analysis.locally_convex.basic ⟷ Mathlib.Topology.Bornology.Absorbs

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -329,7 +329,7 @@ variable [NormedField π•œ] [NormedRing 𝕝] [NormedSpace π•œ 𝕝] [AddCommGr
 theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–aβ€– ≀ β€–bβ€–) : a β€’ s βŠ† b β€’ s :=
   by
   obtain rfl | hb := eq_or_ne b 0
-  Β· rw [norm_zero] at h 
+  Β· rw [norm_zero] at h
     rw [norm_eq_zero.1 (h.antisymm <| norm_nonneg _)]
     obtain rfl | h := s.eq_empty_or_nonempty
     Β· simp_rw [smul_set_empty]
@@ -360,7 +360,7 @@ theorem Balanced.subset_smul (hA : Balanced π•œ A) (ha : 1 ≀ β€–aβ€–) : A βŠ†
   by
   refine' (subset_set_smul_iffβ‚€ _).2 (hA a⁻¹ _)
   Β· rintro rfl
-    rw [norm_zero] at ha 
+    rw [norm_zero] at ha
     exact zero_lt_one.not_le ha
   Β· rw [norm_inv]
     exact inv_le_one ha
@@ -377,7 +377,7 @@ theorem Balanced.smul_eq (hA : Balanced π•œ A) (ha : β€–aβ€– = 1) : a β€’ A = A
 theorem Balanced.smul_mem_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a β€’ x ∈ s ↔ b β€’ x ∈ s :=
   by
   obtain rfl | hb := eq_or_ne b 0
-  Β· rw [norm_zero, norm_eq_zero] at h 
+  Β· rw [norm_zero, norm_eq_zero] at h
     rw [h]
   have ha : a β‰  0 := norm_ne_zero_iff.1 (ne_of_eq_of_ne h <| norm_ne_zero_iff.2 hb)
   constructor <;> intro h' <;> [rw [← inv_mul_cancel_rightβ‚€ ha b];
@@ -494,7 +494,7 @@ theorem absorbs_zero_iff : Absorbs π•œ s 0 ↔ (0 : E) ∈ s :=
   rintro ⟨r, hr, h⟩
   obtain ⟨a, ha⟩ := NormedSpace.exists_lt_norm π•œ π•œ r
   have := h _ ha.le
-  rwa [zero_subset, zero_mem_smul_set_iff] at this 
+  rwa [zero_subset, zero_mem_smul_set_iff] at this
   exact norm_ne_zero_iff.1 (hr.trans ha).ne'
 #align absorbs_zero_iff absorbs_zero_iff
 -/
@@ -531,7 +531,7 @@ variable [AddCommGroup E] [Module ℝ E] {s : Set E}
 theorem balanced_iff_neg_mem (hs : Convex ℝ s) : Balanced ℝ s ↔ βˆ€ ⦃x⦄, x ∈ s β†’ -x ∈ s :=
   by
   refine' ⟨fun h x => h.neg_mem_iff.2, fun h a ha => smul_set_subset_iff.2 fun x hx => _⟩
-  rw [Real.norm_eq_abs, abs_le] at ha 
+  rw [Real.norm_eq_abs, abs_le] at ha
   rw [show a = -((1 - a) / 2) + (a - -1) / 2 by ring, add_smul, neg_smul, ← smul_neg]
   exact
     hs (h hx) hx (div_nonneg (sub_nonneg_of_le ha.2) zero_le_two)
Diff
@@ -373,8 +373,8 @@ theorem Balanced.smul_eq (hA : Balanced π•œ A) (ha : β€–aβ€– = 1) : a β€’ A = A
 #align balanced.smul_eq Balanced.smul_eq
 -/
 
-#print Balanced.mem_smul_iff /-
-theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a β€’ x ∈ s ↔ b β€’ x ∈ s :=
+#print Balanced.smul_mem_iff /-
+theorem Balanced.smul_mem_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a β€’ x ∈ s ↔ b β€’ x ∈ s :=
   by
   obtain rfl | hb := eq_or_ne b 0
   Β· rw [norm_zero, norm_eq_zero] at h 
@@ -385,7 +385,7 @@ theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a
     Β· rw [← smul_eq_mul, smul_assoc]
       refine' hs.smul_mem _ h'
       simp [← h, ha]
-#align balanced.mem_smul_iff Balanced.mem_smul_iff
+#align balanced.mem_smul_iff Balanced.smul_mem_iff
 -/
 
 #print Balanced.neg_mem_iff /-
@@ -445,9 +445,9 @@ theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A :=
 #align absorbent_nhds_zero absorbent_nhds_zero
 -/
 
-#print balanced_zero_union_interior /-
+#print Balanced.zero_insert_interior /-
 /-- The union of `{0}` with the interior of a balanced set is balanced. -/
-theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0 : Set E) βˆͺ interior A) :=
+theorem Balanced.zero_insert_interior (hA : Balanced π•œ A) : Balanced π•œ ((0 : Set E) βˆͺ interior A) :=
   by
   intro a ha
   obtain rfl | h := eq_or_ne a 0
@@ -461,7 +461,7 @@ theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0
       calc
         a β€’ interior A βŠ† interior (a β€’ A) := (isOpenMap_smulβ‚€ h).image_interior_subset A
         _ βŠ† interior A := interior_mono (hA _ ha)
-#align balanced_zero_union_interior balanced_zero_union_interior
+#align balanced_zero_union_interior Balanced.zero_insert_interior
 -/
 
 #print Balanced.interior /-
@@ -470,7 +470,7 @@ theorem Balanced.interior (hA : Balanced π•œ A) (h : (0 : E) ∈ interior A) :
     Balanced π•œ (interior A) :=
   by
   rw [← union_eq_self_of_subset_left (singleton_subset_iff.2 h)]
-  exact balanced_zero_union_interior hA
+  exact Balanced.zero_insert_interior hA
 #align balanced.interior Balanced.interior
 -/
 
@@ -507,8 +507,8 @@ theorem Absorbent.zero_mem (hs : Absorbent π•œ s) : (0 : E) ∈ s :=
 
 variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 
-#print balanced_convexHull_of_balanced /-
-theorem balanced_convexHull_of_balanced (hs : Balanced π•œ s) : Balanced π•œ (convexHull ℝ s) :=
+#print Balanced.convexHull /-
+theorem Balanced.convexHull (hs : Balanced π•œ s) : Balanced π•œ (convexHull ℝ s) :=
   by
   suffices Convex ℝ {x | βˆ€ a : π•œ, β€–aβ€– ≀ 1 β†’ a β€’ x ∈ convexHull ℝ s}
     by
@@ -518,7 +518,7 @@ theorem balanced_convexHull_of_balanced (hs : Balanced π•œ s) : Balanced π•œ (
   intro x hx y hy u v hu hv huv a ha
   simp only [smul_add, ← smul_comm]
   exact convex_convexHull ℝ s (hx a ha) (hy a ha) hu hv huv
-#align balanced_convex_hull_of_balanced balanced_convexHull_of_balanced
+#align balanced_convex_hull_of_balanced Balanced.convexHull
 -/
 
 end NontriviallyNormedField
Diff
@@ -113,7 +113,17 @@ theorem absorbs_union : Absorbs π•œ s (u βˆͺ v) ↔ Absorbs π•œ s u ∧ Absorb
 
 #print absorbs_biUnion_finset /-
 theorem absorbs_biUnion_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
-    Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by classical
+    Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
+  classical
+  induction' t using Finset.induction_on with i t ht hi
+  Β·
+    simp only [Finset.not_mem_empty, Set.iUnion_false, Set.iUnion_empty, Absorbs.empty,
+      IsEmpty.forall_iff, imp_true_iff]
+  rw [Finset.set_biUnion_insert, absorbs_union, hi]
+  constructor <;> intro h
+  Β· refine' fun _ hi' => (finset.mem_insert.mp hi').elim _ (h.2 _)
+    exact fun hi'' => by rw [hi'']; exact h.1
+  exact ⟨h i (Finset.mem_insert_self i t), fun i' hi' => h i' (Finset.mem_insert_of_mem hi')⟩
 #align absorbs_Union_finset absorbs_biUnion_finset
 -/
 
Diff
@@ -113,17 +113,7 @@ theorem absorbs_union : Absorbs π•œ s (u βˆͺ v) ↔ Absorbs π•œ s u ∧ Absorb
 
 #print absorbs_biUnion_finset /-
 theorem absorbs_biUnion_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
-    Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
-  classical
-  induction' t using Finset.induction_on with i t ht hi
-  Β·
-    simp only [Finset.not_mem_empty, Set.iUnion_false, Set.iUnion_empty, Absorbs.empty,
-      IsEmpty.forall_iff, imp_true_iff]
-  rw [Finset.set_biUnion_insert, absorbs_union, hi]
-  constructor <;> intro h
-  Β· refine' fun _ hi' => (finset.mem_insert.mp hi').elim _ (h.2 _)
-    exact fun hi'' => by rw [hi'']; exact h.1
-  exact ⟨h i (Finset.mem_insert_self i t), fun i' hi' => h i' (Finset.mem_insert_of_mem hi')⟩
+    Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by classical
 #align absorbs_Union_finset absorbs_biUnion_finset
 -/
 
Diff
@@ -66,11 +66,11 @@ def Absorbs (A B : Set E) :=
 
 variable {π•œ} {s t u v A B : Set E}
 
-#print absorbs_empty /-
+#print Absorbs.empty /-
 @[simp]
-theorem absorbs_empty {s : Set E} : Absorbs π•œ s (βˆ… : Set E) :=
+theorem Absorbs.empty {s : Set E} : Absorbs π•œ s (βˆ… : Set E) :=
   ⟨1, one_pos, fun a ha => Set.empty_subset _⟩
-#align absorbs_empty absorbs_empty
+#align absorbs_empty Absorbs.empty
 -/
 
 #print Absorbs.mono /-
@@ -111,30 +111,30 @@ theorem absorbs_union : Absorbs π•œ s (u βˆͺ v) ↔ Absorbs π•œ s u ∧ Absorb
 #align absorbs_union absorbs_union
 -/
 
-#print absorbs_iUnion_finset /-
-theorem absorbs_iUnion_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
+#print absorbs_biUnion_finset /-
+theorem absorbs_biUnion_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
     Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
   classical
   induction' t using Finset.induction_on with i t ht hi
   Β·
-    simp only [Finset.not_mem_empty, Set.iUnion_false, Set.iUnion_empty, absorbs_empty,
+    simp only [Finset.not_mem_empty, Set.iUnion_false, Set.iUnion_empty, Absorbs.empty,
       IsEmpty.forall_iff, imp_true_iff]
   rw [Finset.set_biUnion_insert, absorbs_union, hi]
   constructor <;> intro h
   Β· refine' fun _ hi' => (finset.mem_insert.mp hi').elim _ (h.2 _)
     exact fun hi'' => by rw [hi'']; exact h.1
   exact ⟨h i (Finset.mem_insert_self i t), fun i' hi' => h i' (Finset.mem_insert_of_mem hi')⟩
-#align absorbs_Union_finset absorbs_iUnion_finset
+#align absorbs_Union_finset absorbs_biUnion_finset
 -/
 
-#print Set.Finite.absorbs_iUnion /-
-theorem Set.Finite.absorbs_iUnion {ΞΉ : Type _} {s : Set E} {t : Set ΞΉ} {f : ΞΉ β†’ Set E}
+#print Set.Finite.absorbs_biUnion /-
+theorem Set.Finite.absorbs_biUnion {ΞΉ : Type _} {s : Set E} {t : Set ΞΉ} {f : ΞΉ β†’ Set E}
     (hi : t.Finite) : Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) :=
   by
   lift t to Finset ΞΉ using hi
   simp only [Finset.mem_coe]
-  exact absorbs_iUnion_finset
-#align set.finite.absorbs_Union Set.Finite.absorbs_iUnion
+  exact absorbs_biUnion_finset
+#align set.finite.absorbs_Union Set.Finite.absorbs_biUnion
 -/
 
 variable (π•œ)
@@ -148,12 +148,12 @@ def Absorbent (A : Set E) :=
 
 variable {π•œ}
 
-#print Absorbent.subset /-
-theorem Absorbent.subset (hA : Absorbent π•œ A) (hAB : A βŠ† B) : Absorbent π•œ B :=
+#print Absorbent.mono /-
+theorem Absorbent.mono (hA : Absorbent π•œ A) (hAB : A βŠ† B) : Absorbent π•œ B :=
   by
   refine' forall_imp (fun x => _) hA
   exact Exists.imp fun r => And.imp_right <| forallβ‚‚_imp fun a ha hx => Set.smul_set_mono hAB hx
-#align absorbent.subset Absorbent.subset
+#align absorbent.subset Absorbent.mono
 -/
 
 #print absorbent_iff_forall_absorbs_singleton /-
@@ -168,7 +168,6 @@ theorem Absorbent.absorbs (hs : Absorbent π•œ s) {x : E} : Absorbs π•œ s {x} :
 #align absorbent.absorbs Absorbent.absorbs
 -/
 
-#print absorbent_iff_nonneg_lt /-
 theorem absorbent_iff_nonneg_lt :
     Absorbent π•œ A ↔ βˆ€ x, βˆƒ r, 0 ≀ r ∧ βˆ€ ⦃a : π•œβ¦„, r < β€–aβ€– β†’ x ∈ a β€’ A :=
   forall_congr' fun x =>
@@ -176,7 +175,6 @@ theorem absorbent_iff_nonneg_lt :
       ⟨r + 1, add_pos_of_nonneg_of_pos hr zero_lt_one, fun a ha =>
         hx ((lt_add_of_pos_right r zero_lt_one).trans_le ha)⟩⟩
 #align absorbent_iff_nonneg_lt absorbent_iff_nonneg_lt
--/
 
 #print Absorbent.absorbs_finite /-
 theorem Absorbent.absorbs_finite {s : Set E} (hs : Absorbent π•œ s) {v : Set E} (hv : v.Finite) :
@@ -272,11 +270,11 @@ section Module
 
 variable [AddCommGroup E] [Module π•œ E] {s s₁ sβ‚‚ t t₁ tβ‚‚ : Set E}
 
-#print Absorbs.neg /-
-theorem Absorbs.neg : Absorbs π•œ s t β†’ Absorbs π•œ (-s) (-t) :=
+#print Absorbs.neg_neg /-
+theorem Absorbs.neg_neg : Absorbs π•œ s t β†’ Absorbs π•œ (-s) (-t) :=
   Exists.imp fun r =>
     And.imp_right <| forallβ‚‚_imp fun _ _ h => (neg_subset_neg.2 h).trans (smul_set_neg _ _).Superset
-#align absorbs.neg Absorbs.neg
+#align absorbs.neg Absorbs.neg_neg
 -/
 
 #print Balanced.neg /-
Diff
@@ -232,7 +232,7 @@ theorem Balanced.inter (hA : Balanced π•œ A) (hB : Balanced π•œ B) : Balanced
 
 #print balanced_iUnion /-
 theorem balanced_iUnion {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (⋃ i, f i) :=
-  fun a ha => (smul_set_Union _ _).Subset.trans <| iUnion_mono fun _ => h _ _ ha
+  fun a ha => (smul_set_iUnion _ _).Subset.trans <| iUnion_mono fun _ => h _ _ ha
 #align balanced_Union balanced_iUnion
 -/
 
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2019 Jean Lo. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jean Lo, Bhavik Mehta, YaΓ«l Dillies
 -/
-import Mathbin.Analysis.Convex.Basic
-import Mathbin.Analysis.Convex.Hull
-import Mathbin.Analysis.NormedSpace.Basic
+import Analysis.Convex.Basic
+import Analysis.Convex.Hull
+import Analysis.NormedSpace.Basic
 
 #align_import analysis.locally_convex.basic from "leanprover-community/mathlib"@"9a48a083b390d9b84a71efbdc4e8dfa26a687104"
 
Diff
@@ -203,7 +203,7 @@ theorem balanced_iff_smul_mem : Balanced π•œ s ↔ βˆ€ ⦃a : π•œβ¦„, β€–aβ€–
 #align balanced_iff_smul_mem balanced_iff_smul_mem
 -/
 
-alias balanced_iff_smul_mem ↔ Balanced.smul_mem _
+alias ⟨Balanced.smul_mem, _⟩ := balanced_iff_smul_mem
 #align balanced.smul_mem Balanced.smul_mem
 
 #print balanced_empty /-
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2019 Jean Lo. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jean Lo, Bhavik Mehta, YaΓ«l Dillies
-
-! This file was ported from Lean 3 source module analysis.locally_convex.basic
-! leanprover-community/mathlib commit 9a48a083b390d9b84a71efbdc4e8dfa26a687104
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.Convex.Basic
 import Mathbin.Analysis.Convex.Hull
 import Mathbin.Analysis.NormedSpace.Basic
 
+#align_import analysis.locally_convex.basic from "leanprover-community/mathlib"@"9a48a083b390d9b84a71efbdc4e8dfa26a687104"
+
 /-!
 # Local convexity
 
Diff
@@ -76,19 +76,26 @@ theorem absorbs_empty {s : Set E} : Absorbs π•œ s (βˆ… : Set E) :=
 #align absorbs_empty absorbs_empty
 -/
 
+#print Absorbs.mono /-
 theorem Absorbs.mono (hs : Absorbs π•œ s u) (hst : s βŠ† t) (hvu : v βŠ† u) : Absorbs π•œ t v :=
   let ⟨r, hr, h⟩ := hs
   ⟨r, hr, fun a ha => hvu.trans <| (h _ ha).trans <| smul_set_mono hst⟩
 #align absorbs.mono Absorbs.mono
+-/
 
+#print Absorbs.mono_left /-
 theorem Absorbs.mono_left (hs : Absorbs π•œ s u) (h : s βŠ† t) : Absorbs π•œ t u :=
   hs.mono h Subset.rfl
 #align absorbs.mono_left Absorbs.mono_left
+-/
 
+#print Absorbs.mono_right /-
 theorem Absorbs.mono_right (hs : Absorbs π•œ s u) (h : v βŠ† u) : Absorbs π•œ s v :=
   hs.mono Subset.rfl h
 #align absorbs.mono_right Absorbs.mono_right
+-/
 
+#print Absorbs.union /-
 theorem Absorbs.union (hu : Absorbs π•œ s u) (hv : Absorbs π•œ s v) : Absorbs π•œ s (u βˆͺ v) :=
   by
   obtain ⟨a, ha, hu⟩ := hu
@@ -97,12 +104,15 @@ theorem Absorbs.union (hu : Absorbs π•œ s u) (hv : Absorbs π•œ s v) : Absorbs
     ⟨max a b, lt_max_of_lt_left ha, fun c hc =>
       union_subset (hu _ <| le_of_max_le_left hc) (hv _ <| le_of_max_le_right hc)⟩
 #align absorbs.union Absorbs.union
+-/
 
+#print absorbs_union /-
 @[simp]
 theorem absorbs_union : Absorbs π•œ s (u βˆͺ v) ↔ Absorbs π•œ s u ∧ Absorbs π•œ s v :=
   ⟨fun h => ⟨h.mono_right <| subset_union_left _ _, h.mono_right <| subset_union_right _ _⟩,
     fun h => h.1.union h.2⟩
 #align absorbs_union absorbs_union
+-/
 
 #print absorbs_iUnion_finset /-
 theorem absorbs_iUnion_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
@@ -141,20 +151,27 @@ def Absorbent (A : Set E) :=
 
 variable {π•œ}
 
+#print Absorbent.subset /-
 theorem Absorbent.subset (hA : Absorbent π•œ A) (hAB : A βŠ† B) : Absorbent π•œ B :=
   by
   refine' forall_imp (fun x => _) hA
   exact Exists.imp fun r => And.imp_right <| forallβ‚‚_imp fun a ha hx => Set.smul_set_mono hAB hx
 #align absorbent.subset Absorbent.subset
+-/
 
+#print absorbent_iff_forall_absorbs_singleton /-
 theorem absorbent_iff_forall_absorbs_singleton : Absorbent π•œ A ↔ βˆ€ x, Absorbs π•œ A {x} := by
   simp_rw [Absorbs, Absorbent, singleton_subset_iff]
 #align absorbent_iff_forall_absorbs_singleton absorbent_iff_forall_absorbs_singleton
+-/
 
+#print Absorbent.absorbs /-
 theorem Absorbent.absorbs (hs : Absorbent π•œ s) {x : E} : Absorbs π•œ s {x} :=
   absorbent_iff_forall_absorbs_singleton.1 hs _
 #align absorbent.absorbs Absorbent.absorbs
+-/
 
+#print absorbent_iff_nonneg_lt /-
 theorem absorbent_iff_nonneg_lt :
     Absorbent π•œ A ↔ βˆ€ x, βˆƒ r, 0 ≀ r ∧ βˆ€ ⦃a : π•œβ¦„, r < β€–aβ€– β†’ x ∈ a β€’ A :=
   forall_congr' fun x =>
@@ -162,6 +179,7 @@ theorem absorbent_iff_nonneg_lt :
       ⟨r + 1, add_pos_of_nonneg_of_pos hr zero_lt_one, fun a ha =>
         hx ((lt_add_of_pos_right r zero_lt_one).trans_le ha)⟩⟩
 #align absorbent_iff_nonneg_lt absorbent_iff_nonneg_lt
+-/
 
 #print Absorbent.absorbs_finite /-
 theorem Absorbent.absorbs_finite {s : Set E} (hs : Absorbent π•œ s) {v : Set E} (hv : v.Finite) :
@@ -182,54 +200,74 @@ def Balanced (A : Set E) :=
 
 variable {π•œ}
 
+#print balanced_iff_smul_mem /-
 theorem balanced_iff_smul_mem : Balanced π•œ s ↔ βˆ€ ⦃a : π•œβ¦„, β€–aβ€– ≀ 1 β†’ βˆ€ ⦃x : E⦄, x ∈ s β†’ a β€’ x ∈ s :=
   forallβ‚‚_congr fun a ha => smul_set_subset_iff
 #align balanced_iff_smul_mem balanced_iff_smul_mem
+-/
 
 alias balanced_iff_smul_mem ↔ Balanced.smul_mem _
 #align balanced.smul_mem Balanced.smul_mem
 
+#print balanced_empty /-
 @[simp]
 theorem balanced_empty : Balanced π•œ (βˆ… : Set E) := fun _ _ => by rw [smul_set_empty]
 #align balanced_empty balanced_empty
+-/
 
+#print balanced_univ /-
 @[simp]
 theorem balanced_univ : Balanced π•œ (univ : Set E) := fun a ha => subset_univ _
 #align balanced_univ balanced_univ
+-/
 
+#print Balanced.union /-
 theorem Balanced.union (hA : Balanced π•œ A) (hB : Balanced π•œ B) : Balanced π•œ (A βˆͺ B) := fun a ha =>
   smul_set_union.Subset.trans <| union_subset_union (hA _ ha) <| hB _ ha
 #align balanced.union Balanced.union
+-/
 
+#print Balanced.inter /-
 theorem Balanced.inter (hA : Balanced π•œ A) (hB : Balanced π•œ B) : Balanced π•œ (A ∩ B) := fun a ha =>
   smul_set_inter_subset.trans <| inter_subset_inter (hA _ ha) <| hB _ ha
 #align balanced.inter Balanced.inter
+-/
 
+#print balanced_iUnion /-
 theorem balanced_iUnion {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (⋃ i, f i) :=
   fun a ha => (smul_set_Union _ _).Subset.trans <| iUnion_mono fun _ => h _ _ ha
 #align balanced_Union balanced_iUnion
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print balanced_iUnionβ‚‚ /-
 theorem balanced_iUnionβ‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
     Balanced π•œ (⋃ (i) (j), f i j) :=
   balanced_iUnion fun _ => balanced_iUnion <| h _
 #align balanced_Unionβ‚‚ balanced_iUnionβ‚‚
+-/
 
+#print balanced_iInter /-
 theorem balanced_iInter {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (β‹‚ i, f i) :=
   fun a ha => (smul_set_iInter_subset _ _).trans <| iInter_mono fun _ => h _ _ ha
 #align balanced_Inter balanced_iInter
+-/
 
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
+#print balanced_iInterβ‚‚ /-
 theorem balanced_iInterβ‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
     Balanced π•œ (β‹‚ (i) (j), f i j) :=
   balanced_iInter fun _ => balanced_iInter <| h _
 #align balanced_Interβ‚‚ balanced_iInterβ‚‚
+-/
 
 variable [SMul 𝕝 E] [SMulCommClass π•œ 𝕝 E]
 
+#print Balanced.smul /-
 theorem Balanced.smul (a : 𝕝) (hs : Balanced π•œ s) : Balanced π•œ (a β€’ s) := fun b hb =>
   (smul_comm _ _ _).Subset.trans <| smul_set_mono <| hs _ hb
 #align balanced.smul Balanced.smul
+-/
 
 end SMul
 
@@ -237,36 +275,50 @@ section Module
 
 variable [AddCommGroup E] [Module π•œ E] {s s₁ sβ‚‚ t t₁ tβ‚‚ : Set E}
 
+#print Absorbs.neg /-
 theorem Absorbs.neg : Absorbs π•œ s t β†’ Absorbs π•œ (-s) (-t) :=
   Exists.imp fun r =>
     And.imp_right <| forallβ‚‚_imp fun _ _ h => (neg_subset_neg.2 h).trans (smul_set_neg _ _).Superset
 #align absorbs.neg Absorbs.neg
+-/
 
+#print Balanced.neg /-
 theorem Balanced.neg : Balanced π•œ s β†’ Balanced π•œ (-s) :=
   forallβ‚‚_imp fun _ _ h => (smul_set_neg _ _).Subset.trans <| neg_subset_neg.2 h
 #align balanced.neg Balanced.neg
+-/
 
+#print Absorbs.add /-
 theorem Absorbs.add : Absorbs π•œ s₁ t₁ β†’ Absorbs π•œ sβ‚‚ tβ‚‚ β†’ Absorbs π•œ (s₁ + sβ‚‚) (t₁ + tβ‚‚) :=
   fun ⟨r₁, hr₁, hβ‚βŸ© ⟨rβ‚‚, hrβ‚‚, hβ‚‚βŸ© =>
   ⟨max r₁ rβ‚‚, lt_max_of_lt_left hr₁, fun a ha =>
     (add_subset_add (h₁ _ <| le_of_max_le_left ha) <| hβ‚‚ _ <| le_of_max_le_right ha).trans
       (smul_add _ _ _).Superset⟩
 #align absorbs.add Absorbs.add
+-/
 
+#print Balanced.add /-
 theorem Balanced.add (hs : Balanced π•œ s) (ht : Balanced π•œ t) : Balanced π•œ (s + t) := fun a ha =>
   (smul_add _ _ _).Subset.trans <| add_subset_add (hs _ ha) <| ht _ ha
 #align balanced.add Balanced.add
+-/
 
+#print Absorbs.sub /-
 theorem Absorbs.sub (h₁ : Absorbs π•œ s₁ t₁) (hβ‚‚ : Absorbs π•œ sβ‚‚ tβ‚‚) : Absorbs π•œ (s₁ - sβ‚‚) (t₁ - tβ‚‚) :=
   by simp_rw [sub_eq_add_neg]; exact h₁.add hβ‚‚.neg
 #align absorbs.sub Absorbs.sub
+-/
 
+#print Balanced.sub /-
 theorem Balanced.sub (hs : Balanced π•œ s) (ht : Balanced π•œ t) : Balanced π•œ (s - t) := by
   simp_rw [sub_eq_add_neg]; exact hs.add ht.neg
 #align balanced.sub Balanced.sub
+-/
 
+#print balanced_zero /-
 theorem balanced_zero : Balanced π•œ (0 : Set E) := fun a ha => (smul_zero _).Subset
 #align balanced_zero balanced_zero
+-/
 
 end Module
 
@@ -277,6 +329,7 @@ section NormedField
 variable [NormedField π•œ] [NormedRing 𝕝] [NormedSpace π•œ 𝕝] [AddCommGroup E] [Module π•œ E]
   [SMulWithZero 𝕝 E] [IsScalarTower π•œ 𝕝 E] {s t u v A B : Set E} {x : E} {a b : π•œ}
 
+#print Balanced.smul_mono /-
 /-- Scalar multiplication (by possibly different types) of a balanced set is monotone. -/
 theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–aβ€– ≀ β€–bβ€–) : a β€’ s βŠ† b β€’ s :=
   by
@@ -293,7 +346,9 @@ theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–
   rw [norm_smul, norm_inv, ← div_eq_inv_mul]
   exact div_le_one_of_le h (norm_nonneg _)
 #align balanced.smul_mono Balanced.smul_mono
+-/
 
+#print Balanced.absorbs_self /-
 /-- A balanced set absorbs itself. -/
 theorem Balanced.absorbs_self (hA : Balanced π•œ A) : Absorbs π•œ A A :=
   by
@@ -303,7 +358,9 @@ theorem Balanced.absorbs_self (hA : Balanced π•œ A) : Absorbs π•œ A A :=
   rw [norm_inv]
   exact inv_le_one ha
 #align balanced.absorbs_self Balanced.absorbs_self
+-/
 
+#print Balanced.subset_smul /-
 theorem Balanced.subset_smul (hA : Balanced π•œ A) (ha : 1 ≀ β€–aβ€–) : A βŠ† a β€’ A :=
   by
   refine' (subset_set_smul_iffβ‚€ _).2 (hA a⁻¹ _)
@@ -313,11 +370,15 @@ theorem Balanced.subset_smul (hA : Balanced π•œ A) (ha : 1 ≀ β€–aβ€–) : A βŠ†
   Β· rw [norm_inv]
     exact inv_le_one ha
 #align balanced.subset_smul Balanced.subset_smul
+-/
 
+#print Balanced.smul_eq /-
 theorem Balanced.smul_eq (hA : Balanced π•œ A) (ha : β€–aβ€– = 1) : a β€’ A = A :=
   (hA _ ha.le).antisymm <| hA.subset_smul ha.ge
 #align balanced.smul_eq Balanced.smul_eq
+-/
 
+#print Balanced.mem_smul_iff /-
 theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a β€’ x ∈ s ↔ b β€’ x ∈ s :=
   by
   obtain rfl | hb := eq_or_ne b 0
@@ -330,11 +391,15 @@ theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a
       refine' hs.smul_mem _ h'
       simp [← h, ha]
 #align balanced.mem_smul_iff Balanced.mem_smul_iff
+-/
 
+#print Balanced.neg_mem_iff /-
 theorem Balanced.neg_mem_iff (hs : Balanced π•œ s) : -x ∈ s ↔ x ∈ s := by
   convert hs.mem_smul_iff (norm_neg 1) <;> simp only [neg_smul, one_smul]
 #align balanced.neg_mem_iff Balanced.neg_mem_iff
+-/
 
+#print Absorbs.inter /-
 theorem Absorbs.inter (hs : Absorbs π•œ s u) (ht : Absorbs π•œ t u) : Absorbs π•œ (s ∩ t) u :=
   by
   obtain ⟨a, ha, hs⟩ := hs
@@ -344,22 +409,28 @@ theorem Absorbs.inter (hs : Absorbs π•œ s u) (ht : Absorbs π•œ t u) : Absorbs
   rw [smul_set_interβ‚€ (norm_pos_iff.1 <| h.trans_le hc)]
   exact subset_inter (hs _ <| le_of_max_le_left hc) (ht _ <| le_of_max_le_right hc)
 #align absorbs.inter Absorbs.inter
+-/
 
+#print absorbs_inter /-
 @[simp]
 theorem absorbs_inter : Absorbs π•œ (s ∩ t) u ↔ Absorbs π•œ s u ∧ Absorbs π•œ t u :=
   ⟨fun h => ⟨h.mono_left <| inter_subset_left _ _, h.mono_left <| inter_subset_right _ _⟩, fun h =>
     h.1.inter h.2⟩
 #align absorbs_inter absorbs_inter
+-/
 
+#print absorbent_univ /-
 theorem absorbent_univ : Absorbent π•œ (univ : Set E) :=
   by
   refine' fun x => ⟨1, zero_lt_one, fun a ha => _⟩
   rw [smul_set_univβ‚€ (norm_pos_iff.1 <| zero_lt_one.trans_le ha)]
   exact trivial
 #align absorbent_univ absorbent_univ
+-/
 
 variable [TopologicalSpace E] [ContinuousSMul π•œ E]
 
+#print absorbent_nhds_zero /-
 /-- Every neighbourhood of the origin is absorbent. -/
 theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A :=
   by
@@ -377,7 +448,9 @@ theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A :=
     β€–a‖⁻¹ ≀ r / 2 := (inv_le (half_pos hr₁) haβ‚‚).mp ha₁
     _ < r := half_lt_self hr₁
 #align absorbent_nhds_zero absorbent_nhds_zero
+-/
 
+#print balanced_zero_union_interior /-
 /-- The union of `{0}` with the interior of a balanced set is balanced. -/
 theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0 : Set E) βˆͺ interior A) :=
   by
@@ -394,7 +467,9 @@ theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0
         a β€’ interior A βŠ† interior (a β€’ A) := (isOpenMap_smulβ‚€ h).image_interior_subset A
         _ βŠ† interior A := interior_mono (hA _ ha)
 #align balanced_zero_union_interior balanced_zero_union_interior
+-/
 
+#print Balanced.interior /-
 /-- The interior of a balanced set is balanced if it contains the origin. -/
 theorem Balanced.interior (hA : Balanced π•œ A) (h : (0 : E) ∈ interior A) :
     Balanced π•œ (interior A) :=
@@ -402,11 +477,14 @@ theorem Balanced.interior (hA : Balanced π•œ A) (h : (0 : E) ∈ interior A) :
   rw [← union_eq_self_of_subset_left (singleton_subset_iff.2 h)]
   exact balanced_zero_union_interior hA
 #align balanced.interior Balanced.interior
+-/
 
+#print Balanced.closure /-
 theorem Balanced.closure (hA : Balanced π•œ A) : Balanced π•œ (closure A) := fun a ha =>
   (image_closure_subset_closure_image <| continuous_id.const_smul _).trans <|
     closure_mono <| hA _ ha
 #align balanced.closure Balanced.closure
+-/
 
 end NormedField
 
@@ -414,6 +492,7 @@ section NontriviallyNormedField
 
 variable [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] {s : Set E}
 
+#print absorbs_zero_iff /-
 theorem absorbs_zero_iff : Absorbs π•œ s 0 ↔ (0 : E) ∈ s :=
   by
   refine' ⟨_, fun h => ⟨1, zero_lt_one, fun a _ => zero_subset.2 <| zero_mem_smul_set h⟩⟩
@@ -423,13 +502,17 @@ theorem absorbs_zero_iff : Absorbs π•œ s 0 ↔ (0 : E) ∈ s :=
   rwa [zero_subset, zero_mem_smul_set_iff] at this 
   exact norm_ne_zero_iff.1 (hr.trans ha).ne'
 #align absorbs_zero_iff absorbs_zero_iff
+-/
 
+#print Absorbent.zero_mem /-
 theorem Absorbent.zero_mem (hs : Absorbent π•œ s) : (0 : E) ∈ s :=
   absorbs_zero_iff.1 <| absorbent_iff_forall_absorbs_singleton.1 hs _
 #align absorbent.zero_mem Absorbent.zero_mem
+-/
 
 variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 
+#print balanced_convexHull_of_balanced /-
 theorem balanced_convexHull_of_balanced (hs : Balanced π•œ s) : Balanced π•œ (convexHull ℝ s) :=
   by
   suffices Convex ℝ {x | βˆ€ a : π•œ, β€–aβ€– ≀ 1 β†’ a β€’ x ∈ convexHull ℝ s}
@@ -441,6 +524,7 @@ theorem balanced_convexHull_of_balanced (hs : Balanced π•œ s) : Balanced π•œ (
   simp only [smul_add, ← smul_comm]
   exact convex_convexHull ℝ s (hx a ha) (hy a ha) hu hv huv
 #align balanced_convex_hull_of_balanced balanced_convexHull_of_balanced
+-/
 
 end NontriviallyNormedField
 
@@ -448,6 +532,7 @@ section Real
 
 variable [AddCommGroup E] [Module ℝ E] {s : Set E}
 
+#print balanced_iff_neg_mem /-
 theorem balanced_iff_neg_mem (hs : Convex ℝ s) : Balanced ℝ s ↔ βˆ€ ⦃x⦄, x ∈ s β†’ -x ∈ s :=
   by
   refine' ⟨fun h x => h.neg_mem_iff.2, fun h a ha => smul_set_subset_iff.2 fun x hx => _⟩
@@ -457,6 +542,7 @@ theorem balanced_iff_neg_mem (hs : Convex ℝ s) : Balanced ℝ s ↔ βˆ€ ⦃x
     hs (h hx) hx (div_nonneg (sub_nonneg_of_le ha.2) zero_le_two)
       (div_nonneg (sub_nonneg_of_le ha.1) zero_le_two) (by ring)
 #align balanced_iff_neg_mem balanced_iff_neg_mem
+-/
 
 end Real
 
Diff
@@ -376,7 +376,6 @@ theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A :=
   calc
     β€–a‖⁻¹ ≀ r / 2 := (inv_le (half_pos hr₁) haβ‚‚).mp ha₁
     _ < r := half_lt_self hr₁
-    
 #align absorbent_nhds_zero absorbent_nhds_zero
 
 /-- The union of `{0}` with the interior of a balanced set is balanced. -/
@@ -394,7 +393,6 @@ theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0
       calc
         a β€’ interior A βŠ† interior (a β€’ A) := (isOpenMap_smulβ‚€ h).image_interior_subset A
         _ βŠ† interior A := interior_mono (hA _ ha)
-        
 #align balanced_zero_union_interior balanced_zero_union_interior
 
 /-- The interior of a balanced set is balanced if it contains the origin. -/
Diff
@@ -108,15 +108,15 @@ theorem absorbs_union : Absorbs π•œ s (u βˆͺ v) ↔ Absorbs π•œ s u ∧ Absorb
 theorem absorbs_iUnion_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
     Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
   classical
-    induction' t using Finset.induction_on with i t ht hi
-    Β·
-      simp only [Finset.not_mem_empty, Set.iUnion_false, Set.iUnion_empty, absorbs_empty,
-        IsEmpty.forall_iff, imp_true_iff]
-    rw [Finset.set_biUnion_insert, absorbs_union, hi]
-    constructor <;> intro h
-    Β· refine' fun _ hi' => (finset.mem_insert.mp hi').elim _ (h.2 _)
-      exact fun hi'' => by rw [hi'']; exact h.1
-    exact ⟨h i (Finset.mem_insert_self i t), fun i' hi' => h i' (Finset.mem_insert_of_mem hi')⟩
+  induction' t using Finset.induction_on with i t ht hi
+  Β·
+    simp only [Finset.not_mem_empty, Set.iUnion_false, Set.iUnion_empty, absorbs_empty,
+      IsEmpty.forall_iff, imp_true_iff]
+  rw [Finset.set_biUnion_insert, absorbs_union, hi]
+  constructor <;> intro h
+  Β· refine' fun _ hi' => (finset.mem_insert.mp hi').elim _ (h.2 _)
+    exact fun hi'' => by rw [hi'']; exact h.1
+  exact ⟨h i (Finset.mem_insert_self i t), fun i' hi' => h i' (Finset.mem_insert_of_mem hi')⟩
 #align absorbs_Union_finset absorbs_iUnion_finset
 -/
 
@@ -434,7 +434,7 @@ variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 
 theorem balanced_convexHull_of_balanced (hs : Balanced π•œ s) : Balanced π•œ (convexHull ℝ s) :=
   by
-  suffices Convex ℝ { x | βˆ€ a : π•œ, β€–aβ€– ≀ 1 β†’ a β€’ x ∈ convexHull ℝ s }
+  suffices Convex ℝ {x | βˆ€ a : π•œ, β€–aβ€– ≀ 1 β†’ a β€’ x ∈ convexHull ℝ s}
     by
     rw [balanced_iff_smul_mem] at hs ⊒
     refine' fun a ha x hx => convexHull_min _ this hx a ha
Diff
@@ -281,7 +281,7 @@ variable [NormedField π•œ] [NormedRing 𝕝] [NormedSpace π•œ 𝕝] [AddCommGr
 theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–aβ€– ≀ β€–bβ€–) : a β€’ s βŠ† b β€’ s :=
   by
   obtain rfl | hb := eq_or_ne b 0
-  Β· rw [norm_zero] at h
+  Β· rw [norm_zero] at h 
     rw [norm_eq_zero.1 (h.antisymm <| norm_nonneg _)]
     obtain rfl | h := s.eq_empty_or_nonempty
     Β· simp_rw [smul_set_empty]
@@ -308,7 +308,7 @@ theorem Balanced.subset_smul (hA : Balanced π•œ A) (ha : 1 ≀ β€–aβ€–) : A βŠ†
   by
   refine' (subset_set_smul_iffβ‚€ _).2 (hA a⁻¹ _)
   Β· rintro rfl
-    rw [norm_zero] at ha
+    rw [norm_zero] at ha 
     exact zero_lt_one.not_le ha
   Β· rw [norm_inv]
     exact inv_le_one ha
@@ -321,11 +321,11 @@ theorem Balanced.smul_eq (hA : Balanced π•œ A) (ha : β€–aβ€– = 1) : a β€’ A = A
 theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a β€’ x ∈ s ↔ b β€’ x ∈ s :=
   by
   obtain rfl | hb := eq_or_ne b 0
-  Β· rw [norm_zero, norm_eq_zero] at h
+  Β· rw [norm_zero, norm_eq_zero] at h 
     rw [h]
   have ha : a β‰  0 := norm_ne_zero_iff.1 (ne_of_eq_of_ne h <| norm_ne_zero_iff.2 hb)
-  constructor <;> intro h' <;>
-      [rw [← inv_mul_cancel_rightβ‚€ ha b];rw [← inv_mul_cancel_rightβ‚€ hb a]] <;>
+  constructor <;> intro h' <;> [rw [← inv_mul_cancel_rightβ‚€ ha b];
+      rw [← inv_mul_cancel_rightβ‚€ hb a]] <;>
     Β· rw [← smul_eq_mul, smul_assoc]
       refine' hs.smul_mem _ h'
       simp [← h, ha]
@@ -385,7 +385,7 @@ theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0
   intro a ha
   obtain rfl | h := eq_or_ne a 0
   Β· rw [zero_smul_set]
-    exacts[subset_union_left _ _, ⟨0, Or.inl rfl⟩]
+    exacts [subset_union_left _ _, ⟨0, Or.inl rfl⟩]
   Β· rw [← image_smul, image_union]
     apply union_subset_union
     Β· rw [image_zero, smul_zero]
@@ -422,7 +422,7 @@ theorem absorbs_zero_iff : Absorbs π•œ s 0 ↔ (0 : E) ∈ s :=
   rintro ⟨r, hr, h⟩
   obtain ⟨a, ha⟩ := NormedSpace.exists_lt_norm π•œ π•œ r
   have := h _ ha.le
-  rwa [zero_subset, zero_mem_smul_set_iff] at this
+  rwa [zero_subset, zero_mem_smul_set_iff] at this 
   exact norm_ne_zero_iff.1 (hr.trans ha).ne'
 #align absorbs_zero_iff absorbs_zero_iff
 
@@ -436,7 +436,7 @@ theorem balanced_convexHull_of_balanced (hs : Balanced π•œ s) : Balanced π•œ (
   by
   suffices Convex ℝ { x | βˆ€ a : π•œ, β€–aβ€– ≀ 1 β†’ a β€’ x ∈ convexHull ℝ s }
     by
-    rw [balanced_iff_smul_mem] at hs⊒
+    rw [balanced_iff_smul_mem] at hs ⊒
     refine' fun a ha x hx => convexHull_min _ this hx a ha
     exact fun y hy a ha => subset_convexHull ℝ s (hs ha hy)
   intro x hx y hy u v hu hv huv a ha
@@ -453,7 +453,7 @@ variable [AddCommGroup E] [Module ℝ E] {s : Set E}
 theorem balanced_iff_neg_mem (hs : Convex ℝ s) : Balanced ℝ s ↔ βˆ€ ⦃x⦄, x ∈ s β†’ -x ∈ s :=
   by
   refine' ⟨fun h x => h.neg_mem_iff.2, fun h a ha => smul_set_subset_iff.2 fun x hx => _⟩
-  rw [Real.norm_eq_abs, abs_le] at ha
+  rw [Real.norm_eq_abs, abs_le] at ha 
   rw [show a = -((1 - a) / 2) + (a - -1) / 2 by ring, add_smul, neg_smul, ← smul_neg]
   exact
     hs (h hx) hx (div_nonneg (sub_nonneg_of_le ha.2) zero_le_two)
Diff
@@ -47,7 +47,7 @@ absorbent, balanced, locally convex, LCTVS
 
 open Set
 
-open Pointwise Topology
+open scoped Pointwise Topology
 
 variable {π•œ 𝕝 E : Type _} {ΞΉ : Sort _} {ΞΊ : ΞΉ β†’ Sort _}
 
Diff
@@ -76,43 +76,19 @@ theorem absorbs_empty {s : Set E} : Absorbs π•œ s (βˆ… : Set E) :=
 #align absorbs_empty absorbs_empty
 -/
 
-/- warning: absorbs.mono -> Absorbs.mono is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E} {t : Set.{u2} E} {u : Set.{u2} E} {v : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s u) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) v u) -> (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 t v)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E} {t : Set.{u1} E} {u : Set.{u1} E} {v : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s u) -> (HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) s t) -> (HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) v u) -> (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 t v)
-Case conversion may be inaccurate. Consider using '#align absorbs.mono Absorbs.monoβ‚“'. -/
 theorem Absorbs.mono (hs : Absorbs π•œ s u) (hst : s βŠ† t) (hvu : v βŠ† u) : Absorbs π•œ t v :=
   let ⟨r, hr, h⟩ := hs
   ⟨r, hr, fun a ha => hvu.trans <| (h _ ha).trans <| smul_set_mono hst⟩
 #align absorbs.mono Absorbs.mono
 
-/- warning: absorbs.mono_left -> Absorbs.mono_left is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E} {t : Set.{u2} E} {u : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s u) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 t u)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E} {t : Set.{u1} E} {u : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s u) -> (HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) s t) -> (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 t u)
-Case conversion may be inaccurate. Consider using '#align absorbs.mono_left Absorbs.mono_leftβ‚“'. -/
 theorem Absorbs.mono_left (hs : Absorbs π•œ s u) (h : s βŠ† t) : Absorbs π•œ t u :=
   hs.mono h Subset.rfl
 #align absorbs.mono_left Absorbs.mono_left
 
-/- warning: absorbs.mono_right -> Absorbs.mono_right is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E} {u : Set.{u2} E} {v : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s u) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) v u) -> (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s v)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E} {u : Set.{u1} E} {v : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s u) -> (HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) v u) -> (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s v)
-Case conversion may be inaccurate. Consider using '#align absorbs.mono_right Absorbs.mono_rightβ‚“'. -/
 theorem Absorbs.mono_right (hs : Absorbs π•œ s u) (h : v βŠ† u) : Absorbs π•œ s v :=
   hs.mono Subset.rfl h
 #align absorbs.mono_right Absorbs.mono_right
 
-/- warning: absorbs.union -> Absorbs.union is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E} {u : Set.{u2} E} {v : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s u) -> (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s v) -> (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s (Union.union.{u2} (Set.{u2} E) (Set.hasUnion.{u2} E) u v))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E} {u : Set.{u1} E} {v : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s u) -> (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s v) -> (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s (Union.union.{u1} (Set.{u1} E) (Set.instUnionSet.{u1} E) u v))
-Case conversion may be inaccurate. Consider using '#align absorbs.union Absorbs.unionβ‚“'. -/
 theorem Absorbs.union (hu : Absorbs π•œ s u) (hv : Absorbs π•œ s v) : Absorbs π•œ s (u βˆͺ v) :=
   by
   obtain ⟨a, ha, hu⟩ := hu
@@ -122,12 +98,6 @@ theorem Absorbs.union (hu : Absorbs π•œ s u) (hv : Absorbs π•œ s v) : Absorbs
       union_subset (hu _ <| le_of_max_le_left hc) (hv _ <| le_of_max_le_right hc)⟩
 #align absorbs.union Absorbs.union
 
-/- warning: absorbs_union -> absorbs_union is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E} {u : Set.{u2} E} {v : Set.{u2} E}, Iff (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s (Union.union.{u2} (Set.{u2} E) (Set.hasUnion.{u2} E) u v)) (And (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s u) (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s v))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E} {u : Set.{u1} E} {v : Set.{u1} E}, Iff (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s (Union.union.{u1} (Set.{u1} E) (Set.instUnionSet.{u1} E) u v)) (And (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s u) (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s v))
-Case conversion may be inaccurate. Consider using '#align absorbs_union absorbs_unionβ‚“'. -/
 @[simp]
 theorem absorbs_union : Absorbs π•œ s (u βˆͺ v) ↔ Absorbs π•œ s u ∧ Absorbs π•œ s v :=
   ⟨fun h => ⟨h.mono_right <| subset_union_left _ _, h.mono_right <| subset_union_right _ _⟩,
@@ -171,44 +141,20 @@ def Absorbent (A : Set E) :=
 
 variable {π•œ}
 
-/- warning: absorbent.subset -> Absorbent.subset is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {A : Set.{u2} E} {B : Set.{u2} E}, (Absorbent.{u1, u2} π•œ E _inst_1 _inst_2 A) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) A B) -> (Absorbent.{u1, u2} π•œ E _inst_1 _inst_2 B)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {A : Set.{u1} E} {B : Set.{u1} E}, (Absorbent.{u2, u1} π•œ E _inst_1 _inst_2 A) -> (HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) A B) -> (Absorbent.{u2, u1} π•œ E _inst_1 _inst_2 B)
-Case conversion may be inaccurate. Consider using '#align absorbent.subset Absorbent.subsetβ‚“'. -/
 theorem Absorbent.subset (hA : Absorbent π•œ A) (hAB : A βŠ† B) : Absorbent π•œ B :=
   by
   refine' forall_imp (fun x => _) hA
   exact Exists.imp fun r => And.imp_right <| forallβ‚‚_imp fun a ha hx => Set.smul_set_mono hAB hx
 #align absorbent.subset Absorbent.subset
 
-/- warning: absorbent_iff_forall_absorbs_singleton -> absorbent_iff_forall_absorbs_singleton is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {A : Set.{u2} E}, Iff (Absorbent.{u1, u2} π•œ E _inst_1 _inst_2 A) (forall (x : E), Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 A (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) x))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {A : Set.{u1} E}, Iff (Absorbent.{u2, u1} π•œ E _inst_1 _inst_2 A) (forall (x : E), Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 A (Singleton.singleton.{u1, u1} E (Set.{u1} E) (Set.instSingletonSet.{u1} E) x))
-Case conversion may be inaccurate. Consider using '#align absorbent_iff_forall_absorbs_singleton absorbent_iff_forall_absorbs_singletonβ‚“'. -/
 theorem absorbent_iff_forall_absorbs_singleton : Absorbent π•œ A ↔ βˆ€ x, Absorbs π•œ A {x} := by
   simp_rw [Absorbs, Absorbent, singleton_subset_iff]
 #align absorbent_iff_forall_absorbs_singleton absorbent_iff_forall_absorbs_singleton
 
-/- warning: absorbent.absorbs -> Absorbent.absorbs is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E}, (Absorbent.{u1, u2} π•œ E _inst_1 _inst_2 s) -> (forall {x : E}, Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) x))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E}, (Absorbent.{u2, u1} π•œ E _inst_1 _inst_2 s) -> (forall {x : E}, Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s (Singleton.singleton.{u1, u1} E (Set.{u1} E) (Set.instSingletonSet.{u1} E) x))
-Case conversion may be inaccurate. Consider using '#align absorbent.absorbs Absorbent.absorbsβ‚“'. -/
 theorem Absorbent.absorbs (hs : Absorbent π•œ s) {x : E} : Absorbs π•œ s {x} :=
   absorbent_iff_forall_absorbs_singleton.1 hs _
 #align absorbent.absorbs Absorbent.absorbs
 
-/- warning: absorbent_iff_nonneg_lt -> absorbent_iff_nonneg_lt is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {A : Set.{u2} E}, Iff (Absorbent.{u1, u2} π•œ E _inst_1 _inst_2 A) (forall (x : E), Exists.{1} Real (fun (r : Real) => And (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) (forall {{a : π•œ}}, (LT.lt.{0} Real Real.hasLt r (Norm.norm.{u1} π•œ (SeminormedRing.toHasNorm.{u1} π•œ _inst_1) a)) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x (SMul.smul.{u1, u2} π•œ (Set.{u2} E) (Set.smulSet.{u1, u2} π•œ E _inst_2) a A)))))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {A : Set.{u1} E}, Iff (Absorbent.{u2, u1} π•œ E _inst_1 _inst_2 A) (forall (x : E), Exists.{1} Real (fun (r : Real) => And (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) (forall {{a : π•œ}}, (LT.lt.{0} Real Real.instLTReal r (Norm.norm.{u2} π•œ (SeminormedRing.toNorm.{u2} π•œ _inst_1) a)) -> (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) x (HSMul.hSMul.{u2, u1, u1} π•œ (Set.{u1} E) (Set.{u1} E) (instHSMul.{u2, u1} π•œ (Set.{u1} E) (Set.smulSet.{u2, u1} π•œ E _inst_2)) a A)))))
-Case conversion may be inaccurate. Consider using '#align absorbent_iff_nonneg_lt absorbent_iff_nonneg_ltβ‚“'. -/
 theorem absorbent_iff_nonneg_lt :
     Absorbent π•œ A ↔ βˆ€ x, βˆƒ r, 0 ≀ r ∧ βˆ€ ⦃a : π•œβ¦„, r < β€–aβ€– β†’ x ∈ a β€’ A :=
   forall_congr' fun x =>
@@ -236,103 +182,43 @@ def Balanced (A : Set E) :=
 
 variable {π•œ}
 
-/- warning: balanced_iff_smul_mem -> balanced_iff_smul_mem is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E}, Iff (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 s) (forall {{a : π•œ}}, (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (SeminormedRing.toHasNorm.{u1} π•œ _inst_1) a) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) -> (forall {{x : E}}, (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (SMul.smul.{u1, u2} π•œ E _inst_2 a x) s)))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E}, Iff (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 s) (forall {{a : π•œ}}, (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} π•œ (SeminormedRing.toNorm.{u2} π•œ _inst_1) a) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) -> (forall {{x : E}}, (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) x s) -> (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (HSMul.hSMul.{u2, u1, u1} π•œ E E (instHSMul.{u2, u1} π•œ E _inst_2) a x) s)))
-Case conversion may be inaccurate. Consider using '#align balanced_iff_smul_mem balanced_iff_smul_memβ‚“'. -/
 theorem balanced_iff_smul_mem : Balanced π•œ s ↔ βˆ€ ⦃a : π•œβ¦„, β€–aβ€– ≀ 1 β†’ βˆ€ ⦃x : E⦄, x ∈ s β†’ a β€’ x ∈ s :=
   forallβ‚‚_congr fun a ha => smul_set_subset_iff
 #align balanced_iff_smul_mem balanced_iff_smul_mem
 
-/- warning: balanced.smul_mem -> Balanced.smul_mem is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E}, (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 s) -> (forall {{a : π•œ}}, (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (SeminormedRing.toHasNorm.{u1} π•œ _inst_1) a) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) -> (forall {{x : E}}, (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (SMul.smul.{u1, u2} π•œ E _inst_2 a x) s)))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 s) -> (forall {{a : π•œ}}, (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} π•œ (SeminormedRing.toNorm.{u2} π•œ _inst_1) a) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) -> (forall {{x : E}}, (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) x s) -> (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (HSMul.hSMul.{u2, u1, u1} π•œ E E (instHSMul.{u2, u1} π•œ E _inst_2) a x) s)))
-Case conversion may be inaccurate. Consider using '#align balanced.smul_mem Balanced.smul_memβ‚“'. -/
 alias balanced_iff_smul_mem ↔ Balanced.smul_mem _
 #align balanced.smul_mem Balanced.smul_mem
 
-/- warning: balanced_empty -> balanced_empty is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E], Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (EmptyCollection.emptyCollection.{u2} (Set.{u2} E) (Set.hasEmptyc.{u2} E))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E], Balanced.{u2, u1} π•œ E _inst_1 _inst_2 (EmptyCollection.emptyCollection.{u1} (Set.{u1} E) (Set.instEmptyCollectionSet.{u1} E))
-Case conversion may be inaccurate. Consider using '#align balanced_empty balanced_emptyβ‚“'. -/
 @[simp]
 theorem balanced_empty : Balanced π•œ (βˆ… : Set E) := fun _ _ => by rw [smul_set_empty]
 #align balanced_empty balanced_empty
 
-/- warning: balanced_univ -> balanced_univ is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E], Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.univ.{u2} E)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E], Balanced.{u2, u1} π•œ E _inst_1 _inst_2 (Set.univ.{u1} E)
-Case conversion may be inaccurate. Consider using '#align balanced_univ balanced_univβ‚“'. -/
 @[simp]
 theorem balanced_univ : Balanced π•œ (univ : Set E) := fun a ha => subset_univ _
 #align balanced_univ balanced_univ
 
-/- warning: balanced.union -> Balanced.union is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {A : Set.{u2} E} {B : Set.{u2} E}, (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 A) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 B) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} E) (Set.hasUnion.{u2} E) A B))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {A : Set.{u1} E} {B : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 A) -> (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 B) -> (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 (Union.union.{u1} (Set.{u1} E) (Set.instUnionSet.{u1} E) A B))
-Case conversion may be inaccurate. Consider using '#align balanced.union Balanced.unionβ‚“'. -/
 theorem Balanced.union (hA : Balanced π•œ A) (hB : Balanced π•œ B) : Balanced π•œ (A βˆͺ B) := fun a ha =>
   smul_set_union.Subset.trans <| union_subset_union (hA _ ha) <| hB _ ha
 #align balanced.union Balanced.union
 
-/- warning: balanced.inter -> Balanced.inter is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {A : Set.{u2} E} {B : Set.{u2} E}, (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 A) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 B) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) A B))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {A : Set.{u1} E} {B : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 A) -> (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 B) -> (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 (Inter.inter.{u1} (Set.{u1} E) (Set.instInterSet.{u1} E) A B))
-Case conversion may be inaccurate. Consider using '#align balanced.inter Balanced.interβ‚“'. -/
 theorem Balanced.inter (hA : Balanced π•œ A) (hB : Balanced π•œ B) : Balanced π•œ (A ∩ B) := fun a ha =>
   smul_set_inter_subset.trans <| inter_subset_inter (hA _ ha) <| hB _ ha
 #align balanced.inter Balanced.inter
 
-/- warning: balanced_Union -> balanced_iUnion is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : ΞΉ -> (Set.{u2} E)}, (forall (i : ΞΉ), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.iUnion.{u2, u3} E ΞΉ (fun (i : ΞΉ) => f i)))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u3}} {ΞΉ : Sort.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u3} π•œ E] {f : ΞΉ -> (Set.{u3} E)}, (forall (i : ΞΉ), Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (Set.iUnion.{u3, u1} E ΞΉ (fun (i : ΞΉ) => f i)))
-Case conversion may be inaccurate. Consider using '#align balanced_Union balanced_iUnionβ‚“'. -/
 theorem balanced_iUnion {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (⋃ i, f i) :=
   fun a ha => (smul_set_Union _ _).Subset.trans <| iUnion_mono fun _ => h _ _ ha
 #align balanced_Union balanced_iUnion
 
-/- warning: balanced_Unionβ‚‚ -> balanced_iUnionβ‚‚ is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} {ΞΊ : ΞΉ -> Sort.{u4}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u2} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.iUnion.{u2, u3} E ΞΉ (fun (i : ΞΉ) => Set.iUnion.{u2, u4} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
-but is expected to have type
-  forall {π•œ : Type.{u3}} {E : Type.{u4}} {ΞΉ : Sort.{u2}} {ΞΊ : ΞΉ -> Sort.{u1}} [_inst_1 : SeminormedRing.{u3} π•œ] [_inst_2 : SMul.{u3, u4} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u4} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (Set.iUnion.{u4, u2} E ΞΉ (fun (i : ΞΉ) => Set.iUnion.{u4, u1} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
-Case conversion may be inaccurate. Consider using '#align balanced_Unionβ‚‚ balanced_iUnionβ‚‚β‚“'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem balanced_iUnionβ‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
     Balanced π•œ (⋃ (i) (j), f i j) :=
   balanced_iUnion fun _ => balanced_iUnion <| h _
 #align balanced_Unionβ‚‚ balanced_iUnionβ‚‚
 
-/- warning: balanced_Inter -> balanced_iInter is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : ΞΉ -> (Set.{u2} E)}, (forall (i : ΞΉ), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.iInter.{u2, u3} E ΞΉ (fun (i : ΞΉ) => f i)))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u3}} {ΞΉ : Sort.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u3} π•œ E] {f : ΞΉ -> (Set.{u3} E)}, (forall (i : ΞΉ), Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (Set.iInter.{u3, u1} E ΞΉ (fun (i : ΞΉ) => f i)))
-Case conversion may be inaccurate. Consider using '#align balanced_Inter balanced_iInterβ‚“'. -/
 theorem balanced_iInter {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (β‹‚ i, f i) :=
   fun a ha => (smul_set_iInter_subset _ _).trans <| iInter_mono fun _ => h _ _ ha
 #align balanced_Inter balanced_iInter
 
-/- warning: balanced_Interβ‚‚ -> balanced_iInterβ‚‚ is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} {ΞΊ : ΞΉ -> Sort.{u4}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u2} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.iInter.{u2, u3} E ΞΉ (fun (i : ΞΉ) => Set.iInter.{u2, u4} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
-but is expected to have type
-  forall {π•œ : Type.{u3}} {E : Type.{u4}} {ΞΉ : Sort.{u2}} {ΞΊ : ΞΉ -> Sort.{u1}} [_inst_1 : SeminormedRing.{u3} π•œ] [_inst_2 : SMul.{u3, u4} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u4} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (Set.iInter.{u4, u2} E ΞΉ (fun (i : ΞΉ) => Set.iInter.{u4, u1} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
-Case conversion may be inaccurate. Consider using '#align balanced_Interβ‚‚ balanced_iInterβ‚‚β‚“'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
 theorem balanced_iInterβ‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
     Balanced π•œ (β‹‚ (i) (j), f i j) :=
@@ -341,12 +227,6 @@ theorem balanced_iInterβ‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced 
 
 variable [SMul 𝕝 E] [SMulCommClass π•œ 𝕝 E]
 
-/- warning: balanced.smul -> Balanced.smul is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {𝕝 : Type.{u2}} {E : Type.{u3}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u3} π•œ E] {s : Set.{u3} E} [_inst_3 : SMul.{u2, u3} 𝕝 E] [_inst_4 : SMulCommClass.{u1, u2, u3} π•œ 𝕝 E _inst_2 _inst_3] (a : 𝕝), (Balanced.{u1, u3} π•œ E _inst_1 _inst_2 s) -> (Balanced.{u1, u3} π•œ E _inst_1 _inst_2 (SMul.smul.{u2, u3} 𝕝 (Set.{u3} E) (Set.smulSet.{u2, u3} 𝕝 E _inst_3) a s))
-but is expected to have type
-  forall {π•œ : Type.{u3}} {𝕝 : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u3} π•œ] [_inst_2 : SMul.{u3, u2} π•œ E] {s : Set.{u2} E} [_inst_3 : SMul.{u1, u2} 𝕝 E] [_inst_4 : SMulCommClass.{u3, u1, u2} π•œ 𝕝 E _inst_2 _inst_3] (a : 𝕝), (Balanced.{u3, u2} π•œ E _inst_1 _inst_2 s) -> (Balanced.{u3, u2} π•œ E _inst_1 _inst_2 (HSMul.hSMul.{u1, u2, u2} 𝕝 (Set.{u2} E) (Set.{u2} E) (instHSMul.{u1, u2} 𝕝 (Set.{u2} E) (Set.smulSet.{u1, u2} 𝕝 E _inst_3)) a s))
-Case conversion may be inaccurate. Consider using '#align balanced.smul Balanced.smulβ‚“'. -/
 theorem Balanced.smul (a : 𝕝) (hs : Balanced π•œ s) : Balanced π•œ (a β€’ s) := fun b hb =>
   (smul_comm _ _ _).Subset.trans <| smul_set_mono <| hs _ hb
 #align balanced.smul Balanced.smul
@@ -357,33 +237,15 @@ section Module
 
 variable [AddCommGroup E] [Module π•œ E] {s s₁ sβ‚‚ t t₁ tβ‚‚ : Set E}
 
-/- warning: absorbs.neg -> Absorbs.neg is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E} {t : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s t) -> (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Neg.neg.{u2} (Set.{u2} E) (Set.neg.{u2} E (SubNegMonoid.toHasNeg.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))) s) (Neg.neg.{u2} (Set.{u2} E) (Set.neg.{u2} E (SubNegMonoid.toHasNeg.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))) t))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E} {t : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s t) -> (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (Neg.neg.{u1} (Set.{u1} E) (Set.neg.{u1} E (NegZeroClass.toNeg.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2)))))) s) (Neg.neg.{u1} (Set.{u1} E) (Set.neg.{u1} E (NegZeroClass.toNeg.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2)))))) t))
-Case conversion may be inaccurate. Consider using '#align absorbs.neg Absorbs.negβ‚“'. -/
 theorem Absorbs.neg : Absorbs π•œ s t β†’ Absorbs π•œ (-s) (-t) :=
   Exists.imp fun r =>
     And.imp_right <| forallβ‚‚_imp fun _ _ h => (neg_subset_neg.2 h).trans (smul_set_neg _ _).Superset
 #align absorbs.neg Absorbs.neg
 
-/- warning: balanced.neg -> Balanced.neg is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E}, (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) -> (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Neg.neg.{u2} (Set.{u2} E) (Set.neg.{u2} E (SubNegMonoid.toHasNeg.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))) s))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s) -> (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (Neg.neg.{u1} (Set.{u1} E) (Set.neg.{u1} E (NegZeroClass.toNeg.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2)))))) s))
-Case conversion may be inaccurate. Consider using '#align balanced.neg Balanced.negβ‚“'. -/
 theorem Balanced.neg : Balanced π•œ s β†’ Balanced π•œ (-s) :=
   forallβ‚‚_imp fun _ _ h => (smul_set_neg _ _).Subset.trans <| neg_subset_neg.2 h
 #align balanced.neg Balanced.neg
 
-/- warning: absorbs.add -> Absorbs.add is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s₁ : Set.{u2} E} {sβ‚‚ : Set.{u2} E} {t₁ : Set.{u2} E} {tβ‚‚ : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s₁ t₁) -> (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) sβ‚‚ tβ‚‚) -> (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (HAdd.hAdd.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHAdd.{u2} (Set.{u2} E) (Set.add.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))) s₁ sβ‚‚) (HAdd.hAdd.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHAdd.{u2} (Set.{u2} E) (Set.add.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))) t₁ tβ‚‚))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s₁ : Set.{u1} E} {sβ‚‚ : Set.{u1} E} {t₁ : Set.{u1} E} {tβ‚‚ : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s₁ t₁) -> (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) sβ‚‚ tβ‚‚) -> (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (HAdd.hAdd.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHAdd.{u1} (Set.{u1} E) (Set.add.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))))) s₁ sβ‚‚) (HAdd.hAdd.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHAdd.{u1} (Set.{u1} E) (Set.add.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))))) t₁ tβ‚‚))
-Case conversion may be inaccurate. Consider using '#align absorbs.add Absorbs.addβ‚“'. -/
 theorem Absorbs.add : Absorbs π•œ s₁ t₁ β†’ Absorbs π•œ sβ‚‚ tβ‚‚ β†’ Absorbs π•œ (s₁ + sβ‚‚) (t₁ + tβ‚‚) :=
   fun ⟨r₁, hr₁, hβ‚βŸ© ⟨rβ‚‚, hrβ‚‚, hβ‚‚βŸ© =>
   ⟨max r₁ rβ‚‚, lt_max_of_lt_left hr₁, fun a ha =>
@@ -391,42 +253,18 @@ theorem Absorbs.add : Absorbs π•œ s₁ t₁ β†’ Absorbs π•œ sβ‚‚ tβ‚‚ β†’ Abso
       (smul_add _ _ _).Superset⟩
 #align absorbs.add Absorbs.add
 
-/- warning: balanced.add -> Balanced.add is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E} {t : Set.{u2} E}, (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) -> (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) t) -> (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (HAdd.hAdd.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHAdd.{u2} (Set.{u2} E) (Set.add.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))) s t))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E} {t : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s) -> (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) t) -> (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (HAdd.hAdd.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHAdd.{u1} (Set.{u1} E) (Set.add.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))))) s t))
-Case conversion may be inaccurate. Consider using '#align balanced.add Balanced.addβ‚“'. -/
 theorem Balanced.add (hs : Balanced π•œ s) (ht : Balanced π•œ t) : Balanced π•œ (s + t) := fun a ha =>
   (smul_add _ _ _).Subset.trans <| add_subset_add (hs _ ha) <| ht _ ha
 #align balanced.add Balanced.add
 
-/- warning: absorbs.sub -> Absorbs.sub is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s₁ : Set.{u2} E} {sβ‚‚ : Set.{u2} E} {t₁ : Set.{u2} E} {tβ‚‚ : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s₁ t₁) -> (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) sβ‚‚ tβ‚‚) -> (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (HSub.hSub.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHSub.{u2} (Set.{u2} E) (Set.sub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) s₁ sβ‚‚) (HSub.hSub.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHSub.{u2} (Set.{u2} E) (Set.sub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) t₁ tβ‚‚))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s₁ : Set.{u1} E} {sβ‚‚ : Set.{u1} E} {t₁ : Set.{u1} E} {tβ‚‚ : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s₁ t₁) -> (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) sβ‚‚ tβ‚‚) -> (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (HSub.hSub.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHSub.{u1} (Set.{u1} E) (Set.sub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))) s₁ sβ‚‚) (HSub.hSub.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHSub.{u1} (Set.{u1} E) (Set.sub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))) t₁ tβ‚‚))
-Case conversion may be inaccurate. Consider using '#align absorbs.sub Absorbs.subβ‚“'. -/
 theorem Absorbs.sub (h₁ : Absorbs π•œ s₁ t₁) (hβ‚‚ : Absorbs π•œ sβ‚‚ tβ‚‚) : Absorbs π•œ (s₁ - sβ‚‚) (t₁ - tβ‚‚) :=
   by simp_rw [sub_eq_add_neg]; exact h₁.add hβ‚‚.neg
 #align absorbs.sub Absorbs.sub
 
-/- warning: balanced.sub -> Balanced.sub is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E} {t : Set.{u2} E}, (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) -> (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) t) -> (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (HSub.hSub.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHSub.{u2} (Set.{u2} E) (Set.sub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) s t))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E} {t : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s) -> (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) t) -> (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (HSub.hSub.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHSub.{u1} (Set.{u1} E) (Set.sub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))) s t))
-Case conversion may be inaccurate. Consider using '#align balanced.sub Balanced.subβ‚“'. -/
 theorem Balanced.sub (hs : Balanced π•œ s) (ht : Balanced π•œ t) : Balanced π•œ (s - t) := by
   simp_rw [sub_eq_add_neg]; exact hs.add ht.neg
 #align balanced.sub Balanced.sub
 
-/- warning: balanced_zero -> balanced_zero is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)], Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (OfNat.ofNat.{u2} (Set.{u2} E) 0 (OfNat.mk.{u2} (Set.{u2} E) 0 (Zero.zero.{u2} (Set.{u2} E) (Set.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)], Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (OfNat.ofNat.{u1} (Set.{u1} E) 0 (Zero.toOfNat0.{u1} (Set.{u1} E) (Set.zero.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))))
-Case conversion may be inaccurate. Consider using '#align balanced_zero balanced_zeroβ‚“'. -/
 theorem balanced_zero : Balanced π•œ (0 : Set E) := fun a ha => (smul_zero _).Subset
 #align balanced_zero balanced_zero
 
@@ -439,9 +277,6 @@ section NormedField
 variable [NormedField π•œ] [NormedRing 𝕝] [NormedSpace π•œ 𝕝] [AddCommGroup E] [Module π•œ E]
   [SMulWithZero 𝕝 E] [IsScalarTower π•œ 𝕝 E] {s t u v A B : Set E} {x : E} {a b : π•œ}
 
-/- warning: balanced.smul_mono -> Balanced.smul_mono is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align balanced.smul_mono Balanced.smul_monoβ‚“'. -/
 /-- Scalar multiplication (by possibly different types) of a balanced set is monotone. -/
 theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–aβ€– ≀ β€–bβ€–) : a β€’ s βŠ† b β€’ s :=
   by
@@ -459,12 +294,6 @@ theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–
   exact div_le_one_of_le h (norm_nonneg _)
 #align balanced.smul_mono Balanced.smul_mono
 
-/- warning: balanced.absorbs_self -> Balanced.absorbs_self is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E}, (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A) -> (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A A)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {A : Set.{u1} E}, (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A) -> (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A A)
-Case conversion may be inaccurate. Consider using '#align balanced.absorbs_self Balanced.absorbs_selfβ‚“'. -/
 /-- A balanced set absorbs itself. -/
 theorem Balanced.absorbs_self (hA : Balanced π•œ A) : Absorbs π•œ A A :=
   by
@@ -475,12 +304,6 @@ theorem Balanced.absorbs_self (hA : Balanced π•œ A) : Absorbs π•œ A A :=
   exact inv_le_one ha
 #align balanced.absorbs_self Balanced.absorbs_self
 
-/- warning: balanced.subset_smul -> Balanced.subset_smul is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} {a : π•œ}, (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ _inst_1) a)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) A (SMul.smul.{u1, u2} π•œ (Set.{u2} E) (Set.smulSet.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5))))) a A))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {A : Set.{u1} E} {a : π•œ}, (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ _inst_1) a)) -> (HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) A (HSMul.hSMul.{u2, u1, u1} π•œ (Set.{u1} E) (Set.{u1} E) (instHSMul.{u2, u1} π•œ (Set.{u1} E) (Set.smulSet.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))))) a A))
-Case conversion may be inaccurate. Consider using '#align balanced.subset_smul Balanced.subset_smulβ‚“'. -/
 theorem Balanced.subset_smul (hA : Balanced π•œ A) (ha : 1 ≀ β€–aβ€–) : A βŠ† a β€’ A :=
   by
   refine' (subset_set_smul_iffβ‚€ _).2 (hA a⁻¹ _)
@@ -491,19 +314,10 @@ theorem Balanced.subset_smul (hA : Balanced π•œ A) (ha : 1 ≀ β€–aβ€–) : A βŠ†
     exact inv_le_one ha
 #align balanced.subset_smul Balanced.subset_smul
 
-/- warning: balanced.smul_eq -> Balanced.smul_eq is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} {a : π•œ}, (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A) -> (Eq.{1} Real (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ _inst_1) a) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) -> (Eq.{succ u2} (Set.{u2} E) (SMul.smul.{u1, u2} π•œ (Set.{u2} E) (Set.smulSet.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5))))) a A) A)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {A : Set.{u1} E} {a : π•œ}, (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A) -> (Eq.{1} Real (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ _inst_1) a) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) -> (Eq.{succ u1} (Set.{u1} E) (HSMul.hSMul.{u2, u1, u1} π•œ (Set.{u1} E) (Set.{u1} E) (instHSMul.{u2, u1} π•œ (Set.{u1} E) (Set.smulSet.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))))) a A) A)
-Case conversion may be inaccurate. Consider using '#align balanced.smul_eq Balanced.smul_eqβ‚“'. -/
 theorem Balanced.smul_eq (hA : Balanced π•œ A) (ha : β€–aβ€– = 1) : a β€’ A = A :=
   (hA _ ha.le).antisymm <| hA.subset_smul ha.ge
 #align balanced.smul_eq Balanced.smul_eq
 
-/- warning: balanced.mem_smul_iff -> Balanced.mem_smul_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align balanced.mem_smul_iff Balanced.mem_smul_iffβ‚“'. -/
 theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a β€’ x ∈ s ↔ b β€’ x ∈ s :=
   by
   obtain rfl | hb := eq_or_ne b 0
@@ -517,22 +331,10 @@ theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a
       simp [← h, ha]
 #align balanced.mem_smul_iff Balanced.mem_smul_iff
 
-/- warning: balanced.neg_mem_iff -> Balanced.neg_mem_iff is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {s : Set.{u2} E} {x : E}, (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) s) -> (Iff (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (Neg.neg.{u2} E (SubNegMonoid.toHasNeg.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_4))) x) s) (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {s : Set.{u1} E} {x : E}, (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) s) -> (Iff (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (Neg.neg.{u1} E (NegZeroClass.toNeg.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) x) s) (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) x s))
-Case conversion may be inaccurate. Consider using '#align balanced.neg_mem_iff Balanced.neg_mem_iffβ‚“'. -/
 theorem Balanced.neg_mem_iff (hs : Balanced π•œ s) : -x ∈ s ↔ x ∈ s := by
   convert hs.mem_smul_iff (norm_neg 1) <;> simp only [neg_smul, one_smul]
 #align balanced.neg_mem_iff Balanced.neg_mem_iff
 
-/- warning: absorbs.inter -> Absorbs.inter is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {s : Set.{u2} E} {t : Set.{u2} E} {u : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) s u) -> (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) t u) -> (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) u)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {s : Set.{u1} E} {t : Set.{u1} E} {u : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) s u) -> (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) t u) -> (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (Inter.inter.{u1} (Set.{u1} E) (Set.instInterSet.{u1} E) s t) u)
-Case conversion may be inaccurate. Consider using '#align absorbs.inter Absorbs.interβ‚“'. -/
 theorem Absorbs.inter (hs : Absorbs π•œ s u) (ht : Absorbs π•œ t u) : Absorbs π•œ (s ∩ t) u :=
   by
   obtain ⟨a, ha, hs⟩ := hs
@@ -543,24 +345,12 @@ theorem Absorbs.inter (hs : Absorbs π•œ s u) (ht : Absorbs π•œ t u) : Absorbs
   exact subset_inter (hs _ <| le_of_max_le_left hc) (ht _ <| le_of_max_le_right hc)
 #align absorbs.inter Absorbs.inter
 
-/- warning: absorbs_inter -> absorbs_inter is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {s : Set.{u2} E} {t : Set.{u2} E} {u : Set.{u2} E}, Iff (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) u) (And (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) s u) (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) t u))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {s : Set.{u1} E} {t : Set.{u1} E} {u : Set.{u1} E}, Iff (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (Inter.inter.{u1} (Set.{u1} E) (Set.instInterSet.{u1} E) s t) u) (And (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) s u) (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) t u))
-Case conversion may be inaccurate. Consider using '#align absorbs_inter absorbs_interβ‚“'. -/
 @[simp]
 theorem absorbs_inter : Absorbs π•œ (s ∩ t) u ↔ Absorbs π•œ s u ∧ Absorbs π•œ t u :=
   ⟨fun h => ⟨h.mono_left <| inter_subset_left _ _, h.mono_left <| inter_subset_right _ _⟩, fun h =>
     h.1.inter h.2⟩
 #align absorbs_inter absorbs_inter
 
-/- warning: absorbent_univ -> absorbent_univ is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)], Absorbent.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (Set.univ.{u2} E)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)], Absorbent.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (Set.univ.{u1} E)
-Case conversion may be inaccurate. Consider using '#align absorbent_univ absorbent_univβ‚“'. -/
 theorem absorbent_univ : Absorbent π•œ (univ : Set E) :=
   by
   refine' fun x => ⟨1, zero_lt_one, fun a ha => _⟩
@@ -570,12 +360,6 @@ theorem absorbent_univ : Absorbent π•œ (univ : Set E) :=
 
 variable [TopologicalSpace E] [ContinuousSMul π•œ E]
 
-/- warning: absorbent_nhds_zero -> absorbent_nhds_zero is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_8], (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) A (nhds.{u2} E _inst_8 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_4)))))))))) -> (Absorbent.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A)
-but is expected to have type
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_8], (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) A (nhds.{u2} E _inst_8 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))))))) -> (Absorbent.{u1, u2} π•œ E (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A)
-Case conversion may be inaccurate. Consider using '#align absorbent_nhds_zero absorbent_nhds_zeroβ‚“'. -/
 /-- Every neighbourhood of the origin is absorbent. -/
 theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A :=
   by
@@ -595,9 +379,6 @@ theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A :=
     
 #align absorbent_nhds_zero absorbent_nhds_zero
 
-/- warning: balanced_zero_union_interior -> balanced_zero_union_interior is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align balanced_zero_union_interior balanced_zero_union_interiorβ‚“'. -/
 /-- The union of `{0}` with the interior of a balanced set is balanced. -/
 theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0 : Set E) βˆͺ interior A) :=
   by
@@ -616,9 +397,6 @@ theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0
         
 #align balanced_zero_union_interior balanced_zero_union_interior
 
-/- warning: balanced.interior -> Balanced.interior is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align balanced.interior Balanced.interiorβ‚“'. -/
 /-- The interior of a balanced set is balanced if it contains the origin. -/
 theorem Balanced.interior (hA : Balanced π•œ A) (h : (0 : E) ∈ interior A) :
     Balanced π•œ (interior A) :=
@@ -627,9 +405,6 @@ theorem Balanced.interior (hA : Balanced π•œ A) (h : (0 : E) ∈ interior A) :
   exact balanced_zero_union_interior hA
 #align balanced.interior Balanced.interior
 
-/- warning: balanced.closure -> Balanced.closure is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align balanced.closure Balanced.closureβ‚“'. -/
 theorem Balanced.closure (hA : Balanced π•œ A) : Balanced π•œ (closure A) := fun a ha =>
   (image_closure_subset_closure_image <| continuous_id.const_smul _).trans <|
     closure_mono <| hA _ ha
@@ -641,12 +416,6 @@ section NontriviallyNormedField
 
 variable [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] {s : Set E}
 
-/- warning: absorbs_zero_iff -> absorbs_zero_iff is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E}, Iff (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s (OfNat.ofNat.{u2} (Set.{u2} E) 0 (OfNat.mk.{u2} (Set.{u2} E) 0 (Zero.zero.{u2} (Set.{u2} E) (Set.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))))) (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) s)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E}, Iff (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s (OfNat.ofNat.{u1} (Set.{u1} E) 0 (Zero.toOfNat0.{u1} (Set.{u1} E) (Set.zero.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))))) (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))) s)
-Case conversion may be inaccurate. Consider using '#align absorbs_zero_iff absorbs_zero_iffβ‚“'. -/
 theorem absorbs_zero_iff : Absorbs π•œ s 0 ↔ (0 : E) ∈ s :=
   by
   refine' ⟨_, fun h => ⟨1, zero_lt_one, fun a _ => zero_subset.2 <| zero_mem_smul_set h⟩⟩
@@ -657,21 +426,12 @@ theorem absorbs_zero_iff : Absorbs π•œ s 0 ↔ (0 : E) ∈ s :=
   exact norm_ne_zero_iff.1 (hr.trans ha).ne'
 #align absorbs_zero_iff absorbs_zero_iff
 
-/- warning: absorbent.zero_mem -> Absorbent.zero_mem is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E}, (Absorbent.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) s)
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E}, (Absorbent.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s) -> (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))) s)
-Case conversion may be inaccurate. Consider using '#align absorbent.zero_mem Absorbent.zero_memβ‚“'. -/
 theorem Absorbent.zero_mem (hs : Absorbent π•œ s) : (0 : E) ∈ s :=
   absorbs_zero_iff.1 <| absorbent_iff_forall_absorbs_singleton.1 hs _
 #align absorbent.zero_mem Absorbent.zero_mem
 
 variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 
-/- warning: balanced_convex_hull_of_balanced -> balanced_convexHull_of_balanced is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align balanced_convex_hull_of_balanced balanced_convexHull_of_balancedβ‚“'. -/
 theorem balanced_convexHull_of_balanced (hs : Balanced π•œ s) : Balanced π•œ (convexHull ℝ s) :=
   by
   suffices Convex ℝ { x | βˆ€ a : π•œ, β€–aβ€– ≀ 1 β†’ a β€’ x ∈ convexHull ℝ s }
@@ -690,12 +450,6 @@ section Real
 
 variable [AddCommGroup E] [Module ℝ E] {s : Set E}
 
-/- warning: balanced_iff_neg_mem -> balanced_iff_neg_mem is a dubious translation:
-lean 3 declaration is
-  forall {E : Type.{u1}} [_inst_1 : AddCommGroup.{u1} E] [_inst_2 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)] {s : Set.{u1} E}, (Convex.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1) (SMulZeroClass.toHasSmul.{0, u1} Real E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)))) (SMulWithZero.toSmulZeroClass.{0, u1} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1) _inst_2)))) s) -> (Iff (Balanced.{0, u1} Real E (SeminormedCommRing.toSemiNormedRing.{0} Real (NormedCommRing.toSeminormedCommRing.{0} Real Real.normedCommRing)) (SMulZeroClass.toHasSmul.{0, u1} Real E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)))) (SMulWithZero.toSmulZeroClass.{0, u1} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1) _inst_2)))) s) (forall {{x : E}}, (Membership.Mem.{u1, u1} E (Set.{u1} E) (Set.hasMem.{u1} E) x s) -> (Membership.Mem.{u1, u1} E (Set.{u1} E) (Set.hasMem.{u1} E) (Neg.neg.{u1} E (SubNegMonoid.toHasNeg.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_1))) x) s)))
-but is expected to have type
-  forall {E : Type.{u1}} [_inst_1 : AddCommGroup.{u1} E] [_inst_2 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)] {s : Set.{u1} E}, (Convex.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1) _inst_2)))) s) -> (Iff (Balanced.{0, u1} Real E (SeminormedCommRing.toSeminormedRing.{0} Real (NormedCommRing.toSeminormedCommRing.{0} Real Real.normedCommRing)) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1) _inst_2)))) s) (forall {{x : E}}, (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) x s) -> (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (Neg.neg.{u1} E (NegZeroClass.toNeg.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) x) s)))
-Case conversion may be inaccurate. Consider using '#align balanced_iff_neg_mem balanced_iff_neg_memβ‚“'. -/
 theorem balanced_iff_neg_mem (hs : Convex ℝ s) : Balanced ℝ s ↔ βˆ€ ⦃x⦄, x ∈ s β†’ -x ∈ s :=
   by
   refine' ⟨fun h x => h.neg_mem_iff.2, fun h a ha => smul_set_subset_iff.2 fun x hx => _⟩
Diff
@@ -145,9 +145,7 @@ theorem absorbs_iUnion_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
     rw [Finset.set_biUnion_insert, absorbs_union, hi]
     constructor <;> intro h
     Β· refine' fun _ hi' => (finset.mem_insert.mp hi').elim _ (h.2 _)
-      exact fun hi'' => by
-        rw [hi'']
-        exact h.1
+      exact fun hi'' => by rw [hi'']; exact h.1
     exact ⟨h i (Finset.mem_insert_self i t), fun i' hi' => h i' (Finset.mem_insert_of_mem hi')⟩
 #align absorbs_Union_finset absorbs_iUnion_finset
 -/
@@ -410,9 +408,7 @@ but is expected to have type
   forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s₁ : Set.{u1} E} {sβ‚‚ : Set.{u1} E} {t₁ : Set.{u1} E} {tβ‚‚ : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s₁ t₁) -> (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) sβ‚‚ tβ‚‚) -> (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (HSub.hSub.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHSub.{u1} (Set.{u1} E) (Set.sub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))) s₁ sβ‚‚) (HSub.hSub.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHSub.{u1} (Set.{u1} E) (Set.sub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))) t₁ tβ‚‚))
 Case conversion may be inaccurate. Consider using '#align absorbs.sub Absorbs.subβ‚“'. -/
 theorem Absorbs.sub (h₁ : Absorbs π•œ s₁ t₁) (hβ‚‚ : Absorbs π•œ sβ‚‚ tβ‚‚) : Absorbs π•œ (s₁ - sβ‚‚) (t₁ - tβ‚‚) :=
-  by
-  simp_rw [sub_eq_add_neg]
-  exact h₁.add hβ‚‚.neg
+  by simp_rw [sub_eq_add_neg]; exact h₁.add hβ‚‚.neg
 #align absorbs.sub Absorbs.sub
 
 /- warning: balanced.sub -> Balanced.sub is a dubious translation:
@@ -421,10 +417,8 @@ lean 3 declaration is
 but is expected to have type
   forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E} {t : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s) -> (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) t) -> (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (HSub.hSub.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHSub.{u1} (Set.{u1} E) (Set.sub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))) s t))
 Case conversion may be inaccurate. Consider using '#align balanced.sub Balanced.subβ‚“'. -/
-theorem Balanced.sub (hs : Balanced π•œ s) (ht : Balanced π•œ t) : Balanced π•œ (s - t) :=
-  by
-  simp_rw [sub_eq_add_neg]
-  exact hs.add ht.neg
+theorem Balanced.sub (hs : Balanced π•œ s) (ht : Balanced π•œ t) : Balanced π•œ (s - t) := by
+  simp_rw [sub_eq_add_neg]; exact hs.add ht.neg
 #align balanced.sub Balanced.sub
 
 /- warning: balanced_zero -> balanced_zero is a dubious translation:
Diff
@@ -446,10 +446,7 @@ variable [NormedField π•œ] [NormedRing 𝕝] [NormedSpace π•œ 𝕝] [AddCommGr
   [SMulWithZero 𝕝 E] [IsScalarTower π•œ 𝕝 E] {s t u v A B : Set E} {x : E} {a b : π•œ}
 
 /- warning: balanced.smul_mono -> Balanced.smul_mono is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {𝕝 : Type.{u2}} {E : Type.{u3}} [_inst_1 : NormedField.{u1} π•œ] [_inst_2 : NormedRing.{u2} 𝕝] [_inst_3 : NormedSpace.{u1, u2} π•œ 𝕝 _inst_1 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} 𝕝 (NormedRing.toNonUnitalNormedRing.{u2} 𝕝 _inst_2)))] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : SMulWithZero.{u2, u3} 𝕝 E (MulZeroClass.toHasZero.{u2} 𝕝 (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} 𝕝 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} 𝕝 (NonAssocRing.toNonUnitalNonAssocRing.{u2} 𝕝 (Ring.toNonAssocRing.{u2} 𝕝 (NormedRing.toRing.{u2} 𝕝 _inst_2)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4)))))] [_inst_7 : IsScalarTower.{u1, u2, u3} π•œ 𝕝 E (SMulZeroClass.toHasSmul.{u1, u2} π•œ 𝕝 (AddZeroClass.toHasZero.{u2} 𝕝 (AddMonoid.toAddZeroClass.{u2} 𝕝 (AddCommMonoid.toAddMonoid.{u2} 𝕝 (AddCommGroup.toAddCommMonoid.{u2} 𝕝 (SeminormedAddCommGroup.toAddCommGroup.{u2} 𝕝 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} 𝕝 (NormedRing.toNonUnitalNormedRing.{u2} 𝕝 _inst_2)))))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ 𝕝 (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} 𝕝 (AddMonoid.toAddZeroClass.{u2} 𝕝 (AddCommMonoid.toAddMonoid.{u2} 𝕝 (AddCommGroup.toAddCommMonoid.{u2} 𝕝 (SeminormedAddCommGroup.toAddCommGroup.{u2} 𝕝 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} 𝕝 (NormedRing.toNonUnitalNormedRing.{u2} 𝕝 _inst_2)))))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ 𝕝 (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} 𝕝 (AddMonoid.toAddZeroClass.{u2} 𝕝 (AddCommMonoid.toAddMonoid.{u2} 𝕝 (AddCommGroup.toAddCommMonoid.{u2} 𝕝 (SeminormedAddCommGroup.toAddCommGroup.{u2} 𝕝 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} 𝕝 (NormedRing.toNonUnitalNormedRing.{u2} 𝕝 _inst_2)))))))) (Module.toMulActionWithZero.{u1, u2} π•œ 𝕝 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} 𝕝 (SeminormedAddCommGroup.toAddCommGroup.{u2} 𝕝 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} 𝕝 (NormedRing.toNonUnitalNormedRing.{u2} 𝕝 _inst_2))))) (NormedSpace.toModule.{u1, u2} π•œ 𝕝 _inst_1 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} 𝕝 (NormedRing.toNonUnitalNormedRing.{u2} 𝕝 _inst_2))) _inst_3))))) (SMulZeroClass.toHasSmul.{u2, u3} 𝕝 E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (SMulWithZero.toSmulZeroClass.{u2, u3} 𝕝 E (MulZeroClass.toHasZero.{u2} 𝕝 (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} 𝕝 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} 𝕝 (NonAssocRing.toNonUnitalNonAssocRing.{u2} 𝕝 (Ring.toNonAssocRing.{u2} 𝕝 (NormedRing.toRing.{u2} 𝕝 _inst_2)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) _inst_6)) (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))] {s : Set.{u3} E}, (Balanced.{u2, u3} 𝕝 E (NormedRing.toSeminormedRing.{u2} 𝕝 _inst_2) (SMulZeroClass.toHasSmul.{u2, u3} 𝕝 E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (SMulWithZero.toSmulZeroClass.{u2, u3} 𝕝 E (MulZeroClass.toHasZero.{u2} 𝕝 (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} 𝕝 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} 𝕝 (NonAssocRing.toNonUnitalNonAssocRing.{u2} 𝕝 (Ring.toNonAssocRing.{u2} 𝕝 (NormedRing.toRing.{u2} 𝕝 _inst_2)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) _inst_6)) s) -> (forall {a : 𝕝} {b : π•œ}, (LE.le.{0} Real Real.hasLe (Norm.norm.{u2} 𝕝 (NormedRing.toHasNorm.{u2} 𝕝 _inst_2) a) (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ _inst_1) b)) -> (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E) (SMul.smul.{u2, u3} 𝕝 (Set.{u3} E) (Set.smulSet.{u2, u3} 𝕝 E (SMulZeroClass.toHasSmul.{u2, u3} 𝕝 E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (SMulWithZero.toSmulZeroClass.{u2, u3} 𝕝 E (MulZeroClass.toHasZero.{u2} 𝕝 (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} 𝕝 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} 𝕝 (NonAssocRing.toNonUnitalNonAssocRing.{u2} 𝕝 (Ring.toNonAssocRing.{u2} 𝕝 (NormedRing.toRing.{u2} 𝕝 _inst_2)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) _inst_6))) a s) (SMul.smul.{u1, u3} π•œ (Set.{u3} E) (Set.smulSet.{u1, u3} π•œ E (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) b s)))
-but is expected to have type
-  forall {π•œ : Type.{u1}} {𝕝 : Type.{u3}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_2 : NormedRing.{u3} 𝕝] [_inst_3 : NormedSpace.{u1, u3} π•œ 𝕝 _inst_1 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u3} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u3} 𝕝 (NormedRing.toNonUnitalNormedRing.{u3} 𝕝 _inst_2)))] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] [_inst_6 : SMulWithZero.{u3, u2} 𝕝 E (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4)))))] [_inst_7 : IsScalarTower.{u1, u3, u2} π•œ 𝕝 E (SMulZeroClass.toSMul.{u1, u3} π•œ 𝕝 (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ 𝕝 (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ 𝕝 (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π•œ 𝕝 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u3} 𝕝 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕝 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕝 (Ring.toNonAssocRing.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2))))) (NormedSpace.toModule.{u1, u3} π•œ 𝕝 _inst_1 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u3} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u3} 𝕝 (NormedRing.toNonUnitalNormedRing.{u3} 𝕝 _inst_2))) _inst_3))))) (SMulZeroClass.toSMul.{u3, u2} 𝕝 E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} 𝕝 E (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) _inst_6)) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5))))] {s : Set.{u2} E}, (Balanced.{u3, u2} 𝕝 E (NormedRing.toSeminormedRing.{u3} 𝕝 _inst_2) (SMulZeroClass.toSMul.{u3, u2} 𝕝 E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} 𝕝 E (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) _inst_6)) s) -> (forall {a : 𝕝} {b : π•œ}, (LE.le.{0} Real Real.instLEReal (Norm.norm.{u3} 𝕝 (NormedRing.toNorm.{u3} 𝕝 _inst_2) a) (Norm.norm.{u1} π•œ (NormedField.toNorm.{u1} π•œ _inst_1) b)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) (HSMul.hSMul.{u3, u2, u2} 𝕝 (Set.{u2} E) (Set.{u2} E) (instHSMul.{u3, u2} 𝕝 (Set.{u2} E) (Set.smulSet.{u3, u2} 𝕝 E (SMulZeroClass.toSMul.{u3, u2} 𝕝 E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} 𝕝 E (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) _inst_6)))) a s) (HSMul.hSMul.{u1, u2, u2} π•œ (Set.{u2} E) (Set.{u2} E) (instHSMul.{u1, u2} π•œ (Set.{u2} E) (Set.smulSet.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))))) b s)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align balanced.smul_mono Balanced.smul_monoβ‚“'. -/
 /-- Scalar multiplication (by possibly different types) of a balanced set is monotone. -/
 theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–aβ€– ≀ β€–bβ€–) : a β€’ s βŠ† b β€’ s :=
@@ -511,10 +508,7 @@ theorem Balanced.smul_eq (hA : Balanced π•œ A) (ha : β€–aβ€– = 1) : a β€’ A = A
 #align balanced.smul_eq Balanced.smul_eq
 
 /- warning: balanced.mem_smul_iff -> Balanced.mem_smul_iff is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {s : Set.{u2} E} {x : E} {a : π•œ} {b : π•œ}, (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) s) -> (Eq.{1} Real (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ _inst_1) a) (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ _inst_1) b)) -> (Iff (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (SMul.smul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) a x) s) (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (SMul.smul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) b x) s))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {s : Set.{u1} E} {x : E} {a : π•œ} {b : π•œ}, (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) s) -> (Eq.{1} Real (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ _inst_1) a) (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ _inst_1) b)) -> (Iff (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (HSMul.hSMul.{u2, u1, u1} π•œ E E (instHSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) a x) s) (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (HSMul.hSMul.{u2, u1, u1} π•œ E E (instHSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) b x) s))
+<too large>
 Case conversion may be inaccurate. Consider using '#align balanced.mem_smul_iff Balanced.mem_smul_iffβ‚“'. -/
 theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a β€’ x ∈ s ↔ b β€’ x ∈ s :=
   by
@@ -608,10 +602,7 @@ theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A :=
 #align absorbent_nhds_zero absorbent_nhds_zero
 
 /- warning: balanced_zero_union_interior -> balanced_zero_union_interior is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_8], (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A) -> (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (Union.union.{u2} (Set.{u2} E) (Set.hasUnion.{u2} E) (OfNat.ofNat.{u2} (Set.{u2} E) 0 (OfNat.mk.{u2} (Set.{u2} E) 0 (Zero.zero.{u2} (Set.{u2} E) (Set.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_4))))))))) (interior.{u2} E _inst_8 A)))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {A : Set.{u1} E} [_inst_8 : TopologicalSpace.{u1} E] [_inst_9 : ContinuousSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) _inst_8], (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A) -> (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (Union.union.{u1} (Set.{u1} E) (Set.instUnionSet.{u1} E) (OfNat.ofNat.{u1} (Set.{u1} E) 0 (Zero.toOfNat0.{u1} (Set.{u1} E) (Set.zero.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4)))))))) (interior.{u1} E _inst_8 A)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align balanced_zero_union_interior balanced_zero_union_interiorβ‚“'. -/
 /-- The union of `{0}` with the interior of a balanced set is balanced. -/
 theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0 : Set E) βˆͺ interior A) :=
@@ -632,10 +623,7 @@ theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0
 #align balanced_zero_union_interior balanced_zero_union_interior
 
 /- warning: balanced.interior -> Balanced.interior is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_8], (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_4)))))))) (interior.{u2} E _inst_8 A)) -> (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (interior.{u2} E _inst_8 A))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {A : Set.{u1} E} [_inst_8 : TopologicalSpace.{u1} E] [_inst_9 : ContinuousSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) _inst_8], (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A) -> (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))))) (interior.{u1} E _inst_8 A)) -> (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (interior.{u1} E _inst_8 A))
+<too large>
 Case conversion may be inaccurate. Consider using '#align balanced.interior Balanced.interiorβ‚“'. -/
 /-- The interior of a balanced set is balanced if it contains the origin. -/
 theorem Balanced.interior (hA : Balanced π•œ A) (h : (0 : E) ∈ interior A) :
@@ -646,10 +634,7 @@ theorem Balanced.interior (hA : Balanced π•œ A) (h : (0 : E) ∈ interior A) :
 #align balanced.interior Balanced.interior
 
 /- warning: balanced.closure -> Balanced.closure is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_8], (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A) -> (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (closure.{u2} E _inst_8 A))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {A : Set.{u1} E} [_inst_8 : TopologicalSpace.{u1} E] [_inst_9 : ContinuousSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) _inst_8], (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A) -> (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (closure.{u1} E _inst_8 A))
+<too large>
 Case conversion may be inaccurate. Consider using '#align balanced.closure Balanced.closureβ‚“'. -/
 theorem Balanced.closure (hA : Balanced π•œ A) : Balanced π•œ (closure A) := fun a ha =>
   (image_closure_subset_closure_image <| continuous_id.const_smul _).trans <|
@@ -691,10 +676,7 @@ theorem Absorbent.zero_mem (hs : Absorbent π•œ s) : (0 : E) ∈ s :=
 variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 
 /- warning: balanced_convex_hull_of_balanced -> balanced_convexHull_of_balanced is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E} [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))], (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) -> (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (coeFn.{succ u2, succ u2} (ClosureOperator.{u2} (Set.{u2} E) (PartialOrder.toPreorder.{u2} (Set.{u2} E) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} E) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} E) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} E) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} E) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} E) (Set.completeBooleanAlgebra.{u2} E)))))))) (fun (_x : ClosureOperator.{u2} (Set.{u2} E) (PartialOrder.toPreorder.{u2} (Set.{u2} E) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} E) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} E) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} E) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} E) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} E) (Set.completeBooleanAlgebra.{u2} E)))))))) => (Set.{u2} E) -> (Set.{u2} E)) (ClosureOperator.hasCoeToFun.{u2} (Set.{u2} E) (PartialOrder.toPreorder.{u2} (Set.{u2} E) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} E) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} E) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} E) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} E) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} E) (Set.completeBooleanAlgebra.{u2} E)))))))) (convexHull.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4) s))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E} [_inst_4 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_5 : SMulCommClass.{0, u2, u1} Real π•œ E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3))))], (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s) -> (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (OrderHom.toFun.{u1, u1} (Set.{u1} E) (Set.{u1} E) (PartialOrder.toPreorder.{u1} (Set.{u1} E) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} E) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} E) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} E) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} E) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} E) (Set.instCompleteBooleanAlgebraSet.{u1} E))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} E) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} E) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} E) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} E) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} E) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} E) (Set.instCompleteBooleanAlgebraSet.{u1} E))))))) (ClosureOperator.toOrderHom.{u1} (Set.{u1} E) (PartialOrder.toPreorder.{u1} (Set.{u1} E) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} E) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} E) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} E) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} E) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} E) (Set.instCompleteBooleanAlgebraSet.{u1} E))))))) (convexHull.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)) s))
+<too large>
 Case conversion may be inaccurate. Consider using '#align balanced_convex_hull_of_balanced balanced_convexHull_of_balancedβ‚“'. -/
 theorem balanced_convexHull_of_balanced (hs : Balanced π•œ s) : Balanced π•œ (convexHull ℝ s) :=
   by
Diff
@@ -522,8 +522,8 @@ theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a
   Β· rw [norm_zero, norm_eq_zero] at h
     rw [h]
   have ha : a β‰  0 := norm_ne_zero_iff.1 (ne_of_eq_of_ne h <| norm_ne_zero_iff.2 hb)
-  constructor <;> intro h' <;> [rw [← inv_mul_cancel_rightβ‚€ ha b],
-      rw [← inv_mul_cancel_rightβ‚€ hb a]] <;>
+  constructor <;> intro h' <;>
+      [rw [← inv_mul_cancel_rightβ‚€ ha b];rw [← inv_mul_cancel_rightβ‚€ hb a]] <;>
     Β· rw [← smul_eq_mul, smul_assoc]
       refine' hs.smul_mem _ h'
       simp [← h, ha]
Diff
@@ -134,32 +134,32 @@ theorem absorbs_union : Absorbs π•œ s (u βˆͺ v) ↔ Absorbs π•œ s u ∧ Absorb
     fun h => h.1.union h.2⟩
 #align absorbs_union absorbs_union
 
-#print absorbs_unionα΅’_finset /-
-theorem absorbs_unionα΅’_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
+#print absorbs_iUnion_finset /-
+theorem absorbs_iUnion_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
     Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
   classical
     induction' t using Finset.induction_on with i t ht hi
     Β·
-      simp only [Finset.not_mem_empty, Set.unionα΅’_false, Set.unionα΅’_empty, absorbs_empty,
+      simp only [Finset.not_mem_empty, Set.iUnion_false, Set.iUnion_empty, absorbs_empty,
         IsEmpty.forall_iff, imp_true_iff]
-    rw [Finset.set_bunionα΅’_insert, absorbs_union, hi]
+    rw [Finset.set_biUnion_insert, absorbs_union, hi]
     constructor <;> intro h
     Β· refine' fun _ hi' => (finset.mem_insert.mp hi').elim _ (h.2 _)
       exact fun hi'' => by
         rw [hi'']
         exact h.1
     exact ⟨h i (Finset.mem_insert_self i t), fun i' hi' => h i' (Finset.mem_insert_of_mem hi')⟩
-#align absorbs_Union_finset absorbs_unionα΅’_finset
+#align absorbs_Union_finset absorbs_iUnion_finset
 -/
 
-#print Set.Finite.absorbs_unionα΅’ /-
-theorem Set.Finite.absorbs_unionα΅’ {ΞΉ : Type _} {s : Set E} {t : Set ΞΉ} {f : ΞΉ β†’ Set E}
+#print Set.Finite.absorbs_iUnion /-
+theorem Set.Finite.absorbs_iUnion {ΞΉ : Type _} {s : Set E} {t : Set ΞΉ} {f : ΞΉ β†’ Set E}
     (hi : t.Finite) : Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) :=
   by
   lift t to Finset ΞΉ using hi
   simp only [Finset.mem_coe]
-  exact absorbs_unionα΅’_finset
-#align set.finite.absorbs_Union Set.Finite.absorbs_unionα΅’
+  exact absorbs_iUnion_finset
+#align set.finite.absorbs_Union Set.Finite.absorbs_iUnion
 -/
 
 variable (π•œ)
@@ -222,7 +222,7 @@ theorem absorbent_iff_nonneg_lt :
 #print Absorbent.absorbs_finite /-
 theorem Absorbent.absorbs_finite {s : Set E} (hs : Absorbent π•œ s) {v : Set E} (hv : v.Finite) :
     Absorbs π•œ s v := by
-  rw [← Set.bunionα΅’_of_singleton v]
+  rw [← Set.biUnion_of_singleton v]
   exact hv.absorbs_Union.mpr fun _ _ => hs.absorbs
 #align absorbent.absorbs_finite Absorbent.absorbs_finite
 -/
@@ -297,49 +297,49 @@ theorem Balanced.inter (hA : Balanced π•œ A) (hB : Balanced π•œ B) : Balanced
   smul_set_inter_subset.trans <| inter_subset_inter (hA _ ha) <| hB _ ha
 #align balanced.inter Balanced.inter
 
-/- warning: balanced_Union -> balanced_unionα΅’ is a dubious translation:
+/- warning: balanced_Union -> balanced_iUnion is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : ΞΉ -> (Set.{u2} E)}, (forall (i : ΞΉ), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.unionα΅’.{u2, u3} E ΞΉ (fun (i : ΞΉ) => f i)))
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : ΞΉ -> (Set.{u2} E)}, (forall (i : ΞΉ), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.iUnion.{u2, u3} E ΞΉ (fun (i : ΞΉ) => f i)))
 but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u3}} {ΞΉ : Sort.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u3} π•œ E] {f : ΞΉ -> (Set.{u3} E)}, (forall (i : ΞΉ), Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (Set.unionα΅’.{u3, u1} E ΞΉ (fun (i : ΞΉ) => f i)))
-Case conversion may be inaccurate. Consider using '#align balanced_Union balanced_unionα΅’β‚“'. -/
-theorem balanced_unionα΅’ {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (⋃ i, f i) :=
-  fun a ha => (smul_set_Union _ _).Subset.trans <| unionα΅’_mono fun _ => h _ _ ha
-#align balanced_Union balanced_unionα΅’
+  forall {π•œ : Type.{u2}} {E : Type.{u3}} {ΞΉ : Sort.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u3} π•œ E] {f : ΞΉ -> (Set.{u3} E)}, (forall (i : ΞΉ), Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (Set.iUnion.{u3, u1} E ΞΉ (fun (i : ΞΉ) => f i)))
+Case conversion may be inaccurate. Consider using '#align balanced_Union balanced_iUnionβ‚“'. -/
+theorem balanced_iUnion {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (⋃ i, f i) :=
+  fun a ha => (smul_set_Union _ _).Subset.trans <| iUnion_mono fun _ => h _ _ ha
+#align balanced_Union balanced_iUnion
 
-/- warning: balanced_Unionβ‚‚ -> balanced_unionα΅’β‚‚ is a dubious translation:
+/- warning: balanced_Unionβ‚‚ -> balanced_iUnionβ‚‚ is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} {ΞΊ : ΞΉ -> Sort.{u4}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u2} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.unionα΅’.{u2, u3} E ΞΉ (fun (i : ΞΉ) => Set.unionα΅’.{u2, u4} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} {ΞΊ : ΞΉ -> Sort.{u4}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u2} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.iUnion.{u2, u3} E ΞΉ (fun (i : ΞΉ) => Set.iUnion.{u2, u4} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
 but is expected to have type
-  forall {π•œ : Type.{u3}} {E : Type.{u4}} {ΞΉ : Sort.{u2}} {ΞΊ : ΞΉ -> Sort.{u1}} [_inst_1 : SeminormedRing.{u3} π•œ] [_inst_2 : SMul.{u3, u4} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u4} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (Set.unionα΅’.{u4, u2} E ΞΉ (fun (i : ΞΉ) => Set.unionα΅’.{u4, u1} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
-Case conversion may be inaccurate. Consider using '#align balanced_Unionβ‚‚ balanced_unionα΅’β‚‚β‚“'. -/
+  forall {π•œ : Type.{u3}} {E : Type.{u4}} {ΞΉ : Sort.{u2}} {ΞΊ : ΞΉ -> Sort.{u1}} [_inst_1 : SeminormedRing.{u3} π•œ] [_inst_2 : SMul.{u3, u4} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u4} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (Set.iUnion.{u4, u2} E ΞΉ (fun (i : ΞΉ) => Set.iUnion.{u4, u1} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
+Case conversion may be inaccurate. Consider using '#align balanced_Unionβ‚‚ balanced_iUnionβ‚‚β‚“'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem balanced_unionα΅’β‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
+theorem balanced_iUnionβ‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
     Balanced π•œ (⋃ (i) (j), f i j) :=
-  balanced_unionα΅’ fun _ => balanced_unionα΅’ <| h _
-#align balanced_Unionβ‚‚ balanced_unionα΅’β‚‚
+  balanced_iUnion fun _ => balanced_iUnion <| h _
+#align balanced_Unionβ‚‚ balanced_iUnionβ‚‚
 
-/- warning: balanced_Inter -> balanced_interα΅’ is a dubious translation:
+/- warning: balanced_Inter -> balanced_iInter is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : ΞΉ -> (Set.{u2} E)}, (forall (i : ΞΉ), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.interα΅’.{u2, u3} E ΞΉ (fun (i : ΞΉ) => f i)))
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : ΞΉ -> (Set.{u2} E)}, (forall (i : ΞΉ), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.iInter.{u2, u3} E ΞΉ (fun (i : ΞΉ) => f i)))
 but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u3}} {ΞΉ : Sort.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u3} π•œ E] {f : ΞΉ -> (Set.{u3} E)}, (forall (i : ΞΉ), Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (Set.interα΅’.{u3, u1} E ΞΉ (fun (i : ΞΉ) => f i)))
-Case conversion may be inaccurate. Consider using '#align balanced_Inter balanced_interα΅’β‚“'. -/
-theorem balanced_interα΅’ {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (β‹‚ i, f i) :=
-  fun a ha => (smul_set_interα΅’_subset _ _).trans <| interα΅’_mono fun _ => h _ _ ha
-#align balanced_Inter balanced_interα΅’
+  forall {π•œ : Type.{u2}} {E : Type.{u3}} {ΞΉ : Sort.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u3} π•œ E] {f : ΞΉ -> (Set.{u3} E)}, (forall (i : ΞΉ), Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (Set.iInter.{u3, u1} E ΞΉ (fun (i : ΞΉ) => f i)))
+Case conversion may be inaccurate. Consider using '#align balanced_Inter balanced_iInterβ‚“'. -/
+theorem balanced_iInter {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (β‹‚ i, f i) :=
+  fun a ha => (smul_set_iInter_subset _ _).trans <| iInter_mono fun _ => h _ _ ha
+#align balanced_Inter balanced_iInter
 
-/- warning: balanced_Interβ‚‚ -> balanced_interα΅’β‚‚ is a dubious translation:
+/- warning: balanced_Interβ‚‚ -> balanced_iInterβ‚‚ is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} {ΞΊ : ΞΉ -> Sort.{u4}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u2} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.interα΅’.{u2, u3} E ΞΉ (fun (i : ΞΉ) => Set.interα΅’.{u2, u4} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} {ΞΊ : ΞΉ -> Sort.{u4}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u2} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.iInter.{u2, u3} E ΞΉ (fun (i : ΞΉ) => Set.iInter.{u2, u4} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
 but is expected to have type
-  forall {π•œ : Type.{u3}} {E : Type.{u4}} {ΞΉ : Sort.{u2}} {ΞΊ : ΞΉ -> Sort.{u1}} [_inst_1 : SeminormedRing.{u3} π•œ] [_inst_2 : SMul.{u3, u4} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u4} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (Set.interα΅’.{u4, u2} E ΞΉ (fun (i : ΞΉ) => Set.interα΅’.{u4, u1} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
-Case conversion may be inaccurate. Consider using '#align balanced_Interβ‚‚ balanced_interα΅’β‚‚β‚“'. -/
+  forall {π•œ : Type.{u3}} {E : Type.{u4}} {ΞΉ : Sort.{u2}} {ΞΊ : ΞΉ -> Sort.{u1}} [_inst_1 : SeminormedRing.{u3} π•œ] [_inst_2 : SMul.{u3, u4} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u4} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (Set.iInter.{u4, u2} E ΞΉ (fun (i : ΞΉ) => Set.iInter.{u4, u1} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
+Case conversion may be inaccurate. Consider using '#align balanced_Interβ‚‚ balanced_iInterβ‚‚β‚“'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem balanced_interα΅’β‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
+theorem balanced_iInterβ‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
     Balanced π•œ (β‹‚ (i) (j), f i j) :=
-  balanced_interα΅’ fun _ => balanced_interα΅’ <| h _
-#align balanced_Interβ‚‚ balanced_interα΅’β‚‚
+  balanced_iInter fun _ => balanced_iInter <| h _
+#align balanced_Interβ‚‚ balanced_iInterβ‚‚
 
 variable [SMul 𝕝 E] [SMulCommClass π•œ 𝕝 E]
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jean Lo, Bhavik Mehta, YaΓ«l Dillies
 
 ! This file was ported from Lean 3 source module analysis.locally_convex.basic
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 9a48a083b390d9b84a71efbdc4e8dfa26a687104
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Analysis.NormedSpace.Basic
 /-!
 # Local convexity
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 This file defines absorbent and balanced sets.
 
 An absorbent set is one that "surrounds" the origin. The idea is made precise by requiring that any
Diff
@@ -56,32 +56,60 @@ section SMul
 
 variable (π•œ) [SMul π•œ E]
 
+#print Absorbs /-
 /-- A set `A` absorbs another set `B` if `B` is contained in all scalings of `A` by elements of
 sufficiently large norm. -/
 def Absorbs (A B : Set E) :=
   βˆƒ r, 0 < r ∧ βˆ€ a : π•œ, r ≀ β€–aβ€– β†’ B βŠ† a β€’ A
 #align absorbs Absorbs
+-/
 
 variable {π•œ} {s t u v A B : Set E}
 
+#print absorbs_empty /-
 @[simp]
 theorem absorbs_empty {s : Set E} : Absorbs π•œ s (βˆ… : Set E) :=
   ⟨1, one_pos, fun a ha => Set.empty_subset _⟩
 #align absorbs_empty absorbs_empty
+-/
 
+/- warning: absorbs.mono -> Absorbs.mono is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E} {t : Set.{u2} E} {u : Set.{u2} E} {v : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s u) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) v u) -> (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 t v)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E} {t : Set.{u1} E} {u : Set.{u1} E} {v : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s u) -> (HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) s t) -> (HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) v u) -> (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 t v)
+Case conversion may be inaccurate. Consider using '#align absorbs.mono Absorbs.monoβ‚“'. -/
 theorem Absorbs.mono (hs : Absorbs π•œ s u) (hst : s βŠ† t) (hvu : v βŠ† u) : Absorbs π•œ t v :=
   let ⟨r, hr, h⟩ := hs
   ⟨r, hr, fun a ha => hvu.trans <| (h _ ha).trans <| smul_set_mono hst⟩
 #align absorbs.mono Absorbs.mono
 
+/- warning: absorbs.mono_left -> Absorbs.mono_left is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E} {t : Set.{u2} E} {u : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s u) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s t) -> (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 t u)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E} {t : Set.{u1} E} {u : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s u) -> (HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) s t) -> (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 t u)
+Case conversion may be inaccurate. Consider using '#align absorbs.mono_left Absorbs.mono_leftβ‚“'. -/
 theorem Absorbs.mono_left (hs : Absorbs π•œ s u) (h : s βŠ† t) : Absorbs π•œ t u :=
   hs.mono h Subset.rfl
 #align absorbs.mono_left Absorbs.mono_left
 
+/- warning: absorbs.mono_right -> Absorbs.mono_right is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E} {u : Set.{u2} E} {v : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s u) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) v u) -> (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s v)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E} {u : Set.{u1} E} {v : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s u) -> (HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) v u) -> (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s v)
+Case conversion may be inaccurate. Consider using '#align absorbs.mono_right Absorbs.mono_rightβ‚“'. -/
 theorem Absorbs.mono_right (hs : Absorbs π•œ s u) (h : v βŠ† u) : Absorbs π•œ s v :=
   hs.mono Subset.rfl h
 #align absorbs.mono_right Absorbs.mono_right
 
+/- warning: absorbs.union -> Absorbs.union is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E} {u : Set.{u2} E} {v : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s u) -> (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s v) -> (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s (Union.union.{u2} (Set.{u2} E) (Set.hasUnion.{u2} E) u v))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E} {u : Set.{u1} E} {v : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s u) -> (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s v) -> (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s (Union.union.{u1} (Set.{u1} E) (Set.instUnionSet.{u1} E) u v))
+Case conversion may be inaccurate. Consider using '#align absorbs.union Absorbs.unionβ‚“'. -/
 theorem Absorbs.union (hu : Absorbs π•œ s u) (hv : Absorbs π•œ s v) : Absorbs π•œ s (u βˆͺ v) :=
   by
   obtain ⟨a, ha, hu⟩ := hu
@@ -91,12 +119,19 @@ theorem Absorbs.union (hu : Absorbs π•œ s u) (hv : Absorbs π•œ s v) : Absorbs
       union_subset (hu _ <| le_of_max_le_left hc) (hv _ <| le_of_max_le_right hc)⟩
 #align absorbs.union Absorbs.union
 
+/- warning: absorbs_union -> absorbs_union is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E} {u : Set.{u2} E} {v : Set.{u2} E}, Iff (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s (Union.union.{u2} (Set.{u2} E) (Set.hasUnion.{u2} E) u v)) (And (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s u) (Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s v))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E} {u : Set.{u1} E} {v : Set.{u1} E}, Iff (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s (Union.union.{u1} (Set.{u1} E) (Set.instUnionSet.{u1} E) u v)) (And (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s u) (Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s v))
+Case conversion may be inaccurate. Consider using '#align absorbs_union absorbs_unionβ‚“'. -/
 @[simp]
 theorem absorbs_union : Absorbs π•œ s (u βˆͺ v) ↔ Absorbs π•œ s u ∧ Absorbs π•œ s v :=
   ⟨fun h => ⟨h.mono_right <| subset_union_left _ _, h.mono_right <| subset_union_right _ _⟩,
     fun h => h.1.union h.2⟩
 #align absorbs_union absorbs_union
 
+#print absorbs_unionα΅’_finset /-
 theorem absorbs_unionα΅’_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
     Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
   classical
@@ -112,7 +147,9 @@ theorem absorbs_unionα΅’_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E}
         exact h.1
     exact ⟨h i (Finset.mem_insert_self i t), fun i' hi' => h i' (Finset.mem_insert_of_mem hi')⟩
 #align absorbs_Union_finset absorbs_unionα΅’_finset
+-/
 
+#print Set.Finite.absorbs_unionα΅’ /-
 theorem Set.Finite.absorbs_unionα΅’ {ΞΉ : Type _} {s : Set E} {t : Set ΞΉ} {f : ΞΉ β†’ Set E}
     (hi : t.Finite) : Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) :=
   by
@@ -120,30 +157,57 @@ theorem Set.Finite.absorbs_unionα΅’ {ΞΉ : Type _} {s : Set E} {t : Set ΞΉ} {f :
   simp only [Finset.mem_coe]
   exact absorbs_unionα΅’_finset
 #align set.finite.absorbs_Union Set.Finite.absorbs_unionα΅’
+-/
 
 variable (π•œ)
 
+#print Absorbent /-
 /-- A set is absorbent if it absorbs every singleton. -/
 def Absorbent (A : Set E) :=
   βˆ€ x, βˆƒ r, 0 < r ∧ βˆ€ a : π•œ, r ≀ β€–aβ€– β†’ x ∈ a β€’ A
 #align absorbent Absorbent
+-/
 
 variable {π•œ}
 
+/- warning: absorbent.subset -> Absorbent.subset is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {A : Set.{u2} E} {B : Set.{u2} E}, (Absorbent.{u1, u2} π•œ E _inst_1 _inst_2 A) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) A B) -> (Absorbent.{u1, u2} π•œ E _inst_1 _inst_2 B)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {A : Set.{u1} E} {B : Set.{u1} E}, (Absorbent.{u2, u1} π•œ E _inst_1 _inst_2 A) -> (HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) A B) -> (Absorbent.{u2, u1} π•œ E _inst_1 _inst_2 B)
+Case conversion may be inaccurate. Consider using '#align absorbent.subset Absorbent.subsetβ‚“'. -/
 theorem Absorbent.subset (hA : Absorbent π•œ A) (hAB : A βŠ† B) : Absorbent π•œ B :=
   by
   refine' forall_imp (fun x => _) hA
   exact Exists.imp fun r => And.imp_right <| forallβ‚‚_imp fun a ha hx => Set.smul_set_mono hAB hx
 #align absorbent.subset Absorbent.subset
 
+/- warning: absorbent_iff_forall_absorbs_singleton -> absorbent_iff_forall_absorbs_singleton is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {A : Set.{u2} E}, Iff (Absorbent.{u1, u2} π•œ E _inst_1 _inst_2 A) (forall (x : E), Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 A (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) x))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {A : Set.{u1} E}, Iff (Absorbent.{u2, u1} π•œ E _inst_1 _inst_2 A) (forall (x : E), Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 A (Singleton.singleton.{u1, u1} E (Set.{u1} E) (Set.instSingletonSet.{u1} E) x))
+Case conversion may be inaccurate. Consider using '#align absorbent_iff_forall_absorbs_singleton absorbent_iff_forall_absorbs_singletonβ‚“'. -/
 theorem absorbent_iff_forall_absorbs_singleton : Absorbent π•œ A ↔ βˆ€ x, Absorbs π•œ A {x} := by
   simp_rw [Absorbs, Absorbent, singleton_subset_iff]
 #align absorbent_iff_forall_absorbs_singleton absorbent_iff_forall_absorbs_singleton
 
+/- warning: absorbent.absorbs -> Absorbent.absorbs is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E}, (Absorbent.{u1, u2} π•œ E _inst_1 _inst_2 s) -> (forall {x : E}, Absorbs.{u1, u2} π•œ E _inst_1 _inst_2 s (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) x))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E}, (Absorbent.{u2, u1} π•œ E _inst_1 _inst_2 s) -> (forall {x : E}, Absorbs.{u2, u1} π•œ E _inst_1 _inst_2 s (Singleton.singleton.{u1, u1} E (Set.{u1} E) (Set.instSingletonSet.{u1} E) x))
+Case conversion may be inaccurate. Consider using '#align absorbent.absorbs Absorbent.absorbsβ‚“'. -/
 theorem Absorbent.absorbs (hs : Absorbent π•œ s) {x : E} : Absorbs π•œ s {x} :=
   absorbent_iff_forall_absorbs_singleton.1 hs _
 #align absorbent.absorbs Absorbent.absorbs
 
+/- warning: absorbent_iff_nonneg_lt -> absorbent_iff_nonneg_lt is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {A : Set.{u2} E}, Iff (Absorbent.{u1, u2} π•œ E _inst_1 _inst_2 A) (forall (x : E), Exists.{1} Real (fun (r : Real) => And (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) (forall {{a : π•œ}}, (LT.lt.{0} Real Real.hasLt r (Norm.norm.{u1} π•œ (SeminormedRing.toHasNorm.{u1} π•œ _inst_1) a)) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x (SMul.smul.{u1, u2} π•œ (Set.{u2} E) (Set.smulSet.{u1, u2} π•œ E _inst_2) a A)))))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {A : Set.{u1} E}, Iff (Absorbent.{u2, u1} π•œ E _inst_1 _inst_2 A) (forall (x : E), Exists.{1} Real (fun (r : Real) => And (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) (forall {{a : π•œ}}, (LT.lt.{0} Real Real.instLTReal r (Norm.norm.{u2} π•œ (SeminormedRing.toNorm.{u2} π•œ _inst_1) a)) -> (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) x (HSMul.hSMul.{u2, u1, u1} π•œ (Set.{u1} E) (Set.{u1} E) (instHSMul.{u2, u1} π•œ (Set.{u1} E) (Set.smulSet.{u2, u1} π•œ E _inst_2)) a A)))))
+Case conversion may be inaccurate. Consider using '#align absorbent_iff_nonneg_lt absorbent_iff_nonneg_ltβ‚“'. -/
 theorem absorbent_iff_nonneg_lt :
     Absorbent π•œ A ↔ βˆ€ x, βˆƒ r, 0 ≀ r ∧ βˆ€ ⦃a : π•œβ¦„, r < β€–aβ€– β†’ x ∈ a β€’ A :=
   forall_congr' fun x =>
@@ -152,66 +216,136 @@ theorem absorbent_iff_nonneg_lt :
         hx ((lt_add_of_pos_right r zero_lt_one).trans_le ha)⟩⟩
 #align absorbent_iff_nonneg_lt absorbent_iff_nonneg_lt
 
+#print Absorbent.absorbs_finite /-
 theorem Absorbent.absorbs_finite {s : Set E} (hs : Absorbent π•œ s) {v : Set E} (hv : v.Finite) :
     Absorbs π•œ s v := by
   rw [← Set.bunionα΅’_of_singleton v]
   exact hv.absorbs_Union.mpr fun _ _ => hs.absorbs
 #align absorbent.absorbs_finite Absorbent.absorbs_finite
+-/
 
 variable (π•œ)
 
+#print Balanced /-
 /-- A set `A` is balanced if `a β€’ A` is contained in `A` whenever `a` has norm at most `1`. -/
 def Balanced (A : Set E) :=
   βˆ€ a : π•œ, β€–aβ€– ≀ 1 β†’ a β€’ A βŠ† A
 #align balanced Balanced
+-/
 
 variable {π•œ}
 
+/- warning: balanced_iff_smul_mem -> balanced_iff_smul_mem is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E}, Iff (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 s) (forall {{a : π•œ}}, (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (SeminormedRing.toHasNorm.{u1} π•œ _inst_1) a) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) -> (forall {{x : E}}, (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (SMul.smul.{u1, u2} π•œ E _inst_2 a x) s)))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E}, Iff (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 s) (forall {{a : π•œ}}, (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} π•œ (SeminormedRing.toNorm.{u2} π•œ _inst_1) a) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) -> (forall {{x : E}}, (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) x s) -> (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (HSMul.hSMul.{u2, u1, u1} π•œ E E (instHSMul.{u2, u1} π•œ E _inst_2) a x) s)))
+Case conversion may be inaccurate. Consider using '#align balanced_iff_smul_mem balanced_iff_smul_memβ‚“'. -/
 theorem balanced_iff_smul_mem : Balanced π•œ s ↔ βˆ€ ⦃a : π•œβ¦„, β€–aβ€– ≀ 1 β†’ βˆ€ ⦃x : E⦄, x ∈ s β†’ a β€’ x ∈ s :=
   forallβ‚‚_congr fun a ha => smul_set_subset_iff
 #align balanced_iff_smul_mem balanced_iff_smul_mem
 
+/- warning: balanced.smul_mem -> Balanced.smul_mem is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {s : Set.{u2} E}, (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 s) -> (forall {{a : π•œ}}, (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (SeminormedRing.toHasNorm.{u1} π•œ _inst_1) a) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) -> (forall {{x : E}}, (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (SMul.smul.{u1, u2} π•œ E _inst_2 a x) s)))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {s : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 s) -> (forall {{a : π•œ}}, (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} π•œ (SeminormedRing.toNorm.{u2} π•œ _inst_1) a) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) -> (forall {{x : E}}, (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) x s) -> (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (HSMul.hSMul.{u2, u1, u1} π•œ E E (instHSMul.{u2, u1} π•œ E _inst_2) a x) s)))
+Case conversion may be inaccurate. Consider using '#align balanced.smul_mem Balanced.smul_memβ‚“'. -/
 alias balanced_iff_smul_mem ↔ Balanced.smul_mem _
 #align balanced.smul_mem Balanced.smul_mem
 
+/- warning: balanced_empty -> balanced_empty is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E], Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (EmptyCollection.emptyCollection.{u2} (Set.{u2} E) (Set.hasEmptyc.{u2} E))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E], Balanced.{u2, u1} π•œ E _inst_1 _inst_2 (EmptyCollection.emptyCollection.{u1} (Set.{u1} E) (Set.instEmptyCollectionSet.{u1} E))
+Case conversion may be inaccurate. Consider using '#align balanced_empty balanced_emptyβ‚“'. -/
 @[simp]
 theorem balanced_empty : Balanced π•œ (βˆ… : Set E) := fun _ _ => by rw [smul_set_empty]
 #align balanced_empty balanced_empty
 
+/- warning: balanced_univ -> balanced_univ is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E], Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.univ.{u2} E)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E], Balanced.{u2, u1} π•œ E _inst_1 _inst_2 (Set.univ.{u1} E)
+Case conversion may be inaccurate. Consider using '#align balanced_univ balanced_univβ‚“'. -/
 @[simp]
 theorem balanced_univ : Balanced π•œ (univ : Set E) := fun a ha => subset_univ _
 #align balanced_univ balanced_univ
 
+/- warning: balanced.union -> Balanced.union is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {A : Set.{u2} E} {B : Set.{u2} E}, (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 A) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 B) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Union.union.{u2} (Set.{u2} E) (Set.hasUnion.{u2} E) A B))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {A : Set.{u1} E} {B : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 A) -> (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 B) -> (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 (Union.union.{u1} (Set.{u1} E) (Set.instUnionSet.{u1} E) A B))
+Case conversion may be inaccurate. Consider using '#align balanced.union Balanced.unionβ‚“'. -/
 theorem Balanced.union (hA : Balanced π•œ A) (hB : Balanced π•œ B) : Balanced π•œ (A βˆͺ B) := fun a ha =>
   smul_set_union.Subset.trans <| union_subset_union (hA _ ha) <| hB _ ha
 #align balanced.union Balanced.union
 
+/- warning: balanced.inter -> Balanced.inter is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {A : Set.{u2} E} {B : Set.{u2} E}, (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 A) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 B) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) A B))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u1} π•œ E] {A : Set.{u1} E} {B : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 A) -> (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 B) -> (Balanced.{u2, u1} π•œ E _inst_1 _inst_2 (Inter.inter.{u1} (Set.{u1} E) (Set.instInterSet.{u1} E) A B))
+Case conversion may be inaccurate. Consider using '#align balanced.inter Balanced.interβ‚“'. -/
 theorem Balanced.inter (hA : Balanced π•œ A) (hB : Balanced π•œ B) : Balanced π•œ (A ∩ B) := fun a ha =>
   smul_set_inter_subset.trans <| inter_subset_inter (hA _ ha) <| hB _ ha
 #align balanced.inter Balanced.inter
 
+/- warning: balanced_Union -> balanced_unionα΅’ is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : ΞΉ -> (Set.{u2} E)}, (forall (i : ΞΉ), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.unionα΅’.{u2, u3} E ΞΉ (fun (i : ΞΉ) => f i)))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u3}} {ΞΉ : Sort.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u3} π•œ E] {f : ΞΉ -> (Set.{u3} E)}, (forall (i : ΞΉ), Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (Set.unionα΅’.{u3, u1} E ΞΉ (fun (i : ΞΉ) => f i)))
+Case conversion may be inaccurate. Consider using '#align balanced_Union balanced_unionα΅’β‚“'. -/
 theorem balanced_unionα΅’ {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (⋃ i, f i) :=
   fun a ha => (smul_set_Union _ _).Subset.trans <| unionα΅’_mono fun _ => h _ _ ha
 #align balanced_Union balanced_unionα΅’
 
+/- warning: balanced_Unionβ‚‚ -> balanced_unionα΅’β‚‚ is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} {ΞΊ : ΞΉ -> Sort.{u4}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u2} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.unionα΅’.{u2, u3} E ΞΉ (fun (i : ΞΉ) => Set.unionα΅’.{u2, u4} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
+but is expected to have type
+  forall {π•œ : Type.{u3}} {E : Type.{u4}} {ΞΉ : Sort.{u2}} {ΞΊ : ΞΉ -> Sort.{u1}} [_inst_1 : SeminormedRing.{u3} π•œ] [_inst_2 : SMul.{u3, u4} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u4} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (Set.unionα΅’.{u4, u2} E ΞΉ (fun (i : ΞΉ) => Set.unionα΅’.{u4, u1} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
+Case conversion may be inaccurate. Consider using '#align balanced_Unionβ‚‚ balanced_unionα΅’β‚‚β‚“'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem balanced_Unionβ‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
+theorem balanced_unionα΅’β‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
     Balanced π•œ (⋃ (i) (j), f i j) :=
   balanced_unionα΅’ fun _ => balanced_unionα΅’ <| h _
-#align balanced_Unionβ‚‚ balanced_Unionβ‚‚
-
+#align balanced_Unionβ‚‚ balanced_unionα΅’β‚‚
+
+/- warning: balanced_Inter -> balanced_interα΅’ is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : ΞΉ -> (Set.{u2} E)}, (forall (i : ΞΉ), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.interα΅’.{u2, u3} E ΞΉ (fun (i : ΞΉ) => f i)))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u3}} {ΞΉ : Sort.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : SMul.{u2, u3} π•œ E] {f : ΞΉ -> (Set.{u3} E)}, (forall (i : ΞΉ), Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (f i)) -> (Balanced.{u2, u3} π•œ E _inst_1 _inst_2 (Set.interα΅’.{u3, u1} E ΞΉ (fun (i : ΞΉ) => f i)))
+Case conversion may be inaccurate. Consider using '#align balanced_Inter balanced_interα΅’β‚“'. -/
 theorem balanced_interα΅’ {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (β‹‚ i, f i) :=
   fun a ha => (smul_set_interα΅’_subset _ _).trans <| interα΅’_mono fun _ => h _ _ ha
 #align balanced_Inter balanced_interα΅’
 
+/- warning: balanced_Interβ‚‚ -> balanced_interα΅’β‚‚ is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} {ΞΉ : Sort.{u3}} {ΞΊ : ΞΉ -> Sort.{u4}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u2} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u2} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u1, u2} π•œ E _inst_1 _inst_2 (Set.interα΅’.{u2, u3} E ΞΉ (fun (i : ΞΉ) => Set.interα΅’.{u2, u4} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
+but is expected to have type
+  forall {π•œ : Type.{u3}} {E : Type.{u4}} {ΞΉ : Sort.{u2}} {ΞΊ : ΞΉ -> Sort.{u1}} [_inst_1 : SeminormedRing.{u3} π•œ] [_inst_2 : SMul.{u3, u4} π•œ E] {f : forall (i : ΞΉ), (ΞΊ i) -> (Set.{u4} E)}, (forall (i : ΞΉ) (j : ΞΊ i), Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (f i j)) -> (Balanced.{u3, u4} π•œ E _inst_1 _inst_2 (Set.interα΅’.{u4, u2} E ΞΉ (fun (i : ΞΉ) => Set.interα΅’.{u4, u1} E (ΞΊ i) (fun (j : ΞΊ i) => f i j))))
+Case conversion may be inaccurate. Consider using '#align balanced_Interβ‚‚ balanced_interα΅’β‚‚β‚“'. -/
 /- ./././Mathport/Syntax/Translate/Expr.lean:107:6: warning: expanding binder group (i j) -/
-theorem balanced_Interβ‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
+theorem balanced_interα΅’β‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
     Balanced π•œ (β‹‚ (i) (j), f i j) :=
   balanced_interα΅’ fun _ => balanced_interα΅’ <| h _
-#align balanced_Interβ‚‚ balanced_Interβ‚‚
+#align balanced_Interβ‚‚ balanced_interα΅’β‚‚
 
 variable [SMul 𝕝 E] [SMulCommClass π•œ 𝕝 E]
 
+/- warning: balanced.smul -> Balanced.smul is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {𝕝 : Type.{u2}} {E : Type.{u3}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : SMul.{u1, u3} π•œ E] {s : Set.{u3} E} [_inst_3 : SMul.{u2, u3} 𝕝 E] [_inst_4 : SMulCommClass.{u1, u2, u3} π•œ 𝕝 E _inst_2 _inst_3] (a : 𝕝), (Balanced.{u1, u3} π•œ E _inst_1 _inst_2 s) -> (Balanced.{u1, u3} π•œ E _inst_1 _inst_2 (SMul.smul.{u2, u3} 𝕝 (Set.{u3} E) (Set.smulSet.{u2, u3} 𝕝 E _inst_3) a s))
+but is expected to have type
+  forall {π•œ : Type.{u3}} {𝕝 : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u3} π•œ] [_inst_2 : SMul.{u3, u2} π•œ E] {s : Set.{u2} E} [_inst_3 : SMul.{u1, u2} 𝕝 E] [_inst_4 : SMulCommClass.{u3, u1, u2} π•œ 𝕝 E _inst_2 _inst_3] (a : 𝕝), (Balanced.{u3, u2} π•œ E _inst_1 _inst_2 s) -> (Balanced.{u3, u2} π•œ E _inst_1 _inst_2 (HSMul.hSMul.{u1, u2, u2} 𝕝 (Set.{u2} E) (Set.{u2} E) (instHSMul.{u1, u2} 𝕝 (Set.{u2} E) (Set.smulSet.{u1, u2} 𝕝 E _inst_3)) a s))
+Case conversion may be inaccurate. Consider using '#align balanced.smul Balanced.smulβ‚“'. -/
 theorem Balanced.smul (a : 𝕝) (hs : Balanced π•œ s) : Balanced π•œ (a β€’ s) := fun b hb =>
   (smul_comm _ _ _).Subset.trans <| smul_set_mono <| hs _ hb
 #align balanced.smul Balanced.smul
@@ -222,15 +356,33 @@ section Module
 
 variable [AddCommGroup E] [Module π•œ E] {s s₁ sβ‚‚ t t₁ tβ‚‚ : Set E}
 
+/- warning: absorbs.neg -> Absorbs.neg is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E} {t : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s t) -> (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Neg.neg.{u2} (Set.{u2} E) (Set.neg.{u2} E (SubNegMonoid.toHasNeg.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))) s) (Neg.neg.{u2} (Set.{u2} E) (Set.neg.{u2} E (SubNegMonoid.toHasNeg.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))) t))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E} {t : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s t) -> (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (Neg.neg.{u1} (Set.{u1} E) (Set.neg.{u1} E (NegZeroClass.toNeg.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2)))))) s) (Neg.neg.{u1} (Set.{u1} E) (Set.neg.{u1} E (NegZeroClass.toNeg.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2)))))) t))
+Case conversion may be inaccurate. Consider using '#align absorbs.neg Absorbs.negβ‚“'. -/
 theorem Absorbs.neg : Absorbs π•œ s t β†’ Absorbs π•œ (-s) (-t) :=
   Exists.imp fun r =>
     And.imp_right <| forallβ‚‚_imp fun _ _ h => (neg_subset_neg.2 h).trans (smul_set_neg _ _).Superset
 #align absorbs.neg Absorbs.neg
 
+/- warning: balanced.neg -> Balanced.neg is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E}, (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) -> (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (Neg.neg.{u2} (Set.{u2} E) (Set.neg.{u2} E (SubNegMonoid.toHasNeg.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))) s))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s) -> (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (Neg.neg.{u1} (Set.{u1} E) (Set.neg.{u1} E (NegZeroClass.toNeg.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2)))))) s))
+Case conversion may be inaccurate. Consider using '#align balanced.neg Balanced.negβ‚“'. -/
 theorem Balanced.neg : Balanced π•œ s β†’ Balanced π•œ (-s) :=
   forallβ‚‚_imp fun _ _ h => (smul_set_neg _ _).Subset.trans <| neg_subset_neg.2 h
 #align balanced.neg Balanced.neg
 
+/- warning: absorbs.add -> Absorbs.add is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s₁ : Set.{u2} E} {sβ‚‚ : Set.{u2} E} {t₁ : Set.{u2} E} {tβ‚‚ : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s₁ t₁) -> (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) sβ‚‚ tβ‚‚) -> (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (HAdd.hAdd.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHAdd.{u2} (Set.{u2} E) (Set.add.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))) s₁ sβ‚‚) (HAdd.hAdd.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHAdd.{u2} (Set.{u2} E) (Set.add.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))) t₁ tβ‚‚))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s₁ : Set.{u1} E} {sβ‚‚ : Set.{u1} E} {t₁ : Set.{u1} E} {tβ‚‚ : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s₁ t₁) -> (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) sβ‚‚ tβ‚‚) -> (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (HAdd.hAdd.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHAdd.{u1} (Set.{u1} E) (Set.add.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))))) s₁ sβ‚‚) (HAdd.hAdd.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHAdd.{u1} (Set.{u1} E) (Set.add.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))))) t₁ tβ‚‚))
+Case conversion may be inaccurate. Consider using '#align absorbs.add Absorbs.addβ‚“'. -/
 theorem Absorbs.add : Absorbs π•œ s₁ t₁ β†’ Absorbs π•œ sβ‚‚ tβ‚‚ β†’ Absorbs π•œ (s₁ + sβ‚‚) (t₁ + tβ‚‚) :=
   fun ⟨r₁, hr₁, hβ‚βŸ© ⟨rβ‚‚, hrβ‚‚, hβ‚‚βŸ© =>
   ⟨max r₁ rβ‚‚, lt_max_of_lt_left hr₁, fun a ha =>
@@ -238,22 +390,46 @@ theorem Absorbs.add : Absorbs π•œ s₁ t₁ β†’ Absorbs π•œ sβ‚‚ tβ‚‚ β†’ Abso
       (smul_add _ _ _).Superset⟩
 #align absorbs.add Absorbs.add
 
+/- warning: balanced.add -> Balanced.add is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E} {t : Set.{u2} E}, (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) -> (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) t) -> (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (HAdd.hAdd.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHAdd.{u2} (Set.{u2} E) (Set.add.{u2} E (AddZeroClass.toHasAdd.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))))) s t))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E} {t : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s) -> (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) t) -> (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (HAdd.hAdd.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHAdd.{u1} (Set.{u1} E) (Set.add.{u1} E (AddZeroClass.toAdd.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))))) s t))
+Case conversion may be inaccurate. Consider using '#align balanced.add Balanced.addβ‚“'. -/
 theorem Balanced.add (hs : Balanced π•œ s) (ht : Balanced π•œ t) : Balanced π•œ (s + t) := fun a ha =>
   (smul_add _ _ _).Subset.trans <| add_subset_add (hs _ ha) <| ht _ ha
 #align balanced.add Balanced.add
 
+/- warning: absorbs.sub -> Absorbs.sub is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s₁ : Set.{u2} E} {sβ‚‚ : Set.{u2} E} {t₁ : Set.{u2} E} {tβ‚‚ : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s₁ t₁) -> (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) sβ‚‚ tβ‚‚) -> (Absorbs.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (HSub.hSub.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHSub.{u2} (Set.{u2} E) (Set.sub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) s₁ sβ‚‚) (HSub.hSub.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHSub.{u2} (Set.{u2} E) (Set.sub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) t₁ tβ‚‚))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s₁ : Set.{u1} E} {sβ‚‚ : Set.{u1} E} {t₁ : Set.{u1} E} {tβ‚‚ : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s₁ t₁) -> (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) sβ‚‚ tβ‚‚) -> (Absorbs.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (HSub.hSub.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHSub.{u1} (Set.{u1} E) (Set.sub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))) s₁ sβ‚‚) (HSub.hSub.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHSub.{u1} (Set.{u1} E) (Set.sub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))) t₁ tβ‚‚))
+Case conversion may be inaccurate. Consider using '#align absorbs.sub Absorbs.subβ‚“'. -/
 theorem Absorbs.sub (h₁ : Absorbs π•œ s₁ t₁) (hβ‚‚ : Absorbs π•œ sβ‚‚ tβ‚‚) : Absorbs π•œ (s₁ - sβ‚‚) (t₁ - tβ‚‚) :=
   by
   simp_rw [sub_eq_add_neg]
   exact h₁.add hβ‚‚.neg
 #align absorbs.sub Absorbs.sub
 
+/- warning: balanced.sub -> Balanced.sub is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E} {t : Set.{u2} E}, (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) -> (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) t) -> (Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (HSub.hSub.{u2, u2, u2} (Set.{u2} E) (Set.{u2} E) (Set.{u2} E) (instHSub.{u2} (Set.{u2} E) (Set.sub.{u2} E (SubNegMonoid.toHasSub.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) s t))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E} {t : Set.{u1} E}, (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s) -> (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) t) -> (Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (HSub.hSub.{u1, u1, u1} (Set.{u1} E) (Set.{u1} E) (Set.{u1} E) (instHSub.{u1} (Set.{u1} E) (Set.sub.{u1} E (SubNegMonoid.toSub.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_2))))) s t))
+Case conversion may be inaccurate. Consider using '#align balanced.sub Balanced.subβ‚“'. -/
 theorem Balanced.sub (hs : Balanced π•œ s) (ht : Balanced π•œ t) : Balanced π•œ (s - t) :=
   by
   simp_rw [sub_eq_add_neg]
   exact hs.add ht.neg
 #align balanced.sub Balanced.sub
 
+/- warning: balanced_zero -> balanced_zero is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)], Balanced.{u1, u2} π•œ E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (SeminormedRing.toRing.{u1} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (OfNat.ofNat.{u2} (Set.{u2} E) 0 (OfNat.mk.{u2} (Set.{u2} E) 0 (Zero.zero.{u2} (Set.{u2} E) (Set.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : SeminormedRing.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)], Balanced.{u2, u1} π•œ E _inst_1 (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (MonoidWithZero.toZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (Ring.toSemiring.{u2} π•œ (SeminormedRing.toRing.{u2} π•œ _inst_1)) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (OfNat.ofNat.{u1} (Set.{u1} E) 0 (Zero.toOfNat0.{u1} (Set.{u1} E) (Set.zero.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))))
+Case conversion may be inaccurate. Consider using '#align balanced_zero balanced_zeroβ‚“'. -/
 theorem balanced_zero : Balanced π•œ (0 : Set E) := fun a ha => (smul_zero _).Subset
 #align balanced_zero balanced_zero
 
@@ -266,6 +442,12 @@ section NormedField
 variable [NormedField π•œ] [NormedRing 𝕝] [NormedSpace π•œ 𝕝] [AddCommGroup E] [Module π•œ E]
   [SMulWithZero 𝕝 E] [IsScalarTower π•œ 𝕝 E] {s t u v A B : Set E} {x : E} {a b : π•œ}
 
+/- warning: balanced.smul_mono -> Balanced.smul_mono is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {𝕝 : Type.{u2}} {E : Type.{u3}} [_inst_1 : NormedField.{u1} π•œ] [_inst_2 : NormedRing.{u2} 𝕝] [_inst_3 : NormedSpace.{u1, u2} π•œ 𝕝 _inst_1 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} 𝕝 (NormedRing.toNonUnitalNormedRing.{u2} 𝕝 _inst_2)))] [_inst_4 : AddCommGroup.{u3} E] [_inst_5 : Module.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)] [_inst_6 : SMulWithZero.{u2, u3} 𝕝 E (MulZeroClass.toHasZero.{u2} 𝕝 (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} 𝕝 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} 𝕝 (NonAssocRing.toNonUnitalNonAssocRing.{u2} 𝕝 (Ring.toNonAssocRing.{u2} 𝕝 (NormedRing.toRing.{u2} 𝕝 _inst_2)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4)))))] [_inst_7 : IsScalarTower.{u1, u2, u3} π•œ 𝕝 E (SMulZeroClass.toHasSmul.{u1, u2} π•œ 𝕝 (AddZeroClass.toHasZero.{u2} 𝕝 (AddMonoid.toAddZeroClass.{u2} 𝕝 (AddCommMonoid.toAddMonoid.{u2} 𝕝 (AddCommGroup.toAddCommMonoid.{u2} 𝕝 (SeminormedAddCommGroup.toAddCommGroup.{u2} 𝕝 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} 𝕝 (NormedRing.toNonUnitalNormedRing.{u2} 𝕝 _inst_2)))))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ 𝕝 (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} 𝕝 (AddMonoid.toAddZeroClass.{u2} 𝕝 (AddCommMonoid.toAddMonoid.{u2} 𝕝 (AddCommGroup.toAddCommMonoid.{u2} 𝕝 (SeminormedAddCommGroup.toAddCommGroup.{u2} 𝕝 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} 𝕝 (NormedRing.toNonUnitalNormedRing.{u2} 𝕝 _inst_2)))))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ 𝕝 (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} 𝕝 (AddMonoid.toAddZeroClass.{u2} 𝕝 (AddCommMonoid.toAddMonoid.{u2} 𝕝 (AddCommGroup.toAddCommMonoid.{u2} 𝕝 (SeminormedAddCommGroup.toAddCommGroup.{u2} 𝕝 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} 𝕝 (NormedRing.toNonUnitalNormedRing.{u2} 𝕝 _inst_2)))))))) (Module.toMulActionWithZero.{u1, u2} π•œ 𝕝 (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} 𝕝 (SeminormedAddCommGroup.toAddCommGroup.{u2} 𝕝 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} 𝕝 (NormedRing.toNonUnitalNormedRing.{u2} 𝕝 _inst_2))))) (NormedSpace.toModule.{u1, u2} π•œ 𝕝 _inst_1 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} 𝕝 (NormedRing.toNonUnitalNormedRing.{u2} 𝕝 _inst_2))) _inst_3))))) (SMulZeroClass.toHasSmul.{u2, u3} 𝕝 E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (SMulWithZero.toSmulZeroClass.{u2, u3} 𝕝 E (MulZeroClass.toHasZero.{u2} 𝕝 (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} 𝕝 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} 𝕝 (NonAssocRing.toNonUnitalNonAssocRing.{u2} 𝕝 (Ring.toNonAssocRing.{u2} 𝕝 (NormedRing.toRing.{u2} 𝕝 _inst_2)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) _inst_6)) (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))] {s : Set.{u3} E}, (Balanced.{u2, u3} 𝕝 E (NormedRing.toSeminormedRing.{u2} 𝕝 _inst_2) (SMulZeroClass.toHasSmul.{u2, u3} 𝕝 E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (SMulWithZero.toSmulZeroClass.{u2, u3} 𝕝 E (MulZeroClass.toHasZero.{u2} 𝕝 (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} 𝕝 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} 𝕝 (NonAssocRing.toNonUnitalNonAssocRing.{u2} 𝕝 (Ring.toNonAssocRing.{u2} 𝕝 (NormedRing.toRing.{u2} 𝕝 _inst_2)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) _inst_6)) s) -> (forall {a : 𝕝} {b : π•œ}, (LE.le.{0} Real Real.hasLe (Norm.norm.{u2} 𝕝 (NormedRing.toHasNorm.{u2} 𝕝 _inst_2) a) (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ _inst_1) b)) -> (HasSubset.Subset.{u3} (Set.{u3} E) (Set.hasSubset.{u3} E) (SMul.smul.{u2, u3} 𝕝 (Set.{u3} E) (Set.smulSet.{u2, u3} 𝕝 E (SMulZeroClass.toHasSmul.{u2, u3} 𝕝 E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) (SMulWithZero.toSmulZeroClass.{u2, u3} 𝕝 E (MulZeroClass.toHasZero.{u2} 𝕝 (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} 𝕝 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} 𝕝 (NonAssocRing.toNonUnitalNonAssocRing.{u2} 𝕝 (Ring.toNonAssocRing.{u2} 𝕝 (NormedRing.toRing.{u2} 𝕝 _inst_2)))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (SubNegMonoid.toAddMonoid.{u3} E (AddGroup.toSubNegMonoid.{u3} E (AddCommGroup.toAddGroup.{u3} E _inst_4))))) _inst_6))) a s) (SMul.smul.{u1, u3} π•œ (Set.{u3} E) (Set.smulSet.{u1, u3} π•œ E (SMulZeroClass.toHasSmul.{u1, u3} π•œ E (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u3} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u3} E (AddMonoid.toAddZeroClass.{u3} E (AddCommMonoid.toAddMonoid.{u3} E (AddCommGroup.toAddCommMonoid.{u3} E _inst_4)))) (Module.toMulActionWithZero.{u1, u3} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_4) _inst_5))))) b s)))
+but is expected to have type
+  forall {π•œ : Type.{u1}} {𝕝 : Type.{u3}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_2 : NormedRing.{u3} 𝕝] [_inst_3 : NormedSpace.{u1, u3} π•œ 𝕝 _inst_1 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u3} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u3} 𝕝 (NormedRing.toNonUnitalNormedRing.{u3} 𝕝 _inst_2)))] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] [_inst_6 : SMulWithZero.{u3, u2} 𝕝 E (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4)))))] [_inst_7 : IsScalarTower.{u1, u3, u2} π•œ 𝕝 E (SMulZeroClass.toSMul.{u1, u3} π•œ 𝕝 (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (SMulWithZero.toSMulZeroClass.{u1, u3} π•œ 𝕝 (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u3} π•œ 𝕝 (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (Module.toMulActionWithZero.{u1, u3} π•œ 𝕝 (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u3} 𝕝 (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} 𝕝 (NonAssocRing.toNonUnitalNonAssocRing.{u3} 𝕝 (Ring.toNonAssocRing.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2))))) (NormedSpace.toModule.{u1, u3} π•œ 𝕝 _inst_1 (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u3} 𝕝 (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u3} 𝕝 (NormedRing.toNonUnitalNormedRing.{u3} 𝕝 _inst_2))) _inst_3))))) (SMulZeroClass.toSMul.{u3, u2} 𝕝 E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} 𝕝 E (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) _inst_6)) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5))))] {s : Set.{u2} E}, (Balanced.{u3, u2} 𝕝 E (NormedRing.toSeminormedRing.{u3} 𝕝 _inst_2) (SMulZeroClass.toSMul.{u3, u2} 𝕝 E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} 𝕝 E (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) _inst_6)) s) -> (forall {a : 𝕝} {b : π•œ}, (LE.le.{0} Real Real.instLEReal (Norm.norm.{u3} 𝕝 (NormedRing.toNorm.{u3} 𝕝 _inst_2) a) (Norm.norm.{u1} π•œ (NormedField.toNorm.{u1} π•œ _inst_1) b)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) (HSMul.hSMul.{u3, u2, u2} 𝕝 (Set.{u2} E) (Set.{u2} E) (instHSMul.{u3, u2} 𝕝 (Set.{u2} E) (Set.smulSet.{u3, u2} 𝕝 E (SMulZeroClass.toSMul.{u3, u2} 𝕝 E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u3, u2} 𝕝 E (MonoidWithZero.toZero.{u3} 𝕝 (Semiring.toMonoidWithZero.{u3} 𝕝 (Ring.toSemiring.{u3} 𝕝 (NormedRing.toRing.{u3} 𝕝 _inst_2)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) _inst_6)))) a s) (HSMul.hSMul.{u1, u2, u2} π•œ (Set.{u2} E) (Set.{u2} E) (instHSMul.{u1, u2} π•œ (Set.{u2} E) (Set.smulSet.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))))) b s)))
+Case conversion may be inaccurate. Consider using '#align balanced.smul_mono Balanced.smul_monoβ‚“'. -/
 /-- Scalar multiplication (by possibly different types) of a balanced set is monotone. -/
 theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–aβ€– ≀ β€–bβ€–) : a β€’ s βŠ† b β€’ s :=
   by
@@ -283,6 +465,12 @@ theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–
   exact div_le_one_of_le h (norm_nonneg _)
 #align balanced.smul_mono Balanced.smul_mono
 
+/- warning: balanced.absorbs_self -> Balanced.absorbs_self is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E}, (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A) -> (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A A)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {A : Set.{u1} E}, (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A) -> (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A A)
+Case conversion may be inaccurate. Consider using '#align balanced.absorbs_self Balanced.absorbs_selfβ‚“'. -/
 /-- A balanced set absorbs itself. -/
 theorem Balanced.absorbs_self (hA : Balanced π•œ A) : Absorbs π•œ A A :=
   by
@@ -293,6 +481,12 @@ theorem Balanced.absorbs_self (hA : Balanced π•œ A) : Absorbs π•œ A A :=
   exact inv_le_one ha
 #align balanced.absorbs_self Balanced.absorbs_self
 
+/- warning: balanced.subset_smul -> Balanced.subset_smul is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} {a : π•œ}, (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A) -> (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ _inst_1) a)) -> (HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) A (SMul.smul.{u1, u2} π•œ (Set.{u2} E) (Set.smulSet.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5))))) a A))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {A : Set.{u1} E} {a : π•œ}, (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A) -> (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ _inst_1) a)) -> (HasSubset.Subset.{u1} (Set.{u1} E) (Set.instHasSubsetSet.{u1} E) A (HSMul.hSMul.{u2, u1, u1} π•œ (Set.{u1} E) (Set.{u1} E) (instHSMul.{u2, u1} π•œ (Set.{u1} E) (Set.smulSet.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))))) a A))
+Case conversion may be inaccurate. Consider using '#align balanced.subset_smul Balanced.subset_smulβ‚“'. -/
 theorem Balanced.subset_smul (hA : Balanced π•œ A) (ha : 1 ≀ β€–aβ€–) : A βŠ† a β€’ A :=
   by
   refine' (subset_set_smul_iffβ‚€ _).2 (hA a⁻¹ _)
@@ -303,10 +497,22 @@ theorem Balanced.subset_smul (hA : Balanced π•œ A) (ha : 1 ≀ β€–aβ€–) : A βŠ†
     exact inv_le_one ha
 #align balanced.subset_smul Balanced.subset_smul
 
+/- warning: balanced.smul_eq -> Balanced.smul_eq is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} {a : π•œ}, (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A) -> (Eq.{1} Real (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ _inst_1) a) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) -> (Eq.{succ u2} (Set.{u2} E) (SMul.smul.{u1, u2} π•œ (Set.{u2} E) (Set.smulSet.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5))))) a A) A)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {A : Set.{u1} E} {a : π•œ}, (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A) -> (Eq.{1} Real (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ _inst_1) a) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) -> (Eq.{succ u1} (Set.{u1} E) (HSMul.hSMul.{u2, u1, u1} π•œ (Set.{u1} E) (Set.{u1} E) (instHSMul.{u2, u1} π•œ (Set.{u1} E) (Set.smulSet.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))))) a A) A)
+Case conversion may be inaccurate. Consider using '#align balanced.smul_eq Balanced.smul_eqβ‚“'. -/
 theorem Balanced.smul_eq (hA : Balanced π•œ A) (ha : β€–aβ€– = 1) : a β€’ A = A :=
   (hA _ ha.le).antisymm <| hA.subset_smul ha.ge
 #align balanced.smul_eq Balanced.smul_eq
 
+/- warning: balanced.mem_smul_iff -> Balanced.mem_smul_iff is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {s : Set.{u2} E} {x : E} {a : π•œ} {b : π•œ}, (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) s) -> (Eq.{1} Real (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ _inst_1) a) (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ _inst_1) b)) -> (Iff (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (SMul.smul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) a x) s) (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (SMul.smul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) b x) s))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {s : Set.{u1} E} {x : E} {a : π•œ} {b : π•œ}, (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) s) -> (Eq.{1} Real (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ _inst_1) a) (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ _inst_1) b)) -> (Iff (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (HSMul.hSMul.{u2, u1, u1} π•œ E E (instHSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) a x) s) (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (HSMul.hSMul.{u2, u1, u1} π•œ E E (instHSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5))))) b x) s))
+Case conversion may be inaccurate. Consider using '#align balanced.mem_smul_iff Balanced.mem_smul_iffβ‚“'. -/
 theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a β€’ x ∈ s ↔ b β€’ x ∈ s :=
   by
   obtain rfl | hb := eq_or_ne b 0
@@ -320,10 +526,22 @@ theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a
       simp [← h, ha]
 #align balanced.mem_smul_iff Balanced.mem_smul_iff
 
+/- warning: balanced.neg_mem_iff -> Balanced.neg_mem_iff is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {s : Set.{u2} E} {x : E}, (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) s) -> (Iff (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (Neg.neg.{u2} E (SubNegMonoid.toHasNeg.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_4))) x) s) (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {s : Set.{u1} E} {x : E}, (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) s) -> (Iff (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (Neg.neg.{u1} E (NegZeroClass.toNeg.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) x) s) (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) x s))
+Case conversion may be inaccurate. Consider using '#align balanced.neg_mem_iff Balanced.neg_mem_iffβ‚“'. -/
 theorem Balanced.neg_mem_iff (hs : Balanced π•œ s) : -x ∈ s ↔ x ∈ s := by
   convert hs.mem_smul_iff (norm_neg 1) <;> simp only [neg_smul, one_smul]
 #align balanced.neg_mem_iff Balanced.neg_mem_iff
 
+/- warning: absorbs.inter -> Absorbs.inter is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {s : Set.{u2} E} {t : Set.{u2} E} {u : Set.{u2} E}, (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) s u) -> (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) t u) -> (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) u)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {s : Set.{u1} E} {t : Set.{u1} E} {u : Set.{u1} E}, (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) s u) -> (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) t u) -> (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (Inter.inter.{u1} (Set.{u1} E) (Set.instInterSet.{u1} E) s t) u)
+Case conversion may be inaccurate. Consider using '#align absorbs.inter Absorbs.interβ‚“'. -/
 theorem Absorbs.inter (hs : Absorbs π•œ s u) (ht : Absorbs π•œ t u) : Absorbs π•œ (s ∩ t) u :=
   by
   obtain ⟨a, ha, hs⟩ := hs
@@ -334,12 +552,24 @@ theorem Absorbs.inter (hs : Absorbs π•œ s u) (ht : Absorbs π•œ t u) : Absorbs
   exact subset_inter (hs _ <| le_of_max_le_left hc) (ht _ <| le_of_max_le_right hc)
 #align absorbs.inter Absorbs.inter
 
+/- warning: absorbs_inter -> absorbs_inter is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {s : Set.{u2} E} {t : Set.{u2} E} {u : Set.{u2} E}, Iff (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (Inter.inter.{u2} (Set.{u2} E) (Set.hasInter.{u2} E) s t) u) (And (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) s u) (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) t u))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {s : Set.{u1} E} {t : Set.{u1} E} {u : Set.{u1} E}, Iff (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (Inter.inter.{u1} (Set.{u1} E) (Set.instInterSet.{u1} E) s t) u) (And (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) s u) (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) t u))
+Case conversion may be inaccurate. Consider using '#align absorbs_inter absorbs_interβ‚“'. -/
 @[simp]
 theorem absorbs_inter : Absorbs π•œ (s ∩ t) u ↔ Absorbs π•œ s u ∧ Absorbs π•œ t u :=
   ⟨fun h => ⟨h.mono_left <| inter_subset_left _ _, h.mono_left <| inter_subset_right _ _⟩, fun h =>
     h.1.inter h.2⟩
 #align absorbs_inter absorbs_inter
 
+/- warning: absorbent_univ -> absorbent_univ is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)], Absorbent.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (Set.univ.{u2} E)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)], Absorbent.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (Set.univ.{u1} E)
+Case conversion may be inaccurate. Consider using '#align absorbent_univ absorbent_univβ‚“'. -/
 theorem absorbent_univ : Absorbent π•œ (univ : Set E) :=
   by
   refine' fun x => ⟨1, zero_lt_one, fun a ha => _⟩
@@ -349,6 +579,12 @@ theorem absorbent_univ : Absorbent π•œ (univ : Set E) :=
 
 variable [TopologicalSpace E] [ContinuousSMul π•œ E]
 
+/- warning: absorbent_nhds_zero -> absorbent_nhds_zero is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_8], (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) A (nhds.{u2} E _inst_8 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_4)))))))))) -> (Absorbent.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A)
+but is expected to have type
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_8], (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) A (nhds.{u2} E _inst_8 (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))))))) -> (Absorbent.{u1, u2} π•œ E (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_4))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A)
+Case conversion may be inaccurate. Consider using '#align absorbent_nhds_zero absorbent_nhds_zeroβ‚“'. -/
 /-- Every neighbourhood of the origin is absorbent. -/
 theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A :=
   by
@@ -368,6 +604,12 @@ theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A :=
     
 #align absorbent_nhds_zero absorbent_nhds_zero
 
+/- warning: balanced_zero_union_interior -> balanced_zero_union_interior is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_8], (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A) -> (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (Union.union.{u2} (Set.{u2} E) (Set.hasUnion.{u2} E) (OfNat.ofNat.{u2} (Set.{u2} E) 0 (OfNat.mk.{u2} (Set.{u2} E) 0 (Zero.zero.{u2} (Set.{u2} E) (Set.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_4))))))))) (interior.{u2} E _inst_8 A)))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {A : Set.{u1} E} [_inst_8 : TopologicalSpace.{u1} E] [_inst_9 : ContinuousSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) _inst_8], (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A) -> (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (Union.union.{u1} (Set.{u1} E) (Set.instUnionSet.{u1} E) (OfNat.ofNat.{u1} (Set.{u1} E) 0 (Zero.toOfNat0.{u1} (Set.{u1} E) (Set.zero.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4)))))))) (interior.{u1} E _inst_8 A)))
+Case conversion may be inaccurate. Consider using '#align balanced_zero_union_interior balanced_zero_union_interiorβ‚“'. -/
 /-- The union of `{0}` with the interior of a balanced set is balanced. -/
 theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0 : Set E) βˆͺ interior A) :=
   by
@@ -386,6 +628,12 @@ theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0
         
 #align balanced_zero_union_interior balanced_zero_union_interior
 
+/- warning: balanced.interior -> Balanced.interior is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_8], (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_4)))))))) (interior.{u2} E _inst_8 A)) -> (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (interior.{u2} E _inst_8 A))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {A : Set.{u1} E} [_inst_8 : TopologicalSpace.{u1} E] [_inst_9 : ContinuousSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) _inst_8], (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A) -> (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))))) (interior.{u1} E _inst_8 A)) -> (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (interior.{u1} E _inst_8 A))
+Case conversion may be inaccurate. Consider using '#align balanced.interior Balanced.interiorβ‚“'. -/
 /-- The interior of a balanced set is balanced if it contains the origin. -/
 theorem Balanced.interior (hA : Balanced π•œ A) (h : (0 : E) ∈ interior A) :
     Balanced π•œ (interior A) :=
@@ -394,6 +642,12 @@ theorem Balanced.interior (hA : Balanced π•œ A) (h : (0 : E) ∈ interior A) :
   exact balanced_zero_union_interior hA
 #align balanced.interior Balanced.interior
 
+/- warning: balanced.closure -> Balanced.closure is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π•œ] [_inst_4 : AddCommGroup.{u2} E] [_inst_5 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)] {A : Set.{u2} E} [_inst_8 : TopologicalSpace.{u2} E] [_inst_9 : ContinuousSMul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))) _inst_8], (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) A) -> (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_4)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_4) _inst_5)))) (closure.{u2} E _inst_8 A))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π•œ] [_inst_4 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4)] {A : Set.{u1} E} [_inst_8 : TopologicalSpace.{u1} E] [_inst_9 : ContinuousSMul.{u2, u1} π•œ E (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1)))))) _inst_8], (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) A) -> (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_4))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_4) _inst_5)))) (closure.{u1} E _inst_8 A))
+Case conversion may be inaccurate. Consider using '#align balanced.closure Balanced.closureβ‚“'. -/
 theorem Balanced.closure (hA : Balanced π•œ A) : Balanced π•œ (closure A) := fun a ha =>
   (image_closure_subset_closure_image <| continuous_id.const_smul _).trans <|
     closure_mono <| hA _ ha
@@ -405,6 +659,12 @@ section NontriviallyNormedField
 
 variable [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] {s : Set E}
 
+/- warning: absorbs_zero_iff -> absorbs_zero_iff is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E}, Iff (Absorbs.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s (OfNat.ofNat.{u2} (Set.{u2} E) 0 (OfNat.mk.{u2} (Set.{u2} E) 0 (Zero.zero.{u2} (Set.{u2} E) (Set.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))))) (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) s)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E}, Iff (Absorbs.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s (OfNat.ofNat.{u1} (Set.{u1} E) 0 (Zero.toOfNat0.{u1} (Set.{u1} E) (Set.zero.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))))) (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))) s)
+Case conversion may be inaccurate. Consider using '#align absorbs_zero_iff absorbs_zero_iffβ‚“'. -/
 theorem absorbs_zero_iff : Absorbs π•œ s 0 ↔ (0 : E) ∈ s :=
   by
   refine' ⟨_, fun h => ⟨1, zero_lt_one, fun a _ => zero_subset.2 <| zero_mem_smul_set h⟩⟩
@@ -415,12 +675,24 @@ theorem absorbs_zero_iff : Absorbs π•œ s 0 ↔ (0 : E) ∈ s :=
   exact norm_ne_zero_iff.1 (hr.trans ha).ne'
 #align absorbs_zero_iff absorbs_zero_iff
 
+/- warning: absorbent.zero_mem -> Absorbent.zero_mem is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E}, (Absorbent.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) -> (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2)))))))) s)
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E}, (Absorbent.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s) -> (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))))) s)
+Case conversion may be inaccurate. Consider using '#align absorbent.zero_mem Absorbent.zero_memβ‚“'. -/
 theorem Absorbent.zero_mem (hs : Absorbent π•œ s) : (0 : E) ∈ s :=
   absorbs_zero_iff.1 <| absorbent_iff_forall_absorbs_singleton.1 hs _
 #align absorbent.zero_mem Absorbent.zero_mem
 
 variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 
+/- warning: balanced_convex_hull_of_balanced -> balanced_convexHull_of_balanced is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {s : Set.{u2} E} [_inst_4 : Module.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_5 : SMulCommClass.{0, u1, u2} Real π•œ E (SMulZeroClass.toHasSmul.{0, u2} Real E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{0, u2} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{0, u2} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{0, u2} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3))))], (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) s) -> (Balanced.{u1, u2} π•œ E (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (coeFn.{succ u2, succ u2} (ClosureOperator.{u2} (Set.{u2} E) (PartialOrder.toPreorder.{u2} (Set.{u2} E) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} E) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} E) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} E) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} E) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} E) (Set.completeBooleanAlgebra.{u2} E)))))))) (fun (_x : ClosureOperator.{u2} (Set.{u2} E) (PartialOrder.toPreorder.{u2} (Set.{u2} E) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} E) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} E) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} E) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} E) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} E) (Set.completeBooleanAlgebra.{u2} E)))))))) => (Set.{u2} E) -> (Set.{u2} E)) (ClosureOperator.hasCoeToFun.{u2} (Set.{u2} E) (PartialOrder.toPreorder.{u2} (Set.{u2} E) (CompleteSemilatticeInf.toPartialOrder.{u2} (Set.{u2} E) (CompleteLattice.toCompleteSemilatticeInf.{u2} (Set.{u2} E) (Order.Coframe.toCompleteLattice.{u2} (Set.{u2} E) (CompleteDistribLattice.toCoframe.{u2} (Set.{u2} E) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u2} (Set.{u2} E) (Set.completeBooleanAlgebra.{u2} E)))))))) (convexHull.{0, u2} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_4) s))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] {s : Set.{u1} E} [_inst_4 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_5 : SMulCommClass.{0, u2, u1} Real π•œ E (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3))))], (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) s) -> (Balanced.{u2, u1} π•œ E (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π•œ E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π•œ E (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π•œ E (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π•œ E (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (OrderHom.toFun.{u1, u1} (Set.{u1} E) (Set.{u1} E) (PartialOrder.toPreorder.{u1} (Set.{u1} E) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} E) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} E) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} E) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} E) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} E) (Set.instCompleteBooleanAlgebraSet.{u1} E))))))) (PartialOrder.toPreorder.{u1} (Set.{u1} E) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} E) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} E) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} E) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} E) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} E) (Set.instCompleteBooleanAlgebraSet.{u1} E))))))) (ClosureOperator.toOrderHom.{u1} (Set.{u1} E) (PartialOrder.toPreorder.{u1} (Set.{u1} E) (OmegaCompletePartialOrder.toPartialOrder.{u1} (Set.{u1} E) (CompleteLattice.instOmegaCompletePartialOrder.{u1} (Set.{u1} E) (Order.Coframe.toCompleteLattice.{u1} (Set.{u1} E) (CompleteDistribLattice.toCoframe.{u1} (Set.{u1} E) (CompleteBooleanAlgebra.toCompleteDistribLattice.{u1} (Set.{u1} E) (Set.instCompleteBooleanAlgebraