analysis.locally_convex.abs_convex
β·
Mathlib.Analysis.LocallyConvex.AbsConvex
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -154,7 +154,7 @@ instance : Nonempty (AbsConvexOpenSets π E) :=
end AbsolutelyConvexSets
-variable [IsROrC π]
+variable [RCLike π]
variable [AddCommGroup E] [TopologicalSpace E]
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -198,7 +198,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
convert (gaugeSeminormFamily _ _).basisSets_singleton_mem β¨s, hsβ© one_pos
rw [gaugeSeminormFamily_ball, Subtype.coe_mk]
refine' β¨s, β¨_, rfl.subsetβ©β©
- rw [SeminormFamily.basisSets_iff] at hs
+ rw [SeminormFamily.basisSets_iff] at hs
rcases hs with β¨t, r, hr, rflβ©
rw [Seminorm.ball_finset_sup_eq_iInter _ _ _ hr]
-- We have to show that the intersection contains zero, is open, balanced, and convex
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -64,7 +64,7 @@ theorem nhds_basis_abs_convex :
β¨s, β¨hs.1, hs.2.2β©, rfl.subsetβ©
refine' β¨convexHull β (balancedCore π s), _, convexHull_min (balancedCore_subset s) hs.2β©
refine' β¨Filter.mem_of_superset (balancedCore_mem_nhds_zero hs.1) (subset_convexHull β _), _β©
- refine' β¨balanced_convexHull_of_balanced (balancedCore_balanced s), _β©
+ refine' β¨Balanced.convexHull (balancedCore_balanced s), _β©
exact convex_convexHull β (balancedCore π s)
#align nhds_basis_abs_convex nhds_basis_abs_convex
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -180,7 +180,7 @@ theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π E) :
dsimp only [gaugeSeminormFamily]
rw [Seminorm.ball_zero_eq]
simp_rw [gaugeSeminorm_to_fun]
- exact gauge_lt_one_eq_self_of_open s.coe_convex s.coe_zero_mem s.coe_is_open
+ exact gauge_lt_one_eq_self_of_isOpen s.coe_convex s.coe_zero_mem s.coe_is_open
#align gauge_seminorm_family_ball gaugeSeminormFamily_ball
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll
-/
-import Mathbin.Analysis.LocallyConvex.BalancedCoreHull
-import Mathbin.Analysis.LocallyConvex.WithSeminorms
-import Mathbin.Analysis.Convex.Gauge
+import Analysis.LocallyConvex.BalancedCoreHull
+import Analysis.LocallyConvex.WithSeminorms
+import Analysis.Convex.Gauge
#align_import analysis.locally_convex.abs_convex from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
mathlib commit https://github.com/leanprover-community/mathlib/commit/442a83d738cb208d3600056c489be16900ba701d
@@ -204,7 +204,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
-- We have to show that the intersection contains zero, is open, balanced, and convex
refine'
β¨mem_Interβ.mpr fun _ _ => by simp [Seminorm.mem_ball_zero, hr],
- isOpen_biInter (to_finite _) fun S _ => _,
+ Set.Finite.isOpen_biInter (to_finite _) fun S _ => _,
balanced_iInterβ fun _ _ => Seminorm.balanced_ball_zero _ _,
convex_iInterβ fun _ _ => Seminorm.convex_ball _ _ _β©
-- The only nontrivial part is to show that the ball is open
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll
-
-! This file was ported from Lean 3 source module analysis.locally_convex.abs_convex
-! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.LocallyConvex.BalancedCoreHull
import Mathbin.Analysis.LocallyConvex.WithSeminorms
import Mathbin.Analysis.Convex.Gauge
+#align_import analysis.locally_convex.abs_convex from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
+
/-!
# Absolutely convex sets
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -58,6 +58,7 @@ variable [Module β E] [SMulCommClass β π E]
variable [TopologicalSpace E] [LocallyConvexSpace β E] [ContinuousSMul π E]
+#print nhds_basis_abs_convex /-
theorem nhds_basis_abs_convex :
(π (0 : E)).HasBasis (fun s : Set E => s β π (0 : E) β§ Balanced π s β§ Convex β s) id :=
by
@@ -69,9 +70,11 @@ theorem nhds_basis_abs_convex :
refine' β¨balanced_convexHull_of_balanced (balancedCore_balanced s), _β©
exact convex_convexHull β (balancedCore π s)
#align nhds_basis_abs_convex nhds_basis_abs_convex
+-/
variable [ContinuousSMul β E] [TopologicalAddGroup E]
+#print nhds_basis_abs_convex_open /-
theorem nhds_basis_abs_convex_open :
(π (0 : E)).HasBasis (fun s : Set E => (0 : E) β s β§ IsOpen s β§ Balanced π s β§ Convex β s) id :=
by
@@ -84,6 +87,7 @@ theorem nhds_basis_abs_convex_open :
rintro s β¨hs_zero, hs_open, hs_balanced, hs_convexβ©
exact β¨s, β¨hs_open.mem_nhds hs_zero, hs_balanced, hs_convexβ©, rfl.subsetβ©
#align nhds_basis_abs_convex_open nhds_basis_abs_convex_open
+-/
end NontriviallyNormedField
@@ -102,33 +106,45 @@ def AbsConvexOpenSets :=
#align abs_convex_open_sets AbsConvexOpenSets
-/
+#print AbsConvexOpenSets.instCoeTC /-
instance AbsConvexOpenSets.instCoeTC : Coe (AbsConvexOpenSets π E) (Set E) :=
β¨Subtype.valβ©
#align abs_convex_open_sets.has_coe AbsConvexOpenSets.instCoeTC
+-/
namespace AbsConvexOpenSets
variable {π E}
+#print AbsConvexOpenSets.coe_zero_mem /-
theorem coe_zero_mem (s : AbsConvexOpenSets π E) : (0 : E) β (s : Set E) :=
s.2.1
#align abs_convex_open_sets.coe_zero_mem AbsConvexOpenSets.coe_zero_mem
+-/
+#print AbsConvexOpenSets.coe_isOpen /-
theorem coe_isOpen (s : AbsConvexOpenSets π E) : IsOpen (s : Set E) :=
s.2.2.1
#align abs_convex_open_sets.coe_is_open AbsConvexOpenSets.coe_isOpen
+-/
+#print AbsConvexOpenSets.coe_nhds /-
theorem coe_nhds (s : AbsConvexOpenSets π E) : (s : Set E) β π (0 : E) :=
s.coe_isOpen.mem_nhds s.coe_zero_mem
#align abs_convex_open_sets.coe_nhds AbsConvexOpenSets.coe_nhds
+-/
+#print AbsConvexOpenSets.coe_balanced /-
theorem coe_balanced (s : AbsConvexOpenSets π E) : Balanced π (s : Set E) :=
s.2.2.2.1
#align abs_convex_open_sets.coe_balanced AbsConvexOpenSets.coe_balanced
+-/
+#print AbsConvexOpenSets.coe_convex /-
theorem coe_convex (s : AbsConvexOpenSets π E) : Convex β (s : Set E) :=
s.2.2.2.2
#align abs_convex_open_sets.coe_convex AbsConvexOpenSets.coe_convex
+-/
end AbsConvexOpenSets
@@ -151,13 +167,16 @@ variable [ContinuousSMul β E]
variable (π E)
+#print gaugeSeminormFamily /-
/-- The family of seminorms defined by the gauges of absolute convex open sets. -/
noncomputable def gaugeSeminormFamily : SeminormFamily π E (AbsConvexOpenSets π E) := fun s =>
gaugeSeminorm s.coe_balanced s.coe_convex (absorbent_nhds_zero s.coe_nhds)
#align gauge_seminorm_family gaugeSeminormFamily
+-/
variable {π E}
+#print gaugeSeminormFamily_ball /-
theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π E) :
(gaugeSeminormFamily π E s).ball 0 1 = (s : Set E) :=
by
@@ -166,11 +185,13 @@ theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π E) :
simp_rw [gaugeSeminorm_to_fun]
exact gauge_lt_one_eq_self_of_open s.coe_convex s.coe_zero_mem s.coe_is_open
#align gauge_seminorm_family_ball gaugeSeminormFamily_ball
+-/
variable [TopologicalAddGroup E] [ContinuousSMul π E]
variable [SMulCommClass β π E] [LocallyConvexSpace β E]
+#print with_gaugeSeminormFamily /-
/-- The topology of a locally convex space is induced by the gauge seminorm family. -/
theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
by
@@ -195,4 +216,5 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
rw [hr', β Seminorm.smul_ball_zero hr'', gaugeSeminormFamily_ball]
exact S.coe_is_open.smulβ hr''
#align with_gauge_seminorm_family with_gaugeSeminormFamily
+-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -177,7 +177,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
refine' SeminormFamily.withSeminorms_of_hasBasis _ _
refine' (nhds_basis_abs_convex_open π E).to_hasBasis (fun s hs => _) fun s hs => _
Β· refine' β¨s, β¨_, rfl.subsetβ©β©
- convert(gaugeSeminormFamily _ _).basisSets_singleton_mem β¨s, hsβ© one_pos
+ convert (gaugeSeminormFamily _ _).basisSets_singleton_mem β¨s, hsβ© one_pos
rw [gaugeSeminormFamily_ball, Subtype.coe_mk]
refine' β¨s, β¨_, rfl.subsetβ©β©
rw [SeminormFamily.basisSets_iff] at hs
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -180,7 +180,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
convert(gaugeSeminormFamily _ _).basisSets_singleton_mem β¨s, hsβ© one_pos
rw [gaugeSeminormFamily_ball, Subtype.coe_mk]
refine' β¨s, β¨_, rfl.subsetβ©β©
- rw [SeminormFamily.basisSets_iff] at hs
+ rw [SeminormFamily.basisSets_iff] at hs
rcases hs with β¨t, r, hr, rflβ©
rw [Seminorm.ball_finset_sup_eq_iInter _ _ _ hr]
-- We have to show that the intersection contains zero, is open, balanced, and convex
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -44,7 +44,7 @@ disks, convex, balanced
open NormedField Set
-open BigOperators NNReal Pointwise Topology
+open scoped BigOperators NNReal Pointwise Topology
variable {π E F G ΞΉ : Type _}
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -58,9 +58,6 @@ variable [Module β E] [SMulCommClass β π E]
variable [TopologicalSpace E] [LocallyConvexSpace β E] [ContinuousSMul π E]
-/- warning: nhds_basis_abs_convex -> nhds_basis_abs_convex is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align nhds_basis_abs_convex nhds_basis_abs_convexβ'. -/
theorem nhds_basis_abs_convex :
(π (0 : E)).HasBasis (fun s : Set E => s β π (0 : E) β§ Balanced π s β§ Convex β s) id :=
by
@@ -75,9 +72,6 @@ theorem nhds_basis_abs_convex :
variable [ContinuousSMul β E] [TopologicalAddGroup E]
-/- warning: nhds_basis_abs_convex_open -> nhds_basis_abs_convex_open is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align nhds_basis_abs_convex_open nhds_basis_abs_convex_openβ'. -/
theorem nhds_basis_abs_convex_open :
(π (0 : E)).HasBasis (fun s : Set E => (0 : E) β s β§ IsOpen s β§ Balanced π s β§ Convex β s) id :=
by
@@ -108,12 +102,6 @@ def AbsConvexOpenSets :=
#align abs_convex_open_sets AbsConvexOpenSets
-/
-/- warning: abs_convex_open_sets.has_coe -> AbsConvexOpenSets.instCoeTC is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E], Coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E)
-but is expected to have type
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E], CoeTC.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E)
-Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.has_coe AbsConvexOpenSets.instCoeTCβ'. -/
instance AbsConvexOpenSets.instCoeTC : Coe (AbsConvexOpenSets π E) (Set E) :=
β¨Subtype.valβ©
#align abs_convex_open_sets.has_coe AbsConvexOpenSets.instCoeTC
@@ -122,52 +110,22 @@ namespace AbsConvexOpenSets
variable {π E}
-/- warning: abs_convex_open_sets.coe_zero_mem -> AbsConvexOpenSets.coe_zero_mem is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E _inst_3))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π] [_inst_5 : SMul.{u2, u1} π E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
-Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_zero_mem AbsConvexOpenSets.coe_zero_memβ'. -/
theorem coe_zero_mem (s : AbsConvexOpenSets π E) : (0 : E) β (s : Set E) :=
s.2.1
#align abs_convex_open_sets.coe_zero_mem AbsConvexOpenSets.coe_zero_mem
-/- warning: abs_convex_open_sets.coe_is_open -> AbsConvexOpenSets.coe_isOpen is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), IsOpen.{u2} E _inst_1 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π] [_inst_5 : SMul.{u2, u1} π E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), IsOpen.{u1} E _inst_1 (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
-Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_is_open AbsConvexOpenSets.coe_isOpenβ'. -/
theorem coe_isOpen (s : AbsConvexOpenSets π E) : IsOpen (s : Set E) :=
s.2.2.1
#align abs_convex_open_sets.coe_is_open AbsConvexOpenSets.coe_isOpen
-/- warning: abs_convex_open_sets.coe_nhds -> AbsConvexOpenSets.coe_nhds is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s) (nhds.{u2} E _inst_1 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E _inst_3))))
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π] [_inst_5 : SMul.{u2, u1} π E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.mem.{u1, u1} (Set.{u1} E) (Filter.{u1} E) (instMembershipSetFilter.{u1} E) (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s) (nhds.{u1} E _inst_1 (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)))
-Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_nhds AbsConvexOpenSets.coe_nhdsβ'. -/
theorem coe_nhds (s : AbsConvexOpenSets π E) : (s : Set E) β π (0 : E) :=
s.coe_isOpen.mem_nhds s.coe_zero_mem
#align abs_convex_open_sets.coe_nhds AbsConvexOpenSets.coe_nhds
-/- warning: abs_convex_open_sets.coe_balanced -> AbsConvexOpenSets.coe_balanced is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Balanced.{u1, u2} π E _inst_4 _inst_5 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π] [_inst_5 : SMul.{u2, u1} π E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Balanced.{u2, u1} π E _inst_4 _inst_5 (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
-Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_balanced AbsConvexOpenSets.coe_balancedβ'. -/
theorem coe_balanced (s : AbsConvexOpenSets π E) : Balanced π (s : Set E) :=
s.2.2.2.1
#align abs_convex_open_sets.coe_balanced AbsConvexOpenSets.coe_balanced
-/- warning: abs_convex_open_sets.coe_convex -> AbsConvexOpenSets.coe_convex is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Convex.{0, u2} Real E Real.orderedSemiring _inst_2 _inst_6 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π] [_inst_5 : SMul.{u2, u1} π E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
-Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_convex AbsConvexOpenSets.coe_convexβ'. -/
theorem coe_convex (s : AbsConvexOpenSets π E) : Convex β (s : Set E) :=
s.2.2.2.2
#align abs_convex_open_sets.coe_convex AbsConvexOpenSets.coe_convex
@@ -193,9 +151,6 @@ variable [ContinuousSMul β E]
variable (π E)
-/- warning: gauge_seminorm_family -> gaugeSeminormFamily is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align gauge_seminorm_family gaugeSeminormFamilyβ'. -/
/-- The family of seminorms defined by the gauges of absolute convex open sets. -/
noncomputable def gaugeSeminormFamily : SeminormFamily π E (AbsConvexOpenSets π E) := fun s =>
gaugeSeminorm s.coe_balanced s.coe_convex (absorbent_nhds_zero s.coe_nhds)
@@ -203,9 +158,6 @@ noncomputable def gaugeSeminormFamily : SeminormFamily π E (AbsConvexOpenSets
variable {π E}
-/- warning: gauge_seminorm_family_ball -> gaugeSeminormFamily_ball is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align gauge_seminorm_family_ball gaugeSeminormFamily_ballβ'. -/
theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π E) :
(gaugeSeminormFamily π E s).ball 0 1 = (s : Set E) :=
by
@@ -219,9 +171,6 @@ variable [TopologicalAddGroup E] [ContinuousSMul π E]
variable [SMulCommClass β π E] [LocallyConvexSpace β E]
-/- warning: with_gauge_seminorm_family -> with_gaugeSeminormFamily is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_gauge_seminorm_family with_gaugeSeminormFamilyβ'. -/
/-- The topology of a locally convex space is induced by the gauge seminorm family. -/
theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
by
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll
! This file was ported from Lean 3 source module analysis.locally_convex.abs_convex
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -15,6 +15,9 @@ import Mathbin.Analysis.Convex.Gauge
/-!
# Absolutely convex sets
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
A set is called absolutely convex or disked if it is convex and balanced.
The importance of absolutely convex sets comes from the fact that every locally convex
topological vector space has a basis consisting of absolutely convex sets.
