analysis.locally_convex.abs_convex ⟷ Mathlib.Analysis.LocallyConvex.AbsConvex

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -154,7 +154,7 @@ instance : Nonempty (AbsConvexOpenSets π•œ E) :=
 
 end AbsolutelyConvexSets
 
-variable [IsROrC π•œ]
+variable [RCLike π•œ]
 
 variable [AddCommGroup E] [TopologicalSpace E]
 
Diff
@@ -198,7 +198,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
     convert (gaugeSeminormFamily _ _).basisSets_singleton_mem ⟨s, hs⟩ one_pos
     rw [gaugeSeminormFamily_ball, Subtype.coe_mk]
   refine' ⟨s, ⟨_, rfl.subset⟩⟩
-  rw [SeminormFamily.basisSets_iff] at hs 
+  rw [SeminormFamily.basisSets_iff] at hs
   rcases hs with ⟨t, r, hr, rfl⟩
   rw [Seminorm.ball_finset_sup_eq_iInter _ _ _ hr]
   -- We have to show that the intersection contains zero, is open, balanced, and convex
Diff
@@ -64,7 +64,7 @@ theorem nhds_basis_abs_convex :
       ⟨s, ⟨hs.1, hs.2.2⟩, rfl.subset⟩
   refine' ⟨convexHull ℝ (balancedCore π•œ s), _, convexHull_min (balancedCore_subset s) hs.2⟩
   refine' ⟨Filter.mem_of_superset (balancedCore_mem_nhds_zero hs.1) (subset_convexHull ℝ _), _⟩
-  refine' ⟨balanced_convexHull_of_balanced (balancedCore_balanced s), _⟩
+  refine' ⟨Balanced.convexHull (balancedCore_balanced s), _⟩
   exact convex_convexHull ℝ (balancedCore π•œ s)
 #align nhds_basis_abs_convex nhds_basis_abs_convex
 -/
Diff
@@ -180,7 +180,7 @@ theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π•œ E) :
   dsimp only [gaugeSeminormFamily]
   rw [Seminorm.ball_zero_eq]
   simp_rw [gaugeSeminorm_to_fun]
-  exact gauge_lt_one_eq_self_of_open s.coe_convex s.coe_zero_mem s.coe_is_open
+  exact gauge_lt_one_eq_self_of_isOpen s.coe_convex s.coe_zero_mem s.coe_is_open
 #align gauge_seminorm_family_ball gaugeSeminormFamily_ball
 -/
 
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2022 Moritz Doll. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Moritz Doll
 -/
-import Mathbin.Analysis.LocallyConvex.BalancedCoreHull
-import Mathbin.Analysis.LocallyConvex.WithSeminorms
-import Mathbin.Analysis.Convex.Gauge
+import Analysis.LocallyConvex.BalancedCoreHull
+import Analysis.LocallyConvex.WithSeminorms
+import Analysis.Convex.Gauge
 
 #align_import analysis.locally_convex.abs_convex from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
 
Diff
@@ -204,7 +204,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   -- We have to show that the intersection contains zero, is open, balanced, and convex
   refine'
     ⟨mem_Interβ‚‚.mpr fun _ _ => by simp [Seminorm.mem_ball_zero, hr],
-      isOpen_biInter (to_finite _) fun S _ => _,
+      Set.Finite.isOpen_biInter (to_finite _) fun S _ => _,
       balanced_iInterβ‚‚ fun _ _ => Seminorm.balanced_ball_zero _ _,
       convex_iInterβ‚‚ fun _ _ => Seminorm.convex_ball _ _ _⟩
   -- The only nontrivial part is to show that the ball is open
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2022 Moritz Doll. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Moritz Doll
-
-! This file was ported from Lean 3 source module analysis.locally_convex.abs_convex
-! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.LocallyConvex.BalancedCoreHull
 import Mathbin.Analysis.LocallyConvex.WithSeminorms
 import Mathbin.Analysis.Convex.Gauge
 
+#align_import analysis.locally_convex.abs_convex from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
+
 /-!
 # Absolutely convex sets
 
Diff
@@ -58,6 +58,7 @@ variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 
 variable [TopologicalSpace E] [LocallyConvexSpace ℝ E] [ContinuousSMul π•œ E]
 
+#print nhds_basis_abs_convex /-
 theorem nhds_basis_abs_convex :
     (𝓝 (0 : E)).HasBasis (fun s : Set E => s ∈ 𝓝 (0 : E) ∧ Balanced π•œ s ∧ Convex ℝ s) id :=
   by
@@ -69,9 +70,11 @@ theorem nhds_basis_abs_convex :
   refine' ⟨balanced_convexHull_of_balanced (balancedCore_balanced s), _⟩
   exact convex_convexHull ℝ (balancedCore π•œ s)
 #align nhds_basis_abs_convex nhds_basis_abs_convex
+-/
 
 variable [ContinuousSMul ℝ E] [TopologicalAddGroup E]
 
+#print nhds_basis_abs_convex_open /-
 theorem nhds_basis_abs_convex_open :
     (𝓝 (0 : E)).HasBasis (fun s : Set E => (0 : E) ∈ s ∧ IsOpen s ∧ Balanced π•œ s ∧ Convex ℝ s) id :=
   by
@@ -84,6 +87,7 @@ theorem nhds_basis_abs_convex_open :
   rintro s ⟨hs_zero, hs_open, hs_balanced, hs_convex⟩
   exact ⟨s, ⟨hs_open.mem_nhds hs_zero, hs_balanced, hs_convex⟩, rfl.subset⟩
 #align nhds_basis_abs_convex_open nhds_basis_abs_convex_open
+-/
 
 end NontriviallyNormedField
 
@@ -102,33 +106,45 @@ def AbsConvexOpenSets :=
 #align abs_convex_open_sets AbsConvexOpenSets
 -/
 
+#print AbsConvexOpenSets.instCoeTC /-
 instance AbsConvexOpenSets.instCoeTC : Coe (AbsConvexOpenSets π•œ E) (Set E) :=
   ⟨Subtype.val⟩
 #align abs_convex_open_sets.has_coe AbsConvexOpenSets.instCoeTC
+-/
 
 namespace AbsConvexOpenSets
 
 variable {π•œ E}
 
+#print AbsConvexOpenSets.coe_zero_mem /-
 theorem coe_zero_mem (s : AbsConvexOpenSets π•œ E) : (0 : E) ∈ (s : Set E) :=
   s.2.1
 #align abs_convex_open_sets.coe_zero_mem AbsConvexOpenSets.coe_zero_mem
+-/
 
+#print AbsConvexOpenSets.coe_isOpen /-
 theorem coe_isOpen (s : AbsConvexOpenSets π•œ E) : IsOpen (s : Set E) :=
   s.2.2.1
 #align abs_convex_open_sets.coe_is_open AbsConvexOpenSets.coe_isOpen
+-/
 
+#print AbsConvexOpenSets.coe_nhds /-
 theorem coe_nhds (s : AbsConvexOpenSets π•œ E) : (s : Set E) ∈ 𝓝 (0 : E) :=
   s.coe_isOpen.mem_nhds s.coe_zero_mem
 #align abs_convex_open_sets.coe_nhds AbsConvexOpenSets.coe_nhds
+-/
 
+#print AbsConvexOpenSets.coe_balanced /-
 theorem coe_balanced (s : AbsConvexOpenSets π•œ E) : Balanced π•œ (s : Set E) :=
   s.2.2.2.1
 #align abs_convex_open_sets.coe_balanced AbsConvexOpenSets.coe_balanced
+-/
 
+#print AbsConvexOpenSets.coe_convex /-
 theorem coe_convex (s : AbsConvexOpenSets π•œ E) : Convex ℝ (s : Set E) :=
   s.2.2.2.2
 #align abs_convex_open_sets.coe_convex AbsConvexOpenSets.coe_convex
+-/
 
 end AbsConvexOpenSets
 
@@ -151,13 +167,16 @@ variable [ContinuousSMul ℝ E]
 
 variable (π•œ E)
 
+#print gaugeSeminormFamily /-
 /-- The family of seminorms defined by the gauges of absolute convex open sets. -/
 noncomputable def gaugeSeminormFamily : SeminormFamily π•œ E (AbsConvexOpenSets π•œ E) := fun s =>
   gaugeSeminorm s.coe_balanced s.coe_convex (absorbent_nhds_zero s.coe_nhds)
 #align gauge_seminorm_family gaugeSeminormFamily
+-/
 
 variable {π•œ E}
 
+#print gaugeSeminormFamily_ball /-
 theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π•œ E) :
     (gaugeSeminormFamily π•œ E s).ball 0 1 = (s : Set E) :=
   by
@@ -166,11 +185,13 @@ theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π•œ E) :
   simp_rw [gaugeSeminorm_to_fun]
   exact gauge_lt_one_eq_self_of_open s.coe_convex s.coe_zero_mem s.coe_is_open
 #align gauge_seminorm_family_ball gaugeSeminormFamily_ball
+-/
 
 variable [TopologicalAddGroup E] [ContinuousSMul π•œ E]
 
 variable [SMulCommClass ℝ π•œ E] [LocallyConvexSpace ℝ E]
 
+#print with_gaugeSeminormFamily /-
 /-- The topology of a locally convex space is induced by the gauge seminorm family. -/
 theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   by
@@ -195,4 +216,5 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   rw [hr', ← Seminorm.smul_ball_zero hr'', gaugeSeminormFamily_ball]
   exact S.coe_is_open.smulβ‚€ hr''
 #align with_gauge_seminorm_family with_gaugeSeminormFamily
+-/
 
Diff
@@ -177,7 +177,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   refine' SeminormFamily.withSeminorms_of_hasBasis _ _
   refine' (nhds_basis_abs_convex_open π•œ E).to_hasBasis (fun s hs => _) fun s hs => _
   · refine' ⟨s, ⟨_, rfl.subset⟩⟩
-    convert(gaugeSeminormFamily _ _).basisSets_singleton_mem ⟨s, hs⟩ one_pos
+    convert (gaugeSeminormFamily _ _).basisSets_singleton_mem ⟨s, hs⟩ one_pos
     rw [gaugeSeminormFamily_ball, Subtype.coe_mk]
   refine' ⟨s, ⟨_, rfl.subset⟩⟩
   rw [SeminormFamily.basisSets_iff] at hs 
Diff
@@ -180,7 +180,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
     convert(gaugeSeminormFamily _ _).basisSets_singleton_mem ⟨s, hs⟩ one_pos
     rw [gaugeSeminormFamily_ball, Subtype.coe_mk]
   refine' ⟨s, ⟨_, rfl.subset⟩⟩
-  rw [SeminormFamily.basisSets_iff] at hs
+  rw [SeminormFamily.basisSets_iff] at hs 
   rcases hs with ⟨t, r, hr, rfl⟩
   rw [Seminorm.ball_finset_sup_eq_iInter _ _ _ hr]
   -- We have to show that the intersection contains zero, is open, balanced, and convex
Diff
@@ -44,7 +44,7 @@ disks, convex, balanced
 
 open NormedField Set
 
-open BigOperators NNReal Pointwise Topology
+open scoped BigOperators NNReal Pointwise Topology
 
 variable {π•œ E F G ΞΉ : Type _}
 
Diff
@@ -58,9 +58,6 @@ variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 
 variable [TopologicalSpace E] [LocallyConvexSpace ℝ E] [ContinuousSMul π•œ E]
 
-/- warning: nhds_basis_abs_convex -> nhds_basis_abs_convex is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align nhds_basis_abs_convex nhds_basis_abs_convexβ‚“'. -/
 theorem nhds_basis_abs_convex :
     (𝓝 (0 : E)).HasBasis (fun s : Set E => s ∈ 𝓝 (0 : E) ∧ Balanced π•œ s ∧ Convex ℝ s) id :=
   by
@@ -75,9 +72,6 @@ theorem nhds_basis_abs_convex :
 
 variable [ContinuousSMul ℝ E] [TopologicalAddGroup E]
 
-/- warning: nhds_basis_abs_convex_open -> nhds_basis_abs_convex_open is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align nhds_basis_abs_convex_open nhds_basis_abs_convex_openβ‚“'. -/
 theorem nhds_basis_abs_convex_open :
     (𝓝 (0 : E)).HasBasis (fun s : Set E => (0 : E) ∈ s ∧ IsOpen s ∧ Balanced π•œ s ∧ Convex ℝ s) id :=
   by
@@ -108,12 +102,6 @@ def AbsConvexOpenSets :=
 #align abs_convex_open_sets AbsConvexOpenSets
 -/
 
-/- warning: abs_convex_open_sets.has_coe -> AbsConvexOpenSets.instCoeTC is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E], Coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E)
-but is expected to have type
-  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E], CoeTC.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E)
-Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.has_coe AbsConvexOpenSets.instCoeTCβ‚“'. -/
 instance AbsConvexOpenSets.instCoeTC : Coe (AbsConvexOpenSets π•œ E) (Set E) :=
   ⟨Subtype.val⟩
 #align abs_convex_open_sets.has_coe AbsConvexOpenSets.instCoeTC
@@ -122,52 +110,22 @@ namespace AbsConvexOpenSets
 
 variable {π•œ E}
 
-/- warning: abs_convex_open_sets.coe_zero_mem -> AbsConvexOpenSets.coe_zero_mem is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E _inst_3))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ‚“.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π•œ] [_inst_5 : SMul.{u2, u1} π•œ E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π•œ E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
-Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_zero_mem AbsConvexOpenSets.coe_zero_memβ‚“'. -/
 theorem coe_zero_mem (s : AbsConvexOpenSets π•œ E) : (0 : E) ∈ (s : Set E) :=
   s.2.1
 #align abs_convex_open_sets.coe_zero_mem AbsConvexOpenSets.coe_zero_mem
 
-/- warning: abs_convex_open_sets.coe_is_open -> AbsConvexOpenSets.coe_isOpen is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), IsOpen.{u2} E _inst_1 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ‚“.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π•œ] [_inst_5 : SMul.{u2, u1} π•œ E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), IsOpen.{u1} E _inst_1 (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π•œ E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
-Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_is_open AbsConvexOpenSets.coe_isOpenβ‚“'. -/
 theorem coe_isOpen (s : AbsConvexOpenSets π•œ E) : IsOpen (s : Set E) :=
   s.2.2.1
 #align abs_convex_open_sets.coe_is_open AbsConvexOpenSets.coe_isOpen
 
-/- warning: abs_convex_open_sets.coe_nhds -> AbsConvexOpenSets.coe_nhds is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ‚“.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s) (nhds.{u2} E _inst_1 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E _inst_3))))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π•œ] [_inst_5 : SMul.{u2, u1} π•œ E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.mem.{u1, u1} (Set.{u1} E) (Filter.{u1} E) (instMembershipSetFilter.{u1} E) (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π•œ E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s) (nhds.{u1} E _inst_1 (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)))
-Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_nhds AbsConvexOpenSets.coe_nhdsβ‚“'. -/
 theorem coe_nhds (s : AbsConvexOpenSets π•œ E) : (s : Set E) ∈ 𝓝 (0 : E) :=
   s.coe_isOpen.mem_nhds s.coe_zero_mem
 #align abs_convex_open_sets.coe_nhds AbsConvexOpenSets.coe_nhds
 
-/- warning: abs_convex_open_sets.coe_balanced -> AbsConvexOpenSets.coe_balanced is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Balanced.{u1, u2} π•œ E _inst_4 _inst_5 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ‚“.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π•œ] [_inst_5 : SMul.{u2, u1} π•œ E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Balanced.{u2, u1} π•œ E _inst_4 _inst_5 (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π•œ E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
-Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_balanced AbsConvexOpenSets.coe_balancedβ‚“'. -/
 theorem coe_balanced (s : AbsConvexOpenSets π•œ E) : Balanced π•œ (s : Set E) :=
   s.2.2.2.1
 #align abs_convex_open_sets.coe_balanced AbsConvexOpenSets.coe_balanced
 
-/- warning: abs_convex_open_sets.coe_convex -> AbsConvexOpenSets.coe_convex is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Convex.{0, u2} Real E Real.orderedSemiring _inst_2 _inst_6 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ‚“.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π•œ] [_inst_5 : SMul.{u2, u1} π•œ E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π•œ E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
-Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_convex AbsConvexOpenSets.coe_convexβ‚“'. -/
 theorem coe_convex (s : AbsConvexOpenSets π•œ E) : Convex ℝ (s : Set E) :=
   s.2.2.2.2
 #align abs_convex_open_sets.coe_convex AbsConvexOpenSets.coe_convex
@@ -193,9 +151,6 @@ variable [ContinuousSMul ℝ E]
 
 variable (π•œ E)
 
-/- warning: gauge_seminorm_family -> gaugeSeminormFamily is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align gauge_seminorm_family gaugeSeminormFamilyβ‚“'. -/
 /-- The family of seminorms defined by the gauges of absolute convex open sets. -/
 noncomputable def gaugeSeminormFamily : SeminormFamily π•œ E (AbsConvexOpenSets π•œ E) := fun s =>
   gaugeSeminorm s.coe_balanced s.coe_convex (absorbent_nhds_zero s.coe_nhds)
@@ -203,9 +158,6 @@ noncomputable def gaugeSeminormFamily : SeminormFamily π•œ E (AbsConvexOpenSets
 
 variable {π•œ E}
 
-/- warning: gauge_seminorm_family_ball -> gaugeSeminormFamily_ball is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align gauge_seminorm_family_ball gaugeSeminormFamily_ballβ‚“'. -/
 theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π•œ E) :
     (gaugeSeminormFamily π•œ E s).ball 0 1 = (s : Set E) :=
   by
@@ -219,9 +171,6 @@ variable [TopologicalAddGroup E] [ContinuousSMul π•œ E]
 
 variable [SMulCommClass ℝ π•œ E] [LocallyConvexSpace ℝ E]
 
-/- warning: with_gauge_seminorm_family -> with_gaugeSeminormFamily is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align with_gauge_seminorm_family with_gaugeSeminormFamilyβ‚“'. -/
 /-- The topology of a locally convex space is induced by the gauge seminorm family. -/
 theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   by
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Moritz Doll
 
 ! This file was ported from Lean 3 source module analysis.locally_convex.abs_convex
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Analysis.Convex.Gauge
 /-!
 # Absolutely convex sets
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 A set is called absolutely convex or disked if it is convex and balanced.
 The importance of absolutely convex sets comes from the fact that every locally convex
 topological vector space has a basis consisting of absolutely convex sets.
@@ -56,10 +59,7 @@ variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 variable [TopologicalSpace E] [LocallyConvexSpace ℝ E] [ContinuousSMul π•œ E]
 
 /- warning: nhds_basis_abs_convex -> nhds_basis_abs_convex is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) _inst_6], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (s : Set.{u2} E) => And (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))))) (And (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s))) (id.{succ u2} (Set.{u2} E))
-but is expected to have type
-  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π•œ E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) _inst_6], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (s : Set.{u2} E) => And (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))))))) (And (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s))) (id.{succ u2} (Set.{u2} E))
+<too large>
 Case conversion may be inaccurate. Consider using '#align nhds_basis_abs_convex nhds_basis_abs_convexβ‚“'. -/
 theorem nhds_basis_abs_convex :
     (𝓝 (0 : E)).HasBasis (fun s : Set E => s ∈ 𝓝 (0 : E) ∧ Balanced π•œ s ∧ Convex ℝ s) id :=
@@ -76,10 +76,7 @@ theorem nhds_basis_abs_convex :
 variable [ContinuousSMul ℝ E] [TopologicalAddGroup E]
 
 /- warning: nhds_basis_abs_convex_open -> nhds_basis_abs_convex_open is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) _inst_6] [_inst_9 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_6] [_inst_10 : TopologicalAddGroup.{u2} E _inst_6 (AddCommGroup.toAddGroup.{u2} E _inst_2)], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (s : Set.{u2} E) => And (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) s) (And (IsOpen.{u2} E _inst_6 s) (And (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s)))) (id.{succ u2} (Set.{u2} E))
-but is expected to have type
-  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π•œ E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) _inst_6] [_inst_9 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_6] [_inst_10 : TopologicalAddGroup.{u2} E _inst_6 (AddCommGroup.toAddGroup.{u2} E _inst_2)], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (s : Set.{u2} E) => And (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))))) s) (And (IsOpen.{u2} E _inst_6 s) (And (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s)))) (id.{succ u2} (Set.{u2} E))
+<too large>
 Case conversion may be inaccurate. Consider using '#align nhds_basis_abs_convex_open nhds_basis_abs_convex_openβ‚“'. -/
 theorem nhds_basis_abs_convex_open :
     (𝓝 (0 : E)).HasBasis (fun s : Set E => (0 : E) ∈ s ∧ IsOpen s ∧ Balanced π•œ s ∧ Convex ℝ s) id :=
@@ -197,10 +194,7 @@ variable [ContinuousSMul ℝ E]
 variable (π•œ E)
 
 /- warning: gauge_seminorm_family -> gaugeSeminormFamily is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u1} Real π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π•œ (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π•œ (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π•œ (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real π•œ Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π•œ _inst_1))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3], SeminormFamily.{u1, u2, u2} π•œ E (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) _inst_2 _inst_4
-but is expected to have type
-  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π•œ E (Algebra.toSMul.{0, u1} Real π•œ Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u1} Real π•œ Real.normedField (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π•œ _inst_1))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3], SeminormFamily.{u1, u2, u2} π•œ E (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) _inst_2 _inst_4
+<too large>
 Case conversion may be inaccurate. Consider using '#align gauge_seminorm_family gaugeSeminormFamilyβ‚“'. -/
 /-- The family of seminorms defined by the gauges of absolute convex open sets. -/
 noncomputable def gaugeSeminormFamily : SeminormFamily π•œ E (AbsConvexOpenSets π•œ E) := fun s =>
@@ -210,10 +204,7 @@ noncomputable def gaugeSeminormFamily : SeminormFamily π•œ E (AbsConvexOpenSets
 variable {π•œ E}
 
 /- warning: gauge_seminorm_family_ball -> gaugeSeminormFamily_ball is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u1} Real π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π•œ (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π•œ (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π•œ (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real π•œ Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π•œ _inst_1))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] (s : AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))), Eq.{succ u2} (Set.{u2} E) (Seminorm.ball.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (gaugeSeminormFamily.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 s) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (CoeTCβ‚“.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))))))) s)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : TopologicalSpace.{u1} E] [_inst_4 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_5 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_6 : IsScalarTower.{0, u2, u1} Real π•œ E (Algebra.toSMul.{0, u2} Real π•œ Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π•œ Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u1} Real E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] (s : AbsConvexOpenSets.{u2, u1} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))), Eq.{succ u1} (Set.{u1} E) (Seminorm.ball.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) _inst_2 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (gaugeSeminormFamily.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 s) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))) s) (And (IsOpen.{u1} E _inst_3 s) (And (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) s) (Convex.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) s)))) s)
+<too large>
 Case conversion may be inaccurate. Consider using '#align gauge_seminorm_family_ball gaugeSeminormFamily_ballβ‚“'. -/
 theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π•œ E) :
     (gaugeSeminormFamily π•œ E s).ball 0 1 = (s : Set E) :=
@@ -229,10 +220,7 @@ variable [TopologicalAddGroup E] [ContinuousSMul π•œ E]
 variable [SMulCommClass ℝ π•œ E] [LocallyConvexSpace ℝ E]
 
 /- warning: with_gauge_seminorm_family -> with_gaugeSeminormFamily is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u1} Real π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π•œ (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π•œ (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π•œ (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real π•œ Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π•œ _inst_1))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] [_inst_8 : TopologicalAddGroup.{u2} E _inst_3 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_9 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) _inst_3] [_inst_10 : SMulCommClass.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4))))] [_inst_11 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5 _inst_3], WithSeminorms.{u1, u2, u2} π•œ E (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) _inst_2 _inst_4 (AbsConvexOpenSets.nonempty.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (gaugeSeminormFamily.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7) _inst_3
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : TopologicalSpace.{u1} E] [_inst_4 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_5 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_6 : IsScalarTower.{0, u2, u1} Real π•œ E (Algebra.toSMul.{0, u2} Real π•œ Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π•œ Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u1} Real E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] [_inst_8 : TopologicalAddGroup.{u1} E _inst_3 (AddCommGroup.toAddGroup.{u1} E _inst_2)] [_inst_9 : ContinuousSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) _inst_3] [_inst_10 : SMulCommClass.{0, u2, u1} Real π•œ E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4))))] [_inst_11 : LocallyConvexSpace.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5 _inst_3], WithSeminorms.{u2, u1, u1} π•œ E (AbsConvexOpenSets.{u2, u1} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) _inst_2 _inst_4 (AbsConvexOpenSets.instNonempty.{u2, u1} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))) (gaugeSeminormFamily.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7) _inst_3
+<too large>
 Case conversion may be inaccurate. Consider using '#align with_gauge_seminorm_family with_gaugeSeminormFamilyβ‚“'. -/
 /-- The topology of a locally convex space is induced by the gauge seminorm family. -/
 theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
Diff
@@ -55,6 +55,12 @@ variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 
 variable [TopologicalSpace E] [LocallyConvexSpace ℝ E] [ContinuousSMul π•œ E]
 
+/- warning: nhds_basis_abs_convex -> nhds_basis_abs_convex is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) _inst_6], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (s : Set.{u2} E) => And (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))))) (And (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s))) (id.{succ u2} (Set.{u2} E))
+but is expected to have type
+  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π•œ E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) _inst_6], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (s : Set.{u2} E) => And (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))))))) (And (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s))) (id.{succ u2} (Set.{u2} E))
+Case conversion may be inaccurate. Consider using '#align nhds_basis_abs_convex nhds_basis_abs_convexβ‚“'. -/
 theorem nhds_basis_abs_convex :
     (𝓝 (0 : E)).HasBasis (fun s : Set E => s ∈ 𝓝 (0 : E) ∧ Balanced π•œ s ∧ Convex ℝ s) id :=
   by
@@ -69,6 +75,12 @@ theorem nhds_basis_abs_convex :
 
 variable [ContinuousSMul ℝ E] [TopologicalAddGroup E]
 
+/- warning: nhds_basis_abs_convex_open -> nhds_basis_abs_convex_open is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) _inst_6] [_inst_9 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_6] [_inst_10 : TopologicalAddGroup.{u2} E _inst_6 (AddCommGroup.toAddGroup.{u2} E _inst_2)], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))))) (fun (s : Set.{u2} E) => And (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) s) (And (IsOpen.{u2} E _inst_6 s) (And (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s)))) (id.{succ u2} (Set.{u2} E))
+but is expected to have type
+  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π•œ E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))] [_inst_6 : TopologicalSpace.{u2} E] [_inst_7 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4 _inst_6] [_inst_8 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) _inst_6] [_inst_9 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_6] [_inst_10 : TopologicalAddGroup.{u2} E _inst_6 (AddCommGroup.toAddGroup.{u2} E _inst_2)], Filter.HasBasis.{u2, succ u2} E (Set.{u2} E) (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2)))))))) (fun (s : Set.{u2} E) => And (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))))) s) (And (IsOpen.{u2} E _inst_6 s) (And (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) (Convex.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) s)))) (id.{succ u2} (Set.{u2} E))
+Case conversion may be inaccurate. Consider using '#align nhds_basis_abs_convex_open nhds_basis_abs_convex_openβ‚“'. -/
 theorem nhds_basis_abs_convex_open :
     (𝓝 (0 : E)).HasBasis (fun s : Set E => (0 : E) ∈ s ∧ IsOpen s ∧ Balanced π•œ s ∧ Convex ℝ s) id :=
   by
@@ -92,35 +104,73 @@ variable [SMul π•œ E] [SMul ℝ E]
 
 variable (π•œ E)
 
+#print AbsConvexOpenSets /-
 /-- The type of absolutely convex open sets. -/
 def AbsConvexOpenSets :=
   { s : Set E // (0 : E) ∈ s ∧ IsOpen s ∧ Balanced π•œ s ∧ Convex ℝ s }
 #align abs_convex_open_sets AbsConvexOpenSets
+-/
 
-instance AbsConvexOpenSets.hasCoe : Coe (AbsConvexOpenSets π•œ E) (Set E) :=
+/- warning: abs_convex_open_sets.has_coe -> AbsConvexOpenSets.instCoeTC is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E], Coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E)
+but is expected to have type
+  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E], CoeTC.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E)
+Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.has_coe AbsConvexOpenSets.instCoeTCβ‚“'. -/
+instance AbsConvexOpenSets.instCoeTC : Coe (AbsConvexOpenSets π•œ E) (Set E) :=
   ⟨Subtype.val⟩
-#align abs_convex_open_sets.has_coe AbsConvexOpenSets.hasCoe
+#align abs_convex_open_sets.has_coe AbsConvexOpenSets.instCoeTC
 
 namespace AbsConvexOpenSets
 
 variable {π•œ E}
 
+/- warning: abs_convex_open_sets.coe_zero_mem -> AbsConvexOpenSets.coe_zero_mem is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E _inst_3))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ‚“.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π•œ] [_inst_5 : SMul.{u2, u1} π•œ E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π•œ E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
+Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_zero_mem AbsConvexOpenSets.coe_zero_memβ‚“'. -/
 theorem coe_zero_mem (s : AbsConvexOpenSets π•œ E) : (0 : E) ∈ (s : Set E) :=
   s.2.1
 #align abs_convex_open_sets.coe_zero_mem AbsConvexOpenSets.coe_zero_mem
 
+/- warning: abs_convex_open_sets.coe_is_open -> AbsConvexOpenSets.coe_isOpen is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), IsOpen.{u2} E _inst_1 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ‚“.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π•œ] [_inst_5 : SMul.{u2, u1} π•œ E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), IsOpen.{u1} E _inst_1 (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π•œ E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
+Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_is_open AbsConvexOpenSets.coe_isOpenβ‚“'. -/
 theorem coe_isOpen (s : AbsConvexOpenSets π•œ E) : IsOpen (s : Set E) :=
   s.2.2.1
 #align abs_convex_open_sets.coe_is_open AbsConvexOpenSets.coe_isOpen
 
+/- warning: abs_convex_open_sets.coe_nhds -> AbsConvexOpenSets.coe_nhds is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ‚“.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s) (nhds.{u2} E _inst_1 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E _inst_3))))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π•œ] [_inst_5 : SMul.{u2, u1} π•œ E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Membership.mem.{u1, u1} (Set.{u1} E) (Filter.{u1} E) (instMembershipSetFilter.{u1} E) (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π•œ E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s) (nhds.{u1} E _inst_1 (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)))
+Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_nhds AbsConvexOpenSets.coe_nhdsβ‚“'. -/
 theorem coe_nhds (s : AbsConvexOpenSets π•œ E) : (s : Set E) ∈ 𝓝 (0 : E) :=
   s.coe_isOpen.mem_nhds s.coe_zero_mem
 #align abs_convex_open_sets.coe_nhds AbsConvexOpenSets.coe_nhds
 
+/- warning: abs_convex_open_sets.coe_balanced -> AbsConvexOpenSets.coe_balanced is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Balanced.{u1, u2} π•œ E _inst_4 _inst_5 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ‚“.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π•œ] [_inst_5 : SMul.{u2, u1} π•œ E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Balanced.{u2, u1} π•œ E _inst_4 _inst_5 (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π•œ E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
+Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_balanced AbsConvexOpenSets.coe_balancedβ‚“'. -/
 theorem coe_balanced (s : AbsConvexOpenSets π•œ E) : Balanced π•œ (s : Set E) :=
   s.2.2.2.1
 #align abs_convex_open_sets.coe_balanced AbsConvexOpenSets.coe_balanced
 
+/- warning: abs_convex_open_sets.coe_convex -> AbsConvexOpenSets.coe_convex is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : TopologicalSpace.{u2} E] [_inst_2 : AddCommMonoid.{u2} E] [_inst_3 : Zero.{u2} E] [_inst_4 : SeminormedRing.{u1} π•œ] [_inst_5 : SMul.{u1, u2} π•œ E] [_inst_6 : SMul.{0, u2} Real E] (s : AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Convex.{0, u2} Real E Real.orderedSemiring _inst_2 _inst_6 ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (CoeTCβ‚“.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6)))) s)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : TopologicalSpace.{u1} E] [_inst_2 : AddCommMonoid.{u1} E] [_inst_3 : Zero.{u1} E] [_inst_4 : SeminormedRing.{u2} π•œ] [_inst_5 : SMul.{u2, u1} π•œ E] [_inst_6 : SMul.{0, u1} Real E] (s : AbsConvexOpenSets.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6), Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E _inst_3)) s) (And (IsOpen.{u1} E _inst_1 s) (And (Balanced.{u2, u1} π•œ E _inst_4 _inst_5 s) (Convex.{0, u1} Real E Real.orderedSemiring _inst_2 _inst_6 s)))) s)
+Case conversion may be inaccurate. Consider using '#align abs_convex_open_sets.coe_convex AbsConvexOpenSets.coe_convexβ‚“'. -/
 theorem coe_convex (s : AbsConvexOpenSets π•œ E) : Convex ℝ (s : Set E) :=
   s.2.2.2.2
 #align abs_convex_open_sets.coe_convex AbsConvexOpenSets.coe_convex
@@ -146,6 +196,12 @@ variable [ContinuousSMul ℝ E]
 
 variable (π•œ E)
 
+/- warning: gauge_seminorm_family -> gaugeSeminormFamily is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u1} Real π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π•œ (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π•œ (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π•œ (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real π•œ Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π•œ _inst_1))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3], SeminormFamily.{u1, u2, u2} π•œ E (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) _inst_2 _inst_4
+but is expected to have type
+  forall (π•œ : Type.{u1}) (E : Type.{u2}) [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π•œ E (Algebra.toSMul.{0, u1} Real π•œ Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u1} Real π•œ Real.normedField (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (IsROrC.toNormedAlgebra.{u1} π•œ _inst_1))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3], SeminormFamily.{u1, u2, u2} π•œ E (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u2} Real E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u2} Real E Real.instZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) _inst_2 _inst_4
+Case conversion may be inaccurate. Consider using '#align gauge_seminorm_family gaugeSeminormFamilyβ‚“'. -/
 /-- The family of seminorms defined by the gauges of absolute convex open sets. -/
 noncomputable def gaugeSeminormFamily : SeminormFamily π•œ E (AbsConvexOpenSets π•œ E) := fun s =>
   gaugeSeminorm s.coe_balanced s.coe_convex (absorbent_nhds_zero s.coe_nhds)
@@ -153,6 +209,12 @@ noncomputable def gaugeSeminormFamily : SeminormFamily π•œ E (AbsConvexOpenSets
 
 variable {π•œ E}
 
+/- warning: gauge_seminorm_family_ball -> gaugeSeminormFamily_ball is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u1} Real π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π•œ (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π•œ (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π•œ (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real π•œ Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π•œ _inst_1))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] (s : AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))), Eq.{succ u2} (Set.{u2} E) (Seminorm.ball.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) _inst_2 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (gaugeSeminormFamily.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 s) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) ((fun (a : Type.{u2}) (b : Type.{u2}) [self : HasLiftT.{succ u2, succ u2} a b] => self.0) (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (HasLiftT.mk.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (CoeTCβ‚“.coe.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (coeBase.{succ u2, succ u2} (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (Set.{u2} E) (AbsConvexOpenSets.instCoeTC.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))))))) s)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : TopologicalSpace.{u1} E] [_inst_4 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_5 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_6 : IsScalarTower.{0, u2, u1} Real π•œ E (Algebra.toSMul.{0, u2} Real π•œ Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π•œ Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u1} Real E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] (s : AbsConvexOpenSets.{u2, u1} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))), Eq.{succ u1} (Set.{u1} E) (Seminorm.ball.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) _inst_2 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (gaugeSeminormFamily.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7 s) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) (Subtype.val.{succ u1} (Set.{u1} E) (fun (s : Set.{u1} E) => And (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))) s) (And (IsOpen.{u1} E _inst_3 s) (And (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) s) (Convex.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) s)))) s)
+Case conversion may be inaccurate. Consider using '#align gauge_seminorm_family_ball gaugeSeminormFamily_ballβ‚“'. -/
 theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π•œ E) :
     (gaugeSeminormFamily π•œ E s).ball 0 1 = (s : Set E) :=
   by
@@ -166,6 +228,12 @@ variable [TopologicalAddGroup E] [ContinuousSMul π•œ E]
 
 variable [SMulCommClass ℝ π•œ E] [LocallyConvexSpace ℝ E]
 
+/- warning: with_gauge_seminorm_family -> with_gaugeSeminormFamily is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : IsROrC.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : TopologicalSpace.{u2} E] [_inst_4 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_6 : IsScalarTower.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u1} Real π•œ (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (SMulWithZero.toSmulZeroClass.{0, u1} Real π•œ (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real π•œ (Semiring.toMonoidWithZero.{0} Real (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField))))) (AddZeroClass.toHasZero.{u1} π•œ (AddMonoid.toAddZeroClass.{u1} π•œ (AddCommMonoid.toAddMonoid.{u1} π•œ (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))))) (Module.toMulActionWithZero.{0, u1} Real π•œ (Ring.toSemiring.{0} Real (NormedRing.toRing.{0} Real (NormedCommRing.toNormedRing.{0} Real (NormedField.toNormedCommRing.{0} Real Real.normedField)))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (SeminormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) (NormedSpace.toModule.{0, u1} Real π•œ Real.normedField (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedAlgebra.toNormedSpace'.{0, u1} Real Real.normedField π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (IsROrC.toNormedAlgebra.{u1} π•œ _inst_1))))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u2} Real E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] [_inst_8 : TopologicalAddGroup.{u2} E _inst_3 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_9 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) _inst_3] [_inst_10 : SMulCommClass.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4))))] [_inst_11 : LocallyConvexSpace.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5 _inst_3], WithSeminorms.{u1, u2, u2} π•œ E (AbsConvexOpenSets.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) _inst_2 _inst_4 (AbsConvexOpenSets.nonempty.{u1, u2} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_5))))) (gaugeSeminormFamily.{u1, u2} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7) _inst_3
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : IsROrC.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : TopologicalSpace.{u1} E] [_inst_4 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_5 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_6 : IsScalarTower.{0, u2, u1} Real π•œ E (Algebra.toSMul.{0, u2} Real π•œ Real.instCommSemiringReal (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (NormedAlgebra.toAlgebra.{0, u2} Real π•œ Real.normedField (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (IsROrC.toNormedAlgebra.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))] [_inst_7 : ContinuousSMul.{0, u1} Real E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) (UniformSpace.toTopologicalSpace.{0} Real (PseudoMetricSpace.toUniformSpace.{0} Real Real.pseudoMetricSpace)) _inst_3] [_inst_8 : TopologicalAddGroup.{u1} E _inst_3 (AddCommGroup.toAddGroup.{u1} E _inst_2)] [_inst_9 : ContinuousSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) _inst_3] [_inst_10 : SMulCommClass.{0, u2, u1} Real π•œ E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5)))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4))))] [_inst_11 : LocallyConvexSpace.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5 _inst_3], WithSeminorms.{u2, u1, u1} π•œ E (AbsConvexOpenSets.{u2, u1} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))) (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) _inst_2 _inst_4 (AbsConvexOpenSets.instNonempty.{u2, u1} π•œ E _inst_3 (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_5))))) (gaugeSeminormFamily.{u2, u1} π•œ E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 _inst_7) _inst_3
+Case conversion may be inaccurate. Consider using '#align with_gauge_seminorm_family with_gaugeSeminormFamilyβ‚“'. -/
 /-- The topology of a locally convex space is induced by the gauge seminorm family. -/
 theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   by
Diff
@@ -177,13 +177,13 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   refine' ⟨s, ⟨_, rfl.subset⟩⟩
   rw [SeminormFamily.basisSets_iff] at hs
   rcases hs with ⟨t, r, hr, rfl⟩
-  rw [Seminorm.ball_finset_sup_eq_interα΅’ _ _ _ hr]
+  rw [Seminorm.ball_finset_sup_eq_iInter _ _ _ hr]
   -- We have to show that the intersection contains zero, is open, balanced, and convex
   refine'
     ⟨mem_Interβ‚‚.mpr fun _ _ => by simp [Seminorm.mem_ball_zero, hr],
-      isOpen_binterα΅’ (to_finite _) fun S _ => _,
-      balanced_interα΅’β‚‚ fun _ _ => Seminorm.balanced_ball_zero _ _,
-      convex_interα΅’β‚‚ fun _ _ => Seminorm.convex_ball _ _ _⟩
+      isOpen_biInter (to_finite _) fun S _ => _,
+      balanced_iInterβ‚‚ fun _ _ => Seminorm.balanced_ball_zero _ _,
+      convex_iInterβ‚‚ fun _ _ => Seminorm.convex_ball _ _ _⟩
   -- The only nontrivial part is to show that the ball is open
   have hr' : r = β€–(r : π•œ)β€– * 1 := by simp [abs_of_pos hr]
   have hr'' : (r : π•œ) β‰  0 := by simp [hr.ne']
Diff
@@ -182,7 +182,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   refine'
     ⟨mem_Interβ‚‚.mpr fun _ _ => by simp [Seminorm.mem_ball_zero, hr],
       isOpen_binterα΅’ (to_finite _) fun S _ => _,
-      balanced_Interβ‚‚ fun _ _ => Seminorm.balanced_ball_zero _ _,
+      balanced_interα΅’β‚‚ fun _ _ => Seminorm.balanced_ball_zero _ _,
       convex_interα΅’β‚‚ fun _ _ => Seminorm.convex_ball _ _ _⟩
   -- The only nontrivial part is to show that the ball is open
   have hr' : r = β€–(r : π•œ)β€– * 1 := by simp [abs_of_pos hr]
Diff
@@ -167,9 +167,9 @@ variable [TopologicalAddGroup E] [ContinuousSMul π•œ E]
 variable [SMulCommClass ℝ π•œ E] [LocallyConvexSpace ℝ E]
 
