMap.IsSymmetric β E _ _ (InnerProductSpace.isROrCToReal π E)
(@LinearMap.restrictScalars β π _ _ _ _ _ _ (InnerProductSpace.isROrCToReal π E).toModule
@@ -150,6 +212,12 @@ section Complex
variable {V : Type _} [NormedAddCommGroup V] [InnerProductSpace β V]
+/- warning: linear_map.is_symmetric_iff_inner_map_self_real -> LinearMap.isSymmetric_iff_inner_map_self_real is a dubious translation:
+lean 3 declaration is
+ forall {V : Type.{u1}} [_inst_10 : NormedAddCommGroup.{u1} V] [_inst_11 : InnerProductSpace.{0, u1} Complex V Complex.isROrC _inst_10] (T : LinearMap.{0, 0, u1, u1} Complex Complex (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring))) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11))), Iff (LinearMap.IsSymmetric.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11 T) (forall (v : V), Eq.{1} Complex (coeFn.{1, 1} (RingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.commSemiring)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.commSemiring))) (fun (_x : RingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.commSemiring)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.commSemiring))) => Complex -> Complex) (RingHom.hasCoeToFun.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.commSemiring)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.commSemiring))) (starRingEnd.{0} Complex Complex.commSemiring Complex.starRing) (Inner.inner.{0, u1} Complex V (InnerProductSpace.toHasInner.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11) (coeFn.{succ u1, succ u1} (LinearMap.{0, 0, u1, u1} Complex Complex (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring))) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11))) (fun (_x : LinearMap.{0, 0, u1, u1} Complex Complex (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring))) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11))) => V -> V) (LinearMap.hasCoeToFun.{0, 0, u1, u1} Complex Complex V V (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring)))) T v) v)) (Inner.inner.{0, u1} Complex V (InnerProductSpace.toHasInner.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11) (coeFn.{succ u1, succ u1} (LinearMap.{0, 0, u1, u1} Complex Complex (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring))) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11))) (fun (_x : LinearMap.{0, 0, u1, u1} Complex Complex (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring))) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11))) => V -> V) (LinearMap.hasCoeToFun.{0, 0, u1, u1} Complex Complex V V (Ring.toSemiring.{0} Complex Complex.ring) (Ring.toSemiring.{0} Complex Complex.ring) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.normedField (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.isROrC _inst_10 _inst_11)) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (Ring.toSemiring.{0} Complex Complex.ring)))) T v) v))
+but is expected to have type
+ forall {V : Type.{u1}} [_inst_10 : NormedAddCommGroup.{u1} V] [_inst_11 : InnerProductSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10] (T : LinearMap.{0, 0, u1, u1} Complex Complex Complex.instSemiringComplex Complex.instSemiringComplex (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex)) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11))), Iff (LinearMap.IsSymmetric.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11 T) (forall (v : V), Eq.{1} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Complex) => Complex) (Inner.inner.{0, u1} Complex ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) v) (InnerProductSpace.toInner.{0, u1} Complex ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) v) Complex.instIsROrCComplex _inst_10 _inst_11) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} Complex Complex Complex.instSemiringComplex Complex.instSemiringComplex (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex)) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11))) V (fun (a : V) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) a) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} Complex Complex V V Complex.instSemiringComplex Complex.instSemiringComplex (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex))) T v) v)) (FunLike.coe.{1, 1, 1} (RingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex))) Complex (fun (_x : Complex) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : Complex) => Complex) _x) (MulHomClass.toFunLike.{0, 0, 0} (RingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex))) Complex Complex (NonUnitalNonAssocSemiring.toMul.{0} Complex (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)))) (NonUnitalNonAssocSemiring.toMul.{0} Complex (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)))) (NonUnitalRingHomClass.toMulHomClass.{0, 0, 0} (RingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex))) Complex Complex (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex))) (RingHomClass.toNonUnitalRingHomClass.{0, 0, 0} (RingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex))) Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (RingHom.instRingHomClassRingHom.{0, 0} Complex Complex (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)) (Semiring.toNonAssocSemiring.{0} Complex (CommSemiring.toSemiring.{0} Complex Complex.instCommSemiringComplex)))))) (starRingEnd.{0} Complex Complex.instCommSemiringComplex Complex.instStarRingComplexToNonUnitalSemiringToNonUnitalCommSemiringToNonUnitalCommRingCommRing) (Inner.inner.{0, u1} Complex ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) v) (InnerProductSpace.toInner.{0, u1} Complex ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) v) Complex.instIsROrCComplex _inst_10 _inst_11) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} Complex Complex Complex.instSemiringComplex Complex.instSemiringComplex (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex)) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11))) V (fun (_x : V) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} Complex Complex V V Complex.instSemiringComplex Complex.instSemiringComplex (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex))) T v) v)) (Inner.inner.{0, u1} Complex ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) v) (InnerProductSpace.toInner.{0, u1} Complex ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) v) Complex.instIsROrCComplex _inst_10 _inst_11) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{0, 0, u1, u1} Complex Complex Complex.instSemiringComplex Complex.instSemiringComplex (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex)) V V (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11))) V (fun (_x : V) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : V) => V) _x) (LinearMap.instFunLikeLinearMap.{0, 0, u1, u1} Complex Complex V V Complex.instSemiringComplex Complex.instSemiringComplex (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (AddCommGroup.toAddCommMonoid.{u1} V (NormedAddCommGroup.toAddCommGroup.{u1} V _inst_10)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (NormedSpace.toModule.{0, u1} Complex V Complex.instNormedFieldComplex (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} V _inst_10) (InnerProductSpace.toNormedSpace.{0, u1} Complex V Complex.instIsROrCComplex _inst_10 _inst_11)) (RingHom.id.{0} Complex (Semiring.toNonAssocSemiring.{0} Complex Complex.instSemiringComplex))) T v) v))
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric_iff_inner_map_self_real LinearMap.isSymmetric_iff_inner_map_self_realβ'. -/
/-- A linear operator on a complex inner product space is symmetric precisely when
`βͺT v, vβ«_β` is real for all v.-/
theorem isSymmetric_iff_inner_map_self_real (T : V ββ[β] V) :
@@ -172,6 +240,12 @@ theorem isSymmetric_iff_inner_map_self_real (T : V ββ[β] V) :
end Complex
+/- warning: linear_map.is_symmetric.inner_map_polarization -> LinearMap.IsSymmetric.inner_map_polarization is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (forall (x : E) (y : E), Eq.{succ u1} π (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T x) y) (HDiv.hDiv.{u1, u1, u1} π π π (instHDiv.{u1} π (DivInvMonoid.toHasDiv.{u1} π (DivisionRing.toDivInvMonoid.{u1} π (NormedDivisionRing.toDivisionRing.{u1} π (NormedField.toNormedDivisionRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (HAdd.hAdd.{u1, u1, u1} π π π (instHAdd.{u1} π (Distrib.toHasAdd.{u1} π (Ring.toDistrib.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (HSub.hSub.{u1, u1, u1} π π π (instHSub.{u1} π (SubNegMonoid.toHasSub.{u1} π (AddGroup.toSubNegMonoid.{u1} π (NormedAddGroup.toAddGroup.{u1} π (NormedAddCommGroup.toNormedAddGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))) (HSub.hSub.{u1, u1, u1} π π π (instHSub.{u1} π (SubNegMonoid.toHasSub.{u1} π (AddGroup.toSubNegMonoid.{u1} π (NormedAddGroup.toAddGroup.{u1} π (NormedAddCommGroup.toNormedAddGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x y)) (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x y)) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x y)) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x y))) (HMul.hMul.{u1, u1, u1} π π π (instHMul.{u1} π (Distrib.toHasMul.{u1} π (Ring.toDistrib.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (IsROrC.i.{u1} π _inst_1) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) (IsROrC.i.{u1} π _inst_1) y))) (HAdd.hAdd.{u2, u2, u2} E E E (instHAdd.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))) x (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) (IsROrC.i.{u1} π _inst_1) y))))) (HMul.hMul.{u1, u1, u1} π π π (instHMul.{u1} π (Distrib.toHasMul.{u1} π (Ring.toDistrib.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (IsROrC.i.{u1} π _inst_1) (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) (IsROrC.i.{u1} π _inst_1) y))) (HSub.hSub.{u2, u2, u2} E E E (instHSub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))) x (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)))))) (IsROrC.i.{u1} π _inst_1) y))))) (OfNat.ofNat.{u1} π 4 (OfNat.mk.{u1} π 4 (bit0.{u1} π (Distrib.toHasAdd.{u1} π (Ring.toDistrib.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (bit0.{u1} π (Distrib.toHasAdd.{u1} π (Ring.toDistrib.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (One.one.{u1} π (AddMonoidWithOne.toOne.{u1} π (AddGroupWithOne.toAddMonoidWithOne.{u1} π (AddCommGroupWithOne.toAddGroupWithOne.{u1} π (Ring.toAddCommGroupWithOne.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))))))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) -> (forall (x : E) (y : E), Eq.{succ u2} π (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T x) y) (HDiv.hDiv.{u2, u2, u2} π π π (instHDiv.{u2} π (Field.toDiv.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (HAdd.hAdd.{u2, u2, u2} π π π (instHAdd.{u2} π (Distrib.toAdd.{u2} π (NonUnitalNonAssocSemiring.toDistrib.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))))) (HSub.hSub.{u2, u2, u2} π π π (instHSub.{u2} π (Ring.toSub.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (HSub.hSub.{u2, u2, u2} π π π (instHSub.{u2} π (Ring.toSub.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x y)) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x y)) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x y)) (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x y)) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x y)) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x y)) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x y)) (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x y))) (HMul.hMul.{u2, u2, u2} π π π (instHMul.{u2} π (NonUnitalNonAssocRing.toMul.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (IsROrC.I.{u2} π _inst_1) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))) (HAdd.hAdd.{u1, u1, u1} E E E (instHAdd.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))))) (HMul.hMul.{u2, u2, u2} π π π (instHMul.{u2} π (NonUnitalNonAssocRing.toMul.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (IsROrC.I.{u2} π _inst_1) (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))) (HSub.hSub.{u1, u1, u1} E E E (instHSub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))) x (HSMul.hSMul.{u2, u1, u1} π E E (instHSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))))))) (IsROrC.I.{u2} π _inst_1) y))))) (OfNat.ofNat.{u2} π 4 (instOfNat.{u2} π 4 (Semiring.toNatCast.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (instAtLeastTwoHAddNatInstHAddInstAddNatOfNat (OfNat.ofNat.{0} Nat 2 (instOfNatNat 2)))))))
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.inner_map_polarization LinearMap.IsSymmetric.inner_map_polarizationβ'. -/
/-- Polarization identity for symmetric linear maps.
See `inner_map_polarization` for the complex version without the symmetric assumption. -/
theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymmetric) (x y : E) :
@@ -196,6 +270,12 @@ theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymm
ring
#align linear_map.is_symmetric.inner_map_polarization LinearMap.IsSymmetric.inner_map_polarization
+/- warning: linear_map.is_symmetric.inner_map_self_eq_zero -> LinearMap.IsSymmetric.inner_map_self_eq_zero is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : InnerProductSpace.{u1, u2} π E _inst_1 _inst_2] {T : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u1, u2} π E _inst_1 _inst_2 _inst_3 T) -> (Iff (forall (x : E), Eq.{succ u1} π (Inner.inner.{u1, u2} π E (InnerProductSpace.toHasInner.{u1, u2} π E _inst_1 _inst_2 _inst_3) (coeFn.{succ u2, succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (fun (_x : LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) => E -> E) (LinearMap.hasCoeToFun.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) T x) x) (OfNat.ofNat.{u1} π 0 (OfNat.mk.{u1} π 0 (Zero.zero.{u1} π (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))))) (Eq.{succ u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) T (OfNat.ofNat.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) 0 (OfNat.mk.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) 0 (Zero.zero.{u2} (LinearMap.{u1, u1, u2, u2} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3))) (LinearMap.hasZero.{u1, u1, u2, u2} π π E E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (InnerProductSpace.toNormedSpace.{u1, u2} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))))))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : InnerProductSpace.{u2, u1} π E _inst_1 _inst_2] {T : LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))}, (LinearMap.IsSymmetric.{u2, u1} π E _inst_1 _inst_2 _inst_3 T) -> (Iff (forall (x : E), Eq.{succ u2} π (Inner.inner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) (InnerProductSpace.toInner.{u2, u1} π ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) x) _inst_1 _inst_2 _inst_3) (FunLike.coe.{succ u1, succ u1, succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => E) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) T x) x) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))))) (Eq.{succ u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) T (OfNat.ofNat.{u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) 0 (Zero.toOfNat0.{u1} (LinearMap.{u2, u2, u1, u1} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E E (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3))) (LinearMap.instZeroLinearMap.{u2, u2, u1, u1} π π E E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (InnerProductSpace.toNormedSpace.{u2, u1} π E _inst_1 _inst_2 _inst_3)) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))))))))
+Case conversion may be inaccurate. Consider using '#align linear_map.is_symmetric.inner_map_self_eq_zero LinearMap.IsSymmetric.inner_map_self_eq_zeroβ'. -/
/-- A symmetric linear map `T` is zero if and only if `βͺT x, xβ«_β = 0` for all `x`.
See `inner_map_self_eq_zero` for the complex version without the symmetric assumption. -/
theorem IsSymmetric.inner_map_self_eq_zero {T : E ββ[π] E} (hT : T.IsSymmetric) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/ef95945cd48c932c9e034872bd25c3c220d9c946
@@ -88,12 +88,12 @@ theorem IsSymmetric.apply_clm {T : E βL[π] E} (hT : IsSymmetric (T : E β
hT x y
#align linear_map.is_symmetric.apply_clm LinearMap.IsSymmetric.apply_clm
-theorem isSymmetricZero : (0 : E ββ[π] E).IsSymmetric := fun x y =>
+theorem isSymmetric_zero : (0 : E ββ[π] E).IsSymmetric := fun x y =>
(inner_zero_right x : βͺx, 0β« = 0).symm βΈ (inner_zero_left y : βͺ0, yβ« = 0)
-#align linear_map.is_symmetric_zero LinearMap.isSymmetricZero
+#align linear_map.is_symmetric_zero LinearMap.isSymmetric_zero
-theorem isSymmetricId : (LinearMap.id : E ββ[π] E).IsSymmetric := fun x y => rfl
-#align linear_map.is_symmetric_id LinearMap.isSymmetricId
+theorem isSymmetric_id : (LinearMap.id : E ββ[π] E).IsSymmetric := fun x y => rfl
+#align linear_map.is_symmetric_id LinearMap.isSymmetric_id
theorem IsSymmetric.add {T S : E ββ[π] E} (hT : T.IsSymmetric) (hS : S.IsSymmetric) :
(T + S).IsSymmetric := by
@@ -135,9 +135,9 @@ theorem IsSymmetric.coe_reApplyInnerSelf_apply {T : E βL[π] E} (hT : IsSymm
/-- If a symmetric operator preserves a submodule, its restriction to that submodule is
symmetric. -/
-theorem IsSymmetric.restrictInvariant {T : E ββ[π] E} (hT : IsSymmetric T) {V : Submodule π E}
+theorem IsSymmetric.restrict_invariant {T : E ββ[π] E} (hT : IsSymmetric T) {V : Submodule π E}
(hV : β v β V, T v β V) : IsSymmetric (T.restrict hV) := fun v w => hT v w
-#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrictInvariant
+#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrict_invariant
theorem IsSymmetric.restrictScalars {T : E ββ[π] E} (hT : T.IsSymmetric) :
@LinearMap.IsSymmetric β E _ _ (InnerProductSpace.isROrCToReal π E)
mathlib commit https://github.com/leanprover-community/mathlib/commit/2f8347015b12b0864dfaf366ec4909eb70c78740
@@ -88,12 +88,12 @@ theorem IsSymmetric.apply_clm {T : E βL[π] E} (hT : IsSymmetric (T : E β
hT x y
#align linear_map.is_symmetric.apply_clm LinearMap.IsSymmetric.apply_clm
-theorem isSymmetric_zero : (0 : E ββ[π] E).IsSymmetric := fun x y =>
+theorem isSymmetricZero : (0 : E ββ[π] E).IsSymmetric := fun x y =>
(inner_zero_right x : βͺx, 0β« = 0).symm βΈ (inner_zero_left y : βͺ0, yβ« = 0)
-#align linear_map.is_symmetric_zero LinearMap.isSymmetric_zero
+#align linear_map.is_symmetric_zero LinearMap.isSymmetricZero
-theorem isSymmetric_id : (LinearMap.id : E ββ[π] E).IsSymmetric := fun x y => rfl
-#align linear_map.is_symmetric_id LinearMap.isSymmetric_id
+theorem isSymmetricId : (LinearMap.id : E ββ[π] E).IsSymmetric := fun x y => rfl
+#align linear_map.is_symmetric_id LinearMap.isSymmetricId
theorem IsSymmetric.add {T S : E ββ[π] E} (hT : T.IsSymmetric) (hS : S.IsSymmetric) :
(T + S).IsSymmetric := by
@@ -135,9 +135,9 @@ theorem IsSymmetric.coe_reApplyInnerSelf_apply {T : E βL[π] E} (hT : IsSymm
/-- If a symmetric operator preserves a submodule, its restriction to that submodule is
symmetric. -/
-theorem IsSymmetric.restrict_invariant {T : E ββ[π] E} (hT : IsSymmetric T) {V : Submodule π E}
+theorem IsSymmetric.restrictInvariant {T : E ββ[π] E} (hT : IsSymmetric T) {V : Submodule π E}
(hV : β v β V, T v β V) : IsSymmetric (T.restrict hV) := fun v w => hT v w
-#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrict_invariant
+#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrictInvariant
theorem IsSymmetric.restrictScalars {T : E ββ[π] E} (hT : T.IsSymmetric) :
@LinearMap.IsSymmetric β E _ _ (InnerProductSpace.isROrCToReal π E)
@@ -191,7 +191,7 @@ theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymm
simp_rw [h, MulZeroClass.mul_zero, add_zero]
norm_cast
Β· simp_rw [map_add, map_sub, inner_add_left, inner_add_right, inner_sub_left, inner_sub_right,
- LinearMap.map_smul, inner_smul_left, inner_smul_right, IsROrC.conj_i, mul_add, mul_sub,
+ LinearMap.map_smul, inner_smul_left, inner_smul_right, IsROrC.conj_I, mul_add, mul_sub,
sub_sub, β mul_assoc, mul_neg, h, neg_neg, one_mul, neg_one_mul]
ring
#align linear_map.is_symmetric.inner_map_polarization LinearMap.IsSymmetric.inner_map_polarization
mathlib commit https://github.com/leanprover-community/mathlib/commit/d4437c68c8d350fc9d4e95e1e174409db35e30d7
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, FrΓ©dΓ©ric Dupuis, Heather Macbeth
! This file was ported from Lean 3 source module analysis.inner_product_space.symmetric
-! leanprover-community/mathlib commit caa58cbf5bfb7f81ccbaca4e8b8ac4bc2b39cc1c
+! leanprover-community/mathlib commit 3f655f5297b030a87d641ad4e825af8d9679eb0b
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -186,7 +186,7 @@ theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymm
suffices (re βͺT y, xβ« : π) = βͺT y, xβ«
by
rw [conj_eq_iff_re.mpr this]
- ring_nf
+ ring
Β· rw [β re_add_im βͺT y, xβ«]
simp_rw [h, MulZeroClass.mul_zero, add_zero]
norm_cast
mathlib commit https://github.com/leanprover-community/mathlib/commit/92c69b77c5a7dc0f7eeddb552508633305157caa
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, FrΓ©dΓ©ric Dupuis, Heather Macbeth
! This file was ported from Lean 3 source module analysis.inner_product_space.symmetric
-! leanprover-community/mathlib commit 23b80727b34e571e2e3bd8e8b720820cb215e880
+! leanprover-community/mathlib commit caa58cbf5bfb7f81ccbaca4e8b8ac4bc2b39cc1c
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -129,7 +129,7 @@ theorem IsSymmetric.coe_reApplyInnerSelf_apply {T : E βL[π] E} (hT : IsSymm
by
rsuffices β¨r, hrβ© : β r : β, βͺT x, xβ« = r
Β· simp [hr, T.re_apply_inner_self_apply]
- rw [β eq_conj_iff_real]
+ rw [β conj_eq_iff_real]
exact hT.conj_inner_sym x x
#align linear_map.is_symmetric.coe_re_apply_inner_self_apply LinearMap.IsSymmetric.coe_reApplyInnerSelf_apply
@@ -185,7 +185,7 @@ theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymm
inner_add_right, inner_sub_left, inner_sub_right, hT x, β inner_conj_symm x (T y)]
suffices (re βͺT y, xβ« : π) = βͺT y, xβ«
by
- rw [eq_conj_iff_re.mpr this]
+ rw [conj_eq_iff_re.mpr this]
ring_nf
Β· rw [β re_add_im βͺT y, xβ«]
simp_rw [h, MulZeroClass.mul_zero, add_zero]
mathlib commit https://github.com/leanprover-community/mathlib/commit/039ef89bef6e58b32b62898dd48e9d1a4312bb65
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, FrΓ©dΓ©ric Dupuis, Heather Macbeth
! This file was ported from Lean 3 source module analysis.inner_product_space.symmetric
-! leanprover-community/mathlib commit 36172d6661e181c215108035483dbbeabd62942e
+! leanprover-community/mathlib commit 23b80727b34e571e2e3bd8e8b720820cb215e880
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -198,7 +198,7 @@ theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymm
/-- A symmetric linear map `T` is zero if and only if `βͺT x, xβ«_β = 0` for all `x`.
See `inner_map_self_eq_zero` for the complex version without the symmetric assumption. -/
-theorem IsSymmetric.inner_map_eq_zero {T : E ββ[π] E} (hT : T.IsSymmetric) :
+theorem IsSymmetric.inner_map_self_eq_zero {T : E ββ[π] E} (hT : T.IsSymmetric) :
(β x, βͺT x, xβ« = 0) β T = 0 :=
by
simp_rw [LinearMap.ext_iff, zero_apply]
@@ -206,7 +206,7 @@ theorem IsSymmetric.inner_map_eq_zero {T : E ββ[π] E} (hT : T.IsSymmetric
rw [β @inner_self_eq_zero π, hT.inner_map_polarization]
simp_rw [h _]
ring
-#align linear_map.is_symmetric.inner_map_eq_zero LinearMap.IsSymmetric.inner_map_eq_zero
+#align linear_map.is_symmetric.inner_map_self_eq_zero LinearMap.IsSymmetric.inner_map_self_eq_zero
end LinearMap
mathlib commit https://github.com/leanprover-community/mathlib/commit/284fdd2962e67d2932fa3a79ce19fcf92d38e228
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, FrΓ©dΓ©ric Dupuis, Heather Macbeth
! This file was ported from Lean 3 source module analysis.inner_product_space.symmetric
-! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
+! leanprover-community/mathlib commit 36172d6661e181c215108035483dbbeabd62942e
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -172,5 +172,41 @@ theorem isSymmetric_iff_inner_map_self_real (T : V ββ[β] V) :
end Complex
+/-- Polarization identity for symmetric linear maps.
+See `inner_map_polarization` for the complex version without the symmetric assumption. -/
+theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymmetric) (x y : E) :
+ βͺT x, yβ« =
+ (βͺT (x + y), x + yβ« - βͺT (x - y), x - yβ« - i * βͺT (x + (i : π) β’ y), x + (i : π) β’ yβ« +
+ i * βͺT (x - (i : π) β’ y), x - (i : π) β’ yβ«) /
+ 4 :=
+ by
+ rcases@I_mul_I_ax π _ with (h | h)
+ Β· simp_rw [h, MulZeroClass.zero_mul, sub_zero, add_zero, map_add, map_sub, inner_add_left,
+ inner_add_right, inner_sub_left, inner_sub_right, hT x, β inner_conj_symm x (T y)]
+ suffices (re βͺT y, xβ« : π) = βͺT y, xβ«
+ by
+ rw [eq_conj_iff_re.mpr this]
+ ring_nf
+ Β· rw [β re_add_im βͺT y, xβ«]
+ simp_rw [h, MulZeroClass.mul_zero, add_zero]
+ norm_cast
+ Β· simp_rw [map_add, map_sub, inner_add_left, inner_add_right, inner_sub_left, inner_sub_right,
+ LinearMap.map_smul, inner_smul_left, inner_smul_right, IsROrC.conj_i, mul_add, mul_sub,
+ sub_sub, β mul_assoc, mul_neg, h, neg_neg, one_mul, neg_one_mul]
+ ring
+#align linear_map.is_symmetric.inner_map_polarization LinearMap.IsSymmetric.inner_map_polarization
+
+/-- A symmetric linear map `T` is zero if and only if `βͺT x, xβ«_β = 0` for all `x`.
+See `inner_map_self_eq_zero` for the complex version without the symmetric assumption. -/
+theorem IsSymmetric.inner_map_eq_zero {T : E ββ[π] E} (hT : T.IsSymmetric) :
+ (β x, βͺT x, xβ« = 0) β T = 0 :=
+ by
+ simp_rw [LinearMap.ext_iff, zero_apply]
+ refine' β¨fun h x => _, fun h => by simp_rw [h, inner_zero_left, forall_const]β©
+ rw [β @inner_self_eq_zero π, hT.inner_map_polarization]
+ simp_rw [h _]
+ ring
+#align linear_map.is_symmetric.inner_map_eq_zero LinearMap.IsSymmetric.inner_map_eq_zero
+
end LinearMap
mathlib commit https://github.com/leanprover-community/mathlib/commit/55d771df074d0dd020139ee1cd4b95521422df9f
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, FrΓ©dΓ©ric Dupuis, Heather Macbeth
! This file was ported from Lean 3 source module analysis.inner_product_space.symmetric
-! leanprover-community/mathlib commit 3fc0b254310908f70a1a75f01147d52e53e9f8a2
+! leanprover-community/mathlib commit 46b633fd842bef9469441c0209906f6dddd2b4f5
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -43,9 +43,13 @@ open ComplexConjugate
variable {π E E' F G : Type _} [IsROrC π]
-variable [InnerProductSpace π E] [InnerProductSpace π F] [InnerProductSpace π G]
+variable [NormedAddCommGroup E] [InnerProductSpace π E]
-variable [InnerProductSpace β E']
+variable [NormedAddCommGroup F] [InnerProductSpace π F]
+
+variable [NormedAddCommGroup G] [InnerProductSpace π G]
+
+variable [NormedAddCommGroup E'] [InnerProductSpace β E']
-- mathport name: Β«exprβͺ , β«Β»
local notation "βͺ" x ", " y "β«" => @inner π _ _ x y
@@ -105,7 +109,7 @@ theorem IsSymmetric.continuous [CompleteSpace E] {T : E ββ[π] E} (hT : Is
by
-- We prove it by using the closed graph theorem
refine' T.continuous_of_seq_closed_graph fun u x y hu hTu => _
- rw [β sub_eq_zero, β inner_self_eq_zero]
+ rw [β sub_eq_zero, β @inner_self_eq_zero π]
have hlhs : β k : β, βͺT (u k) - T x, y - T xβ« = βͺu k - x, T (y - T x)β« :=
by
intro k
@@ -136,7 +140,7 @@ theorem IsSymmetric.restrict_invariant {T : E ββ[π] E} (hT : IsSymmetric
#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrict_invariant
theorem IsSymmetric.restrictScalars {T : E ββ[π] E} (hT : T.IsSymmetric) :
- @LinearMap.IsSymmetric β E _ (InnerProductSpace.isROrCToReal π E)
+ @LinearMap.IsSymmetric β E _ _ (InnerProductSpace.isROrCToReal π E)
(@LinearMap.restrictScalars β π _ _ _ _ _ _ (InnerProductSpace.isROrCToReal π E).toModule
(InnerProductSpace.isROrCToReal π E).toModule _ _ _ T) :=
fun x y => by simp [hT x y, real_inner_eq_re_inner, LinearMap.coe_restrictScalars]
@@ -144,7 +148,7 @@ theorem IsSymmetric.restrictScalars {T : E ββ[π] E} (hT : T.IsSymmetric)
section Complex
-variable {V : Type _} [InnerProductSpace β V]
+variable {V : Type _} [NormedAddCommGroup V] [InnerProductSpace β V]
/-- A linear operator on a complex inner product space is symmetric precisely when
`βͺT v, vβ«_β` is real for all v.-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/1a313d8bba1bad05faba71a4a4e9742ab5bd9efd
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, FrΓ©dΓ©ric Dupuis, Heather Macbeth
! This file was ported from Lean 3 source module analysis.inner_product_space.symmetric
-! leanprover-community/mathlib commit 70fd9563a21e7b963887c9360bd29b2393e6225a
+! leanprover-community/mathlib commit 3fc0b254310908f70a1a75f01147d52e53e9f8a2
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -75,7 +75,7 @@ theorem isSymmetric_iff_sesq_form (T : E ββ[π] E) :
end Real
theorem IsSymmetric.conj_inner_sym {T : E ββ[π] E} (hT : IsSymmetric T) (x y : E) :
- conj βͺT x, yβ« = βͺT y, xβ« := by rw [hT x y, inner_conj_sym]
+ conj βͺT x, yβ« = βͺT y, xβ« := by rw [hT x y, inner_conj_symm]
#align linear_map.is_symmetric.conj_inner_sym LinearMap.IsSymmetric.conj_inner_sym
@[simp]
@@ -85,7 +85,7 @@ theorem IsSymmetric.apply_clm {T : E βL[π] E} (hT : IsSymmetric (T : E β
#align linear_map.is_symmetric.apply_clm LinearMap.IsSymmetric.apply_clm
theorem isSymmetric_zero : (0 : E ββ[π] E).IsSymmetric := fun x y =>
- (inner_zero_right : βͺx, 0β« = 0).symm βΈ (inner_zero_left : βͺ0, yβ« = 0)
+ (inner_zero_right x : βͺx, 0β« = 0).symm βΈ (inner_zero_left y : βͺ0, yβ« = 0)
#align linear_map.is_symmetric_zero LinearMap.isSymmetric_zero
theorem isSymmetric_id : (LinearMap.id : E ββ[π] E).IsSymmetric := fun x y => rfl
@@ -112,7 +112,7 @@ theorem IsSymmetric.continuous [CompleteSpace E] {T : E ββ[π] E} (hT : Is
rw [β T.map_sub, hT]
refine' tendsto_nhds_unique ((hTu.sub_const _).inner tendsto_const_nhds) _
simp_rw [hlhs]
- rw [β @inner_zero_left π E _ _ (T (y - T x))]
+ rw [β inner_zero_left (T (y - T x))]
refine' Filter.Tendsto.inner _ tendsto_const_nhds
rw [β sub_self x]
exact hu.sub_const _
@@ -155,7 +155,7 @@ theorem isSymmetric_iff_inner_map_self_real (T : V ββ[β] V) :
Β· intro hT v
apply is_symmetric.conj_inner_sym hT
Β· intro h x y
- nth_rw 2 [β inner_conj_sym]
+ nth_rw 2 [β inner_conj_symm]
nth_rw 2 [inner_map_polarization]
simp only [starRingEnd_apply, star_div', star_sub, star_add, star_mul]
simp only [β starRingEnd_apply]
mathlib commit https://github.com/leanprover-community/mathlib/commit/2af0836443b4cfb5feda0df0051acdb398304931
@@ -84,12 +84,12 @@ theorem IsSymmetric.apply_clm {T : E βL[π] E} (hT : IsSymmetric (T : E β
hT x y
#align linear_map.is_symmetric.apply_clm LinearMap.IsSymmetric.apply_clm
-theorem isSymmetricZero : (0 : E ββ[π] E).IsSymmetric := fun x y =>
+theorem isSymmetric_zero : (0 : E ββ[π] E).IsSymmetric := fun x y =>
(inner_zero_right : βͺx, 0β« = 0).symm βΈ (inner_zero_left : βͺ0, yβ« = 0)
-#align linear_map.is_symmetric_zero LinearMap.isSymmetricZero
+#align linear_map.is_symmetric_zero LinearMap.isSymmetric_zero
-theorem isSymmetricId : (LinearMap.id : E ββ[π] E).IsSymmetric := fun x y => rfl
-#align linear_map.is_symmetric_id LinearMap.isSymmetricId
+theorem isSymmetric_id : (LinearMap.id : E ββ[π] E).IsSymmetric := fun x y => rfl
+#align linear_map.is_symmetric_id LinearMap.isSymmetric_id
theorem IsSymmetric.add {T S : E ββ[π] E} (hT : T.IsSymmetric) (hS : S.IsSymmetric) :
(T + S).IsSymmetric := by
@@ -131,9 +131,9 @@ theorem IsSymmetric.coe_reApplyInnerSelf_apply {T : E βL[π] E} (hT : IsSymm
/-- If a symmetric operator preserves a submodule, its restriction to that submodule is
symmetric. -/
-theorem IsSymmetric.restrictInvariant {T : E ββ[π] E} (hT : IsSymmetric T) {V : Submodule π E}
+theorem IsSymmetric.restrict_invariant {T : E ββ[π] E} (hT : IsSymmetric T) {V : Submodule π E}
(hV : β v β V, T v β V) : IsSymmetric (T.restrict hV) := fun v w => hT v w
-#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrictInvariant
+#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrict_invariant
theorem IsSymmetric.restrictScalars {T : E ββ[π] E} (hT : T.IsSymmetric) :
@LinearMap.IsSymmetric β E _ (InnerProductSpace.isROrCToReal π E)
mathlib commit https://github.com/leanprover-community/mathlib/commit/ddec54a71a0dd025c05445d467f1a2b7d586a3ba
@@ -159,8 +159,8 @@ theorem isSymmetric_iff_inner_map_self_real (T : V ββ[β] V) :
nth_rw 2 [inner_map_polarization]
simp only [starRingEnd_apply, star_div', star_sub, star_add, star_mul]
simp only [β starRingEnd_apply]
- rw [h (x + y), h (x - y), h (x + Complex.i β’ y), h (x - Complex.i β’ y)]
- simp only [Complex.conj_i]
+ rw [h (x + y), h (x - y), h (x + Complex.I β’ y), h (x - Complex.I β’ y)]
+ simp only [Complex.conj_I]
rw [inner_map_polarization']
norm_num
ring
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
Purely automatic replacement. If this is in any way controversial; I'm happy to just close this PR.
@@ -138,7 +138,7 @@ section Complex
variable {V : Type*} [NormedAddCommGroup V] [InnerProductSpace β V]
/-- A linear operator on a complex inner product space is symmetric precisely when
-`βͺT v, vβ«_β` is real for all v.-/
+`βͺT v, vβ«_β` is real for all v. -/
theorem isSymmetric_iff_inner_map_self_real (T : V ββ[β] V) :
IsSymmetric T β β v : V, conj βͺT v, vβ«_β = βͺT v, vβ«_β := by
constructor
IsROrC
to RCLike
(#10819)
IsROrC
contains data, which goes against the expectation that classes prefixed with Is
are prop-valued. People have been complaining about this on and off, so this PR renames IsROrC
to RCLike
.
@@ -34,11 +34,11 @@ self-adjoint, symmetric
-/
-open IsROrC
+open RCLike
open ComplexConjugate
-variable {π E E' F G : Type*} [IsROrC π]
+variable {π E E' F G : Type*} [RCLike π]
variable [NormedAddCommGroup E] [InnerProductSpace π E]
variable [NormedAddCommGroup F] [InnerProductSpace π F]
variable [NormedAddCommGroup G] [InnerProductSpace π G]
@@ -127,9 +127,9 @@ theorem IsSymmetric.restrict_invariant {T : E ββ[π] E} (hT : IsSymmetric
#align linear_map.is_symmetric.restrict_invariant LinearMap.IsSymmetric.restrict_invariant
theorem IsSymmetric.restrictScalars {T : E ββ[π] E} (hT : T.IsSymmetric) :
- @LinearMap.IsSymmetric β E _ _ (InnerProductSpace.isROrCToReal π E)
- (@LinearMap.restrictScalars β π _ _ _ _ _ _ (InnerProductSpace.isROrCToReal π E).toModule
- (InnerProductSpace.isROrCToReal π E).toModule _ _ _ T) :=
+ @LinearMap.IsSymmetric β E _ _ (InnerProductSpace.rclikeToReal π E)
+ (@LinearMap.restrictScalars β π _ _ _ _ _ _ (InnerProductSpace.rclikeToReal π E).toModule
+ (InnerProductSpace.rclikeToReal π E).toModule _ _ _ T) :=
fun x y => by simp [hT x y, real_inner_eq_re_inner, LinearMap.coe_restrictScalars β]
#align linear_map.is_symmetric.restrict_scalars LinearMap.IsSymmetric.restrictScalars
@@ -175,7 +175,7 @@ theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymm
simp_rw [h, mul_zero, add_zero]
norm_cast
Β· simp_rw [map_add, map_sub, inner_add_left, inner_add_right, inner_sub_left, inner_sub_right,
- LinearMap.map_smul, inner_smul_left, inner_smul_right, IsROrC.conj_I, mul_add, mul_sub,
+ LinearMap.map_smul, inner_smul_left, inner_smul_right, RCLike.conj_I, mul_add, mul_sub,
sub_sub, β mul_assoc, mul_neg, h, neg_neg, one_mul, neg_one_mul]
ring
#align linear_map.is_symmetric.inner_map_polarization LinearMap.IsSymmetric.inner_map_polarization
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -39,13 +39,9 @@ open IsROrC
open ComplexConjugate
variable {π E E' F G : Type*} [IsROrC π]
-
variable [NormedAddCommGroup E] [InnerProductSpace π E]
-
variable [NormedAddCommGroup F] [InnerProductSpace π F]
-
variable [NormedAddCommGroup G] [InnerProductSpace π G]
-
variable [NormedAddCommGroup E'] [InnerProductSpace β E']
local notation "βͺ" x ", " y "β«" => @inner π _ _ x y
Some of the concepts in LinearAlgebra/SesquilinearForm
can be generalised from Sesquilinear Forms to Sesquilinear Maps with little or no impact on the rest of Mathlib. This PR makes those generalisations.
Further generalisations are likely possible, but the scope of this PR is to only consider changes which do not require non-trivial modifications to other parts of Mathlib, or other sections in SesquilinearForm.lean
. Further changes can be considered in subsequent PRs if desired.
Co-authored-by: Christopher Hoskin <mans0954@users.noreply.github.com>
@@ -66,7 +66,7 @@ section Real
/-- An operator `T` on an inner product space is symmetric if and only if it is
`LinearMap.IsSelfAdjoint` with respect to the sesquilinear form given by the inner product. -/
theorem isSymmetric_iff_sesqForm (T : E ββ[π] E) :
- T.IsSymmetric β @LinearMap.IsSelfAdjoint π E _ _ _ (starRingEnd π) sesqFormOfInner T :=
+ T.IsSymmetric β LinearMap.IsSelfAdjoint (R := π) (M := E) sesqFormOfInner T :=
β¨fun h x y => (h y x).symm, fun h x y => (h y x).symmβ©
#align linear_map.is_symmetric_iff_sesq_form LinearMap.isSymmetric_iff_sesqForm
And fix some names in comments where this revealed issues
@@ -25,7 +25,7 @@ symmetric, if for all `x`, `y`, we have `βͺT x, yβ« = βͺx, T yβ«`
## Main statements
-* `is_symmetric.continuous`: if a symmetric operator is defined on a complete space, then
+* `IsSymmetric.continuous`: if a symmetric operator is defined on a complete space, then
it is automatically continuous.
## Tags
MulZeroClass.
in mul_zero
/zero_mul
(#6682)
Search&replace MulZeroClass.mul_zero
-> mul_zero
, MulZeroClass.zero_mul
-> zero_mul
.
These were introduced by Mathport, as the full name of mul_zero
is actually MulZeroClass.mul_zero
(it's exported with the short name).
@@ -170,13 +170,13 @@ theorem IsSymmetric.inner_map_polarization {T : E ββ[π] E} (hT : T.IsSymm
I * βͺT (x - (I : π) β’ y), x - (I : π) β’ yβ«) /
4 := by
rcases@I_mul_I_ax π _ with (h | h)
- Β· simp_rw [h, MulZeroClass.zero_mul, sub_zero, add_zero, map_add, map_sub, inner_add_left,
+ Β· simp_rw [h, zero_mul, sub_zero, add_zero, map_add, map_sub, inner_add_left,
inner_add_right, inner_sub_left, inner_sub_right, hT x, β inner_conj_symm x (T y)]
suffices (re βͺT y, xβ« : π) = βͺT y, xβ« by
rw [conj_eq_iff_re.mpr this]
ring
Β· rw [β re_add_im βͺT y, xβ«]
- simp_rw [h, MulZeroClass.mul_zero, add_zero]
+ simp_rw [h, mul_zero, add_zero]
norm_cast
Β· simp_rw [map_add, map_sub, inner_add_left, inner_add_right, inner_sub_left, inner_sub_right,
LinearMap.map_smul, inner_smul_left, inner_smul_right, IsROrC.conj_I, mul_add, mul_sub,
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -38,7 +38,7 @@ open IsROrC
open ComplexConjugate
-variable {π E E' F G : Type _} [IsROrC π]
+variable {π E E' F G : Type*} [IsROrC π]
variable [NormedAddCommGroup E] [InnerProductSpace π E]
@@ -139,7 +139,7 @@ theorem IsSymmetric.restrictScalars {T : E ββ[π] E} (hT : T.IsSymmetric)
section Complex
-variable {V : Type _} [NormedAddCommGroup V] [InnerProductSpace β V]
+variable {V : Type*} [NormedAddCommGroup V] [InnerProductSpace β V]
/-- A linear operator on a complex inner product space is symmetric precisely when
`βͺT v, vβ«_β` is real for all v.-/
@@ -2,16 +2,13 @@
Copyright (c) 2022 Anatole Dedecker. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll, FrΓ©dΓ©ric Dupuis, Heather Macbeth
-
-! This file was ported from Lean 3 source module analysis.inner_product_space.symmetric
-! leanprover-community/mathlib commit 3f655f5297b030a87d641ad4e825af8d9679eb0b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.NormedSpace.Banach
import Mathlib.LinearAlgebra.SesquilinearForm
+#align_import analysis.inner_product_space.symmetric from "leanprover-community/mathlib"@"3f655f5297b030a87d641ad4e825af8d9679eb0b"
+
/-!
# Symmetric linear maps in an inner product space
@@ -117,7 +117,7 @@ theorem IsSymmetric.continuous [CompleteSpace E] {T : E ββ[π] E} (hT : Is
exact hu.sub_const _
#align linear_map.is_symmetric.continuous LinearMap.IsSymmetric.continuous
-/-- For a symmetric operator `T`, the function `Ξ» x, βͺT x, xβ«` is real-valued. -/
+/-- For a symmetric operator `T`, the function `fun x β¦ βͺT x, xβ«` is real-valued. -/
@[simp]
theorem IsSymmetric.coe_reApplyInnerSelf_apply {T : E βL[π] E} (hT : IsSymmetric (T : E ββ[π] E))
(x : E) : (T.reApplyInnerSelf x : π) = βͺT x, xβ« := by
Co-authored-by: Moritz Doll <moritz.doll@googlemail.com>
The unported dependencies are
algebra.order.module
init.core
linear_algebra.free_module.finite.rank
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
linear_algebra.free_module.rank
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file