@@ -56,10 +59,7 @@ variable [Module β E] [SMulCommClass β π E]
variable [TopologicalSpace E] [LocallyConvexSpace β E] [ContinuousSMul π E]
/- warning: nhds_basis_abs_convex -> nhds_basis_abs_convex is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) _inst_6], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (s : Set.{u2} E) => And (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))))) (And (Balanced.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s))) (id.{succ u2} (Set.{u2} E))
-but is expected to have type
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) _inst_6], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (s : Set.{u2} E) => And (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))))))) (And (Balanced.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s))) (id.{succ u2} (Set.{u2} E))
+<too large>
Case conversion may be inaccurate. Consider using '#align nhds_basis_abs_convex nhds_basis_abs_convexβ'. -/
theorem nhds_basis_abs_convex :
(π (0 : E)).HasBasis (fun s : Set E => s β π (0 : E) β§ Balanced π s β§ Convex β s) id :=
@@ -76,10 +76,7 @@ theorem nhds_basis_abs_convex :
variable [ContinuousSMul β E] [TopologicalAddGroup E]
/- warning: nhds_basis_abs_convex_open -> nhds_basis_abs_convex_open is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) _inst_6] [_inst_9 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_6] [_inst_10 : TopologicalAddGroup.{u2} E _inst_6 (AddCommGroup.toAddGroup.{u2} E _inst_2)], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (s : Set.{u2} E) => And (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) s) (And (IsOpen.{u2} E _inst_6 s) (And (Balanced.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s)))) (id.{succ u2} (Set.{u2} E))
-but is expected to have type
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) _inst_6] [_inst_9 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_6] [_inst_10 : TopologicalAddGroup.{u2} E _inst_6 (AddCommGroup.toAddGroup.{u2} E _inst_2)], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (s : Set.{u2} E) => And (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))))) s) (And (IsOpen.{u2} E _inst_6 s) (And (Balanced.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s)))) (id.{succ u2} (Set.{u2} E))
+<too large>
Case conversion may be inaccurate. Consider using '#align nhds_basis_abs_convex_open nhds_basis_abs_convex_openβ'. -/
theorem nhds_basis_abs_convex_open :
(π (0 : E)).HasBasis (fun s : Set E => (0 : E) β s β§ IsOpen s β§ Balanced π s β§ Convex β s) id :=
@@ -197,10 +194,7 @@ variable [ContinuousSMul β E]
variable (π E)
/- warning: gauge_seminorm_family -> gaugeSeminormFamily is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : IsROrC.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3], SeminormFamily.{u1, u2, u2} π E (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) _inst_2 _inst_4
-but is expected to have type
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : IsROrC.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π E (Algebra.toSMul.{0, u1} Real π Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u1} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3], SeminormFamily.{u1, u2, u2} π E (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) _inst_2 _inst_4
+<too large>
Case conversion may be inaccurate. Consider using '#align gauge_seminorm_family gaugeSeminormFamilyβ'. -/
/-- The family of seminorms defined by the gauges of absolute convex open sets. -/
noncomputable def gaugeSeminormFamily : SeminormFamily π E (AbsConvexOpenSets π E) := fun s =>
@@ -210,10 +204,7 @@ noncomputable def gaugeSeminormFamily : SeminormFamily π E (AbsConvexOpenSets
variable {π E}
/- warning: gauge_seminorm_family_ball -> gaugeSeminormFamily_ball is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] (s : AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))), Eq.{succ u2} (Set.{u2} E) (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (gaugeSeminormFamily.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 s) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (CoeTCβ.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))))))) s)
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : TopologicalSpace.{u1} E] [_inst_4 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_5 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_6 : IsScalarTower.{0, u2, u1} Real π E (Algebra.toSMul.{0, u2} Real π Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u1} Real E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] (s : AbsConvexOpenSets.{u2, u1} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))), Eq.{succ u1} (Set.{u1} E) (Seminorm.ball.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) _inst_2 (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (gaugeSeminormFamily.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 s) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))) s) (And (IsOpen.{u1} E _inst_3 s) (And (Balanced.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) s) (Convex.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) s)))) s)
+<too large>
Case conversion may be inaccurate. Consider using '#align gauge_seminorm_family_ball gaugeSeminormFamily_ballβ'. -/
theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π E) :
(gaugeSeminormFamily π E s).ball 0 1 = (s : Set E) :=
@@ -229,10 +220,7 @@ variable [TopologicalAddGroup E] [ContinuousSMul π E]
variable [SMulCommClass β π E] [LocallyConvexSpace β E]
/- warning: with_gauge_seminorm_family -> with_gaugeSeminormFamily is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] [_inst_8 : TopologicalAddGroup.{u2} E _inst_3 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_9 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) _inst_3] [_inst_10 : SMulCommClass.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4))))] [_inst_11 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5 _inst_3], WithSeminorms.{u1, u2, u2} π E (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) _inst_2 _inst_4 (AbsConvexOpenSets.nonempty.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (gaugeSeminormFamily.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7) _inst_3
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : TopologicalSpace.{u1} E] [_inst_4 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_5 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_6 : IsScalarTower.{0, u2, u1} Real π E (Algebra.toSMul.{0, u2} Real π Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u1} Real E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] [_inst_8 : TopologicalAddGroup.{u1} E _inst_3 (AddCommGroup.toAddGroup.{u1} E _inst_2)] [_inst_9 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) _inst_3] [_inst_10 : SMulCommClass.{0, u2, u1} Real π E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4))))] [_inst_11 : LocallyConvexSpace.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5 _inst_3], WithSeminorms.{u2, u1, u1} π E (AbsConvexOpenSets.{u2, u1} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) _inst_2 _inst_4 (AbsConvexOpenSets.instNonempty.{u2, u1} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))) (gaugeSeminormFamily.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7) _inst_3
+<too large>
Case conversion may be inaccurate. Consider using '#align with_gauge_seminorm_family with_gaugeSeminormFamilyβ'. -/
/-- The topology of a locally convex space is induced by the gauge seminorm family. -/
theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/ef95945cd48c932c9e034872bd25c3c220d9c946
@@ -55,6 +55,12 @@ variable [Module β E] [SMulCommClass β π E]
variable [TopologicalSpace E] [LocallyConvexSpace β E] [ContinuousSMul π E]
+/- warning: nhds_basis_abs_convex -> nhds_basis_abs_convex is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) _inst_6], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (s : Set.{u2} E) => And (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))))) (And (Balanced.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s))) (id.{succ u2} (Set.{u2} E))
+but is expected to have type
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) _inst_6], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (s : Set.{u2} E) => And (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))))))) (And (Balanced.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s))) (id.{succ u2} (Set.{u2} E))
+Case conversion may be inaccurate. Consider using '#align nhds_basis_abs_convex nhds_basis_abs_convexβ'. -/
theorem nhds_basis_abs_convex :
(π (0 : E)).HasBasis (fun s : Set E => s β π (0 : E) β§ Balanced π s β§ Convex β s) id :=
by
@@ -69,6 +75,12 @@ theorem nhds_basis_abs_convex :
variable [ContinuousSMul β E] [TopologicalAddGroup E]
+/- warning: nhds_basis_abs_convex_open -> nhds_basis_abs_convex_open is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) _inst_6] [_inst_9 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_6] [_inst_10 : TopologicalAddGroup.{u2} E _inst_6 (AddCommGroup.toAddGroup.{u2} E _inst_2)], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (s : Set.{u2} E) => And (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) s) (And (IsOpen.{u2} E _inst_6 s) (And (Balanced.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s)))) (id.{succ u2} (Set.{u2} E))
+but is expected to have type
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) _inst_6] [_inst_9 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_6] [_inst_10 : TopologicalAddGroup.{u2} E _inst_6 (AddCommGroup.toAddGroup.{u2} E _inst_2)], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (s : Set.{u2} E) => And (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))))) s) (And (IsOpen.{u2} E _inst_6 s) (And (Balanced.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s)))) (id.{succ u2} (Set.{u2} E))
+Case conversion may be inaccurate. Consider using '#align nhds_basis_abs_convex_open nhds_basis_abs_convex_openβ'. -/
theorem nhds_basis_abs_convex_open :
(π (0 : E)).HasBasis (fun s : Set E => (0 : E) β s β§ IsOpen s β§ Balanced π s β§ Convex β s) id :=
by
@@ -92,35 +104,73 @@ variable [SMul π E] [SMul β E]
variable (π E)
+#print AbsConvexOpenSets /-
/-- The type of absolutely convex open sets. -/
def AbsConvexOpenSets :=
{ s : Set E // (0 : E) β s β§ IsOpen s β§ Balanced π s β§ Convex β s }
#align abs_convex_open_sets AbsConvexOpenSets
+-/
-instance AbsConvexOpenSets.hasCoe : Coe (AbsConvexOpenSets π E) (Set E) :=
+/- warning: abs_convex_open_sets.has_coe -> AbsConvexOpenSets.instCoeTC is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E], Coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E)
+but is expected to have type
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E], CoeTC.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E)
+Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.has_coe AbsConvexOpenSets.instCoeTCβ'. -/
+instance AbsConvexOpenSets.instCoeTC : Coe (AbsConvexOpenSets π E) (Set E) :=
β¨Subtype.valβ©
-#align abs_convex_open_sets.has_coe AbsConvexOpenSets.hasCoe
+#align abs_convex_open_sets.has_coe AbsConvexOpenSets.instCoeTC
namespace AbsConvexOpenSets
variable {π E}
+/- warning: abs_convex_open_sets.coe_zero_mem -> AbsConvexOpenSets.coe_zero_mem is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E _inst_3))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π] [_inst_5 : SMul.{u2, u1} π E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
+Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_zero_mem AbsConvexOpenSets.coe_zero_memβ'. -/
theorem coe_zero_mem (s : AbsConvexOpenSets π E) : (0 : E) β (s : Set E) :=
s.2.1
#align abs_convex_open_sets.coe_zero_mem AbsConvexOpenSets.coe_zero_mem
+/- warning: abs_convex_open_sets.coe_is_open -> AbsConvexOpenSets.coe_isOpen is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), IsOpen.{u2} E _inst_1 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π] [_inst_5 : SMul.{u2, u1} π E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), IsOpen.{u1} E _inst_1 (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
+Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_is_open AbsConvexOpenSets.coe_isOpenβ'. -/
theorem coe_isOpen (s : AbsConvexOpenSets π E) : IsOpen (s : Set E) :=
s.2.2.1
#align abs_convex_open_sets.coe_is_open AbsConvexOpenSets.coe_isOpen
+/- warning: abs_convex_open_sets.coe_nhds -> AbsConvexOpenSets.coe_nhds is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s) (nhds.{u2} E _inst_1 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E _inst_3))))
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π] [_inst_5 : SMul.{u2, u1} π E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.mem.{u1, u1} (Set.{u1} E) (Filter.{u1} E) (instMembershipSetFilter.{u1} E) (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s) (nhds.{u1} E _inst_1 (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)))
+Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_nhds AbsConvexOpenSets.coe_nhdsβ'. -/
theorem coe_nhds (s : AbsConvexOpenSets π E) : (s : Set E) β π (0 : E) :=
s.coe_isOpen.mem_nhds s.coe_zero_mem
#align abs_convex_open_sets.coe_nhds AbsConvexOpenSets.coe_nhds
+/- warning: abs_convex_open_sets.coe_balanced -> AbsConvexOpenSets.coe_balanced is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Balanced.{u1, u2} π E _inst_4 _inst_5 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π] [_inst_5 : SMul.{u2, u1} π E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Balanced.{u2, u1} π E _inst_4 _inst_5 (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
+Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_balanced AbsConvexOpenSets.coe_balancedβ'. -/
theorem coe_balanced (s : AbsConvexOpenSets π E) : Balanced π (s : Set E) :=
s.2.2.2.1
#align abs_convex_open_sets.coe_balanced AbsConvexOpenSets.coe_balanced
+/- warning: abs_convex_open_sets.coe_convex -> AbsConvexOpenSets.coe_convex is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π] [_inst_5 : SMul.{u1, u2} π E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Convex.{0, u2} Real E Real.orderedSemiring _inst_2 _inst_6 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π] [_inst_5 : SMul.{u2, u1} π E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
+Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_convex AbsConvexOpenSets.coe_convexβ'. -/
theorem coe_convex (s : AbsConvexOpenSets π E) : Convex β (s : Set E) :=
s.2.2.2.2
#align abs_convex_open_sets.coe_convex AbsConvexOpenSets.coe_convex
@@ -146,6 +196,12 @@ variable [ContinuousSMul β E]
variable (π E)
+/- warning: gauge_seminorm_family -> gaugeSeminormFamily is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : IsROrC.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3], SeminormFamily.{u1, u2, u2} π E (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) _inst_2 _inst_4
+but is expected to have type
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : IsROrC.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π E (Algebra.toSMul.{0, u1} Real π Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u1} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3], SeminormFamily.{u1, u2, u2} π E (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) _inst_2 _inst_4
+Case conversion may be inaccurate. Consider using '#align gauge_seminorm_family gaugeSeminormFamilyβ'. -/
/-- The family of seminorms defined by the gauges of absolute convex open sets. -/
noncomputable def gaugeSeminormFamily : SeminormFamily π E (AbsConvexOpenSets π E) := fun s =>
gaugeSeminorm s.coe_balanced s.coe_convex (absorbent_nhds_zero s.coe_nhds)
@@ -153,6 +209,12 @@ noncomputable def gaugeSeminormFamily : SeminormFamily π E (AbsConvexOpenSets
variable {π E}
+/- warning: gauge_seminorm_family_ball -> gaugeSeminormFamily_ball is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] (s : AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))), Eq.{succ u2} (Set.{u2} E) (Seminorm.ball.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (gaugeSeminormFamily.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 s) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (CoeTCβ.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))))))) s)
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : TopologicalSpace.{u1} E] [_inst_4 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_5 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_6 : IsScalarTower.{0, u2, u1} Real π E (Algebra.toSMul.{0, u2} Real π Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u1} Real E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] (s : AbsConvexOpenSets.{u2, u1} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))), Eq.{succ u1} (Set.{u1} E) (Seminorm.ball.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) _inst_2 (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (gaugeSeminormFamily.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 s) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))) s) (And (IsOpen.{u1} E _inst_3 s) (And (Balanced.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) s) (Convex.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) s)))) s)
+Case conversion may be inaccurate. Consider using '#align gauge_seminorm_family_ball gaugeSeminormFamily_ballβ'. -/
theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π E) :
(gaugeSeminormFamily π E s).ball 0 1 = (s : Set E) :=
by
@@ -166,6 +228,12 @@ variable [TopologicalAddGroup E] [ContinuousSMul π E]
variable [SMulCommClass β π E] [LocallyConvexSpace β E]
+/- warning: with_gauge_seminorm_family -> with_gaugeSeminormFamily is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u1} Real π (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π (AddMonoid.toAddZeroClass.{u1} π (AddCommMonoid.toAddMonoid.{u1} π (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π (SeminormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real π Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π _inst_1))))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] [_inst_8 : TopologicalAddGroup.{u2} E _inst_3 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_9 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) _inst_3] [_inst_10 : SMulCommClass.{0, u1, u2} Real π E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4))))] [_inst_11 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5 _inst_3], WithSeminorms.{u1, u2, u2} π E (AbsConvexOpenSets.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) _inst_2 _inst_4 (AbsConvexOpenSets.nonempty.{u1, u2} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (gaugeSeminormFamily.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7) _inst_3
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : TopologicalSpace.{u1} E] [_inst_4 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_5 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_6 : IsScalarTower.{0, u2, u1} Real π E (Algebra.toSMul.{0, u2} Real π Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u1} Real E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] [_inst_8 : TopologicalAddGroup.{u1} E _inst_3 (AddCommGroup.toAddGroup.{u1} E _inst_2)] [_inst_9 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) _inst_3] [_inst_10 : SMulCommClass.{0, u2, u1} Real π E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4))))] [_inst_11 : LocallyConvexSpace.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5 _inst_3], WithSeminorms.{u2, u1, u1} π E (AbsConvexOpenSets.{u2, u1} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) _inst_2 _inst_4 (AbsConvexOpenSets.instNonempty.{u2, u1} π E _inst_3 (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))) (gaugeSeminormFamily.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7) _inst_3
+Case conversion may be inaccurate. Consider using '#align with_gauge_seminorm_family with_gaugeSeminormFamilyβ'. -/
/-- The topology of a locally convex space is induced by the gauge seminorm family. -/
theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
by
mathlib commit https://github.com/leanprover-community/mathlib/commit/e3fb84046afd187b710170887195d50bada934ee
@@ -177,13 +177,13 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
refine' β¨s, β¨_, rfl.subsetβ©β©
rw [SeminormFamily.basisSets_iff] at hs
rcases hs with β¨t, r, hr, rflβ©
- rw [Seminorm.ball_finset_sup_eq_interα΅’ _ _ _ hr]
+ rw [Seminorm.ball_finset_sup_eq_iInter _ _ _ hr]
-- We have to show that the intersection contains zero, is open, balanced, and convex
refine'
β¨mem_Interβ.mpr fun _ _ => by simp [Seminorm.mem_ball_zero, hr],
- isOpen_binterα΅’ (to_finite _) fun S _ => _,
- balanced_interα΅’β fun _ _ => Seminorm.balanced_ball_zero _ _,
- convex_interα΅’β fun _ _ => Seminorm.convex_ball _ _ _β©
+ isOpen_biInter (to_finite _) fun S _ => _,
+ balanced_iInterβ fun _ _ => Seminorm.balanced_ball_zero _ _,
+ convex_iInterβ fun _ _ => Seminorm.convex_ball _ _ _β©
-- The only nontrivial part is to show that the ball is open
have hr' : r = β(r : π)β * 1 := by simp [abs_of_pos hr]
have hr'' : (r : π) β 0 := by simp [hr.ne']
mathlib commit https://github.com/leanprover-community/mathlib/commit/039ef89bef6e58b32b62898dd48e9d1a4312bb65
@@ -182,7 +182,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
refine'
β¨mem_Interβ.mpr fun _ _ => by simp [Seminorm.mem_ball_zero, hr],
isOpen_binterα΅’ (to_finite _) fun S _ => _,
- balanced_Interβ fun _ _ => Seminorm.balanced_ball_zero _ _,
+ balanced_interα΅’β fun _ _ => Seminorm.balanced_ball_zero _ _,
convex_interα΅’β fun _ _ => Seminorm.convex_ball _ _ _β©
-- The only nontrivial part is to show that the ball is open
have hr' : r = β(r : π)β * 1 := by simp [abs_of_pos hr]
mathlib commit https://github.com/leanprover-community/mathlib/commit/06a655b5fcfbda03502f9158bbf6c0f1400886f9
@@ -167,9 +167,9 @@ variable [TopologicalAddGroup E] [ContinuousSMul π E]
variable [SMulCommClass β π E] [LocallyConvexSpace β E]
/-- The topology of a locally convex space is induced by the gauge seminorm family. -/
-theorem withGaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
+theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
by
- refine' SeminormFamily.withSeminormsOfHasBasis _ _
+ refine' SeminormFamily.withSeminorms_of_hasBasis _ _
refine' (nhds_basis_abs_convex_open π E).to_hasBasis (fun s hs => _) fun s hs => _
Β· refine' β¨s, β¨_, rfl.subsetβ©β©
convert(gaugeSeminormFamily _ _).basisSets_singleton_mem β¨s, hsβ© one_pos
@@ -189,5 +189,5 @@ theorem withGaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
have hr'' : (r : π) β 0 := by simp [hr.ne']
rw [hr', β Seminorm.smul_ball_zero hr'', gaugeSeminormFamily_ball]
exact S.coe_is_open.smulβ hr''
-#align with_gauge_seminorm_family withGaugeSeminormFamily
+#align with_gauge_seminorm_family with_gaugeSeminormFamily
mathlib commit https://github.com/leanprover-community/mathlib/commit/728baa2f54e6062c5879a3e397ac6bac323e506f
@@ -183,7 +183,7 @@ theorem withGaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
β¨mem_Interβ.mpr fun _ _ => by simp [Seminorm.mem_ball_zero, hr],
isOpen_binterα΅’ (to_finite _) fun S _ => _,
balanced_Interβ fun _ _ => Seminorm.balanced_ball_zero _ _,
- convex_Interβ fun _ _ => Seminorm.convex_ball _ _ _β©
+ convex_interα΅’β fun _ _ => Seminorm.convex_ball _ _ _β©
-- The only nontrivial part is to show that the ball is open
have hr' : r = β(r : π)β * 1 := by simp [abs_of_pos hr]
have hr'' : (r : π) β 0 := by simp [hr.ne']
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce7e9d53d4bbc38065db3b595cd5bd73c323bc1d
@@ -172,7 +172,7 @@ theorem withGaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
refine' SeminormFamily.withSeminormsOfHasBasis _ _
refine' (nhds_basis_abs_convex_open π E).to_hasBasis (fun s hs => _) fun s hs => _
Β· refine' β¨s, β¨_, rfl.subsetβ©β©
- convert (gaugeSeminormFamily _ _).basisSets_singleton_mem β¨s, hsβ© one_pos
+ convert(gaugeSeminormFamily _ _).basisSets_singleton_mem β¨s, hsβ© one_pos
rw [gaugeSeminormFamily_ball, Subtype.coe_mk]
refine' β¨s, β¨_, rfl.subsetβ©β©
rw [SeminormFamily.basisSets_iff] at hs
mathlib commit https://github.com/leanprover-community/mathlib/commit/2af0836443b4cfb5feda0df0051acdb398304931
@@ -86,7 +86,7 @@ end NontriviallyNormedField
section AbsolutelyConvexSets
-variable [TopologicalSpace E] [AddCommMonoid E] [Zero E] [SemiNormedRing π]
+variable [TopologicalSpace E] [AddCommMonoid E] [Zero E] [SeminormedRing π]
variable [SMul π E] [SMul β E]
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
@@ -38,7 +38,7 @@ disks, convex, balanced
open NormedField Set
-open BigOperators NNReal Pointwise Topology
+open NNReal Pointwise Topology
variable {π E F G ΞΉ : Type*}
IsROrC
to RCLike
(#10819)
IsROrC
contains data, which goes against the expectation that classes prefixed with Is
are prop-valued. People have been complaining about this on and off, so this PR renames IsROrC
to RCLike
.
@@ -125,7 +125,7 @@ instance AbsConvexOpenSets.instNonempty : Nonempty (AbsConvexOpenSets π E) :=
end AbsolutelyConvexSets
-variable [IsROrC π]
+variable [RCLike π]
variable [AddCommGroup E] [TopologicalSpace E]
variable [Module π E] [Module β E] [IsScalarTower β π E]
variable [ContinuousSMul β E]
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -45,11 +45,8 @@ variable {π E F G ΞΉ : Type*}
section NontriviallyNormedField
variable (π E) {s : Set E}
-
variable [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
-
variable [Module β E] [SMulCommClass β π E]
-
variable [TopologicalSpace E] [LocallyConvexSpace β E] [ContinuousSMul π E]
theorem nhds_basis_abs_convex :
@@ -82,9 +79,7 @@ end NontriviallyNormedField
section AbsolutelyConvexSets
variable [TopologicalSpace E] [AddCommMonoid E] [Zero E] [SeminormedRing π]
-
variable [SMul π E] [SMul β E]
-
variable (π E)
/-- The type of absolutely convex open sets. -/
@@ -131,13 +126,9 @@ instance AbsConvexOpenSets.instNonempty : Nonempty (AbsConvexOpenSets π E) :=
end AbsolutelyConvexSets
variable [IsROrC π]
-
variable [AddCommGroup E] [TopologicalSpace E]
-
variable [Module π E] [Module β E] [IsScalarTower β π E]
-
variable [ContinuousSMul β E]
-
variable (π E)
/-- The family of seminorms defined by the gauges of absolute convex open sets. -/
@@ -156,7 +147,6 @@ theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π E) :
#align gauge_seminorm_family_ball gaugeSeminormFamily_ball
variable [TopologicalAddGroup E] [ContinuousSMul π E]
-
variable [SMulCommClass β π E] [LocallyConvexSpace β E]
/-- The topology of a locally convex space is induced by the gauge seminorm family. -/
balanced_iff_closedBall_smul
, balanced_neg
;Balanced.neg_mem_iff
to a SeminormedRing
+ NormOneClass
,
add Balanced.neg_eq
Balanced.smul_mem_mono
and Balanced.smul_congr
;Balanced.mem_smul_iff
to Balanced.smul_mem_iff
;balanced_zero_union_interior
to Balanced.zero_insert_interior
,
use insert 0 (interior A)
instead of 0 βͺ interior A
;Balanced.interior
and Balanced.closure
protected;Absorbs.zero_mem'
;balanced_convexHull_of_balanced
to Balanced.convexHull
;absorbs_iff_eventually_cobounded_mapsTo
, use it to golf some proofs.@@ -57,9 +57,9 @@ theorem nhds_basis_abs_convex :
refine'
(LocallyConvexSpace.convex_basis_zero β E).to_hasBasis (fun s hs => _) fun s hs =>
β¨s, β¨hs.1, hs.2.2β©, rfl.subsetβ©
- refine' β¨convexHull β (balancedCore π s), _, convexHull_min (balancedCore_subset s) hs.2β©
- refine' β¨Filter.mem_of_superset (balancedCore_mem_nhds_zero hs.1) (subset_convexHull β _), _β©
- refine' β¨balanced_convexHull_of_balanced (balancedCore_balanced s), _β©
+ refine β¨convexHull β (balancedCore π s), ?_, convexHull_min (balancedCore_subset s) hs.2β©
+ refine β¨Filter.mem_of_superset (balancedCore_mem_nhds_zero hs.1) (subset_convexHull β _), ?_β©
+ refine β¨(balancedCore_balanced s).convexHull, ?_β©
exact convex_convexHull β (balancedCore π s)
#align nhds_basis_abs_convex nhds_basis_abs_convex
Mostly, this means replacing "of_open" by "of_isOpen". A few lemmas names were misleading and are corrected differently. Zulip discussion.
@@ -152,7 +152,7 @@ theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π E) :
dsimp only [gaugeSeminormFamily]
rw [Seminorm.ball_zero_eq]
simp_rw [gaugeSeminorm_toFun]
- exact gauge_lt_one_eq_self_of_open s.coe_convex s.coe_zero_mem s.coe_isOpen
+ exact gauge_lt_one_eq_self_of_isOpen s.coe_convex s.coe_zero_mem s.coe_isOpen
#align gauge_seminorm_family_ball gaugeSeminormFamily_ball
variable [TopologicalAddGroup E] [ContinuousSMul π E]
rcases
, convert
and congrm
(#7725)
Replace rcases(
with rcases (
. Same thing for convert(
and congrm(
. No other change.
@@ -164,7 +164,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
refine' SeminormFamily.withSeminorms_of_hasBasis _ _
refine' (nhds_basis_abs_convex_open π E).to_hasBasis (fun s hs => _) fun s hs => _
Β· refine' β¨s, β¨_, rfl.subsetβ©β©
- convert(gaugeSeminormFamily _ _).basisSets_singleton_mem β¨s, hsβ© one_pos
+ convert (gaugeSeminormFamily _ _).basisSets_singleton_mem β¨s, hsβ© one_pos
rw [gaugeSeminormFamily_ball, Subtype.coe_mk]
refine' β¨s, β¨_, rfl.subsetβ©β©
rw [SeminormFamily.basisSets_iff] at hs
We define Alexandrov-discrete spaces as topological spaces where the intersection of a family of open sets is open.
This PR only gives a minimal API because the goal is to ensure that lemma names like isOpen_sInter
are free to use for AlexandrovDiscrete
. The existing lemmas are getting prefixed by Set.Finite
or suffixed by _of_finite
.
@@ -173,7 +173,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π E) :=
-- We have to show that the intersection contains zero, is open, balanced, and convex
refine'
β¨mem_iInterβ.mpr fun _ _ => by simp [Seminorm.mem_ball_zero, hr],
- isOpen_biInter (t.finite_toSet) fun S _ => _,
+ isOpen_biInter_finset fun S _ => _,
balanced_iInterβ fun _ _ => Seminorm.balanced_ball_zero _ _,
convex_iInterβ fun _ _ => Seminorm.convex_ball _ _ _β©
-- The only nontrivial part is to show that the ball is open
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -40,7 +40,7 @@ open NormedField Set
open BigOperators NNReal Pointwise Topology
-variable {π E F G ΞΉ : Type _}
+variable {π E F G ΞΉ : Type*}
section NontriviallyNormedField
@@ -2,16 +2,13 @@
Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll
-
-! This file was ported from Lean 3 source module analysis.locally_convex.abs_convex
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.LocallyConvex.BalancedCoreHull
import Mathlib.Analysis.LocallyConvex.WithSeminorms
import Mathlib.Analysis.Convex.Gauge
+#align_import analysis.locally_convex.abs_convex from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
/-!
# Absolutely convex sets
The unported dependencies are
algebra.order.module
init.core
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file