 /-- The topology of a locally convex space is induced by the gauge seminorm family. -/
-theorem withGaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
+theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   by
-  refine' SeminormFamily.withSeminormsOfHasBasis _ _
+  refine' SeminormFamily.withSeminorms_of_hasBasis _ _
   refine' (nhds_basis_abs_convex_open π•œ E).to_hasBasis (fun s hs => _) fun s hs => _
   · refine' ⟨s, ⟨_, rfl.subset⟩⟩
     convert(gaugeSeminormFamily _ _).basisSets_singleton_mem ⟨s, hs⟩ one_pos
@@ -189,5 +189,5 @@ theorem withGaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   have hr'' : (r : π•œ) β‰  0 := by simp [hr.ne']
   rw [hr', ← Seminorm.smul_ball_zero hr'', gaugeSeminormFamily_ball]
   exact S.coe_is_open.smulβ‚€ hr''
-#align with_gauge_seminorm_family withGaugeSeminormFamily
+#align with_gauge_seminorm_family with_gaugeSeminormFamily
 
Diff
@@ -183,7 +183,7 @@ theorem withGaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
     ⟨mem_Interβ‚‚.mpr fun _ _ => by simp [Seminorm.mem_ball_zero, hr],
       isOpen_binterα΅’ (to_finite _) fun S _ => _,
       balanced_Interβ‚‚ fun _ _ => Seminorm.balanced_ball_zero _ _,
-      convex_Interβ‚‚ fun _ _ => Seminorm.convex_ball _ _ _⟩
+      convex_interα΅’β‚‚ fun _ _ => Seminorm.convex_ball _ _ _⟩
   -- The only nontrivial part is to show that the ball is open
   have hr' : r = β€–(r : π•œ)β€– * 1 := by simp [abs_of_pos hr]
   have hr'' : (r : π•œ) β‰  0 := by simp [hr.ne']
Diff
@@ -172,7 +172,7 @@ theorem withGaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   refine' SeminormFamily.withSeminormsOfHasBasis _ _
   refine' (nhds_basis_abs_convex_open π•œ E).to_hasBasis (fun s hs => _) fun s hs => _
   · refine' ⟨s, ⟨_, rfl.subset⟩⟩
-    convert (gaugeSeminormFamily _ _).basisSets_singleton_mem ⟨s, hs⟩ one_pos
+    convert(gaugeSeminormFamily _ _).basisSets_singleton_mem ⟨s, hs⟩ one_pos
     rw [gaugeSeminormFamily_ball, Subtype.coe_mk]
   refine' ⟨s, ⟨_, rfl.subset⟩⟩
   rw [SeminormFamily.basisSets_iff] at hs
Diff
@@ -86,7 +86,7 @@ end NontriviallyNormedField
 
 section AbsolutelyConvexSets
 
-variable [TopologicalSpace E] [AddCommMonoid E] [Zero E] [SemiNormedRing π•œ]
+variable [TopologicalSpace E] [AddCommMonoid E] [Zero E] [SeminormedRing π•œ]
 
 variable [SMul π•œ E] [SMul ℝ E]
 

Changes in mathlib4

mathlib3
mathlib4
chore: remove some unnecessary 'open BigOperators' (#11880)

Could we have an open linter, that checked for unused opened namespaces?

Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -38,7 +38,7 @@ disks, convex, balanced
 
 open NormedField Set
 
-open BigOperators NNReal Pointwise Topology
+open NNReal Pointwise Topology
 
 variable {π•œ E F G ΞΉ : Type*}
 
chore: Rename IsROrC to RCLike (#10819)

IsROrC contains data, which goes against the expectation that classes prefixed with Is are prop-valued. People have been complaining about this on and off, so this PR renames IsROrC to RCLike.

Diff
@@ -125,7 +125,7 @@ instance AbsConvexOpenSets.instNonempty : Nonempty (AbsConvexOpenSets π•œ E) :=
 
 end AbsolutelyConvexSets
 
-variable [IsROrC π•œ]
+variable [RCLike π•œ]
 variable [AddCommGroup E] [TopologicalSpace E]
 variable [Module π•œ E] [Module ℝ E] [IsScalarTower ℝ π•œ E]
 variable [ContinuousSMul ℝ E]
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -45,11 +45,8 @@ variable {π•œ E F G ΞΉ : Type*}
 section NontriviallyNormedField
 
 variable (π•œ E) {s : Set E}
-
 variable [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E]
-
 variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
-
 variable [TopologicalSpace E] [LocallyConvexSpace ℝ E] [ContinuousSMul π•œ E]
 
 theorem nhds_basis_abs_convex :
@@ -82,9 +79,7 @@ end NontriviallyNormedField
 section AbsolutelyConvexSets
 
 variable [TopologicalSpace E] [AddCommMonoid E] [Zero E] [SeminormedRing π•œ]
-
 variable [SMul π•œ E] [SMul ℝ E]
-
 variable (π•œ E)
 
 /-- The type of absolutely convex open sets. -/
@@ -131,13 +126,9 @@ instance AbsConvexOpenSets.instNonempty : Nonempty (AbsConvexOpenSets π•œ E) :=
 end AbsolutelyConvexSets
 
 variable [IsROrC π•œ]
-
 variable [AddCommGroup E] [TopologicalSpace E]
-
 variable [Module π•œ E] [Module ℝ E] [IsScalarTower ℝ π•œ E]
-
 variable [ContinuousSMul ℝ E]
-
 variable (π•œ E)
 
 /-- The family of seminorms defined by the gauges of absolute convex open sets. -/
@@ -156,7 +147,6 @@ theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π•œ E) :
 #align gauge_seminorm_family_ball gaugeSeminormFamily_ball
 
 variable [TopologicalAddGroup E] [ContinuousSMul π•œ E]
-
 variable [SMulCommClass ℝ π•œ E] [LocallyConvexSpace ℝ E]
 
 /-- The topology of a locally convex space is induced by the gauge seminorm family. -/
chore(Absorbs, Balanced): more lemmas, golf, generalize (#10201)
  • add balanced_iff_closedBall_smul, balanced_neg;
  • generalize Balanced.neg_mem_iff to a SeminormedRing + NormOneClass, add Balanced.neg_eq
  • add Balanced.smul_mem_mono and Balanced.smul_congr;
  • rename Balanced.mem_smul_iff to Balanced.smul_mem_iff;
  • rename balanced_zero_union_interior to Balanced.zero_insert_interior, use insert 0 (interior A) instead of 0 βˆͺ interior A;
  • make Balanced.interior and Balanced.closure protected;
  • deprecate Absorbs.zero_mem';
  • rename balanced_convexHull_of_balanced to Balanced.convexHull;
  • add absorbs_iff_eventually_cobounded_mapsTo, use it to golf some proofs.
Diff
@@ -57,9 +57,9 @@ theorem nhds_basis_abs_convex :
   refine'
     (LocallyConvexSpace.convex_basis_zero ℝ E).to_hasBasis (fun s hs => _) fun s hs =>
       ⟨s, ⟨hs.1, hs.2.2⟩, rfl.subset⟩
-  refine' ⟨convexHull ℝ (balancedCore π•œ s), _, convexHull_min (balancedCore_subset s) hs.2⟩
-  refine' ⟨Filter.mem_of_superset (balancedCore_mem_nhds_zero hs.1) (subset_convexHull ℝ _), _⟩
-  refine' ⟨balanced_convexHull_of_balanced (balancedCore_balanced s), _⟩
+  refine ⟨convexHull ℝ (balancedCore π•œ s), ?_, convexHull_min (balancedCore_subset s) hs.2⟩
+  refine ⟨Filter.mem_of_superset (balancedCore_mem_nhds_zero hs.1) (subset_convexHull ℝ _), ?_⟩
+  refine ⟨(balancedCore_balanced s).convexHull, ?_⟩
   exact convex_convexHull ℝ (balancedCore π•œ s)
 #align nhds_basis_abs_convex nhds_basis_abs_convex
 
chore: rename lemmas containing "of_open" to match the naming convention (#8229)

Mostly, this means replacing "of_open" by "of_isOpen". A few lemmas names were misleading and are corrected differently. Zulip discussion.

Diff
@@ -152,7 +152,7 @@ theorem gaugeSeminormFamily_ball (s : AbsConvexOpenSets π•œ E) :
   dsimp only [gaugeSeminormFamily]
   rw [Seminorm.ball_zero_eq]
   simp_rw [gaugeSeminorm_toFun]
-  exact gauge_lt_one_eq_self_of_open s.coe_convex s.coe_zero_mem s.coe_isOpen
+  exact gauge_lt_one_eq_self_of_isOpen s.coe_convex s.coe_zero_mem s.coe_isOpen
 #align gauge_seminorm_family_ball gaugeSeminormFamily_ball
 
 variable [TopologicalAddGroup E] [ContinuousSMul π•œ E]
chore: missing spaces after rcases, convert and congrm (#7725)

Replace rcases( with rcases (. Same thing for convert( and congrm(. No other change.

Diff
@@ -164,7 +164,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   refine' SeminormFamily.withSeminorms_of_hasBasis _ _
   refine' (nhds_basis_abs_convex_open π•œ E).to_hasBasis (fun s hs => _) fun s hs => _
   · refine' ⟨s, ⟨_, rfl.subset⟩⟩
-    convert(gaugeSeminormFamily _ _).basisSets_singleton_mem ⟨s, hs⟩ one_pos
+    convert (gaugeSeminormFamily _ _).basisSets_singleton_mem ⟨s, hs⟩ one_pos
     rw [gaugeSeminormFamily_ball, Subtype.coe_mk]
   refine' ⟨s, ⟨_, rfl.subset⟩⟩
   rw [SeminormFamily.basisSets_iff] at hs
feat: Alexandrov-discrete spaces (#6962)

We define Alexandrov-discrete spaces as topological spaces where the intersection of a family of open sets is open.

This PR only gives a minimal API because the goal is to ensure that lemma names like isOpen_sInter are free to use for AlexandrovDiscrete. The existing lemmas are getting prefixed by Set.Finite or suffixed by _of_finite.

Diff
@@ -173,7 +173,7 @@ theorem with_gaugeSeminormFamily : WithSeminorms (gaugeSeminormFamily π•œ E) :=
   -- We have to show that the intersection contains zero, is open, balanced, and convex
   refine'
     ⟨mem_iInterβ‚‚.mpr fun _ _ => by simp [Seminorm.mem_ball_zero, hr],
-      isOpen_biInter (t.finite_toSet) fun S _ => _,
+      isOpen_biInter_finset fun S _ => _,
       balanced_iInterβ‚‚ fun _ _ => Seminorm.balanced_ball_zero _ _,
       convex_iInterβ‚‚ fun _ _ => Seminorm.convex_ball _ _ _⟩
   -- The only nontrivial part is to show that the ball is open
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -40,7 +40,7 @@ open NormedField Set
 
 open BigOperators NNReal Pointwise Topology
 
-variable {π•œ E F G ΞΉ : Type _}
+variable {π•œ E F G ΞΉ : Type*}
 
 section NontriviallyNormedField
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2022 Moritz Doll. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Moritz Doll
-
-! This file was ported from Lean 3 source module analysis.locally_convex.abs_convex
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Analysis.LocallyConvex.BalancedCoreHull
 import Mathlib.Analysis.LocallyConvex.WithSeminorms
 import Mathlib.Analysis.Convex.Gauge
 
+#align_import analysis.locally_convex.abs_convex from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # Absolutely convex sets
 
feat: port Analysis.LocallyConvex.AbsConvex (#4320)

Dependencies 10 + 667

668 files ported (98.5%)
293319 lines ported (98.2%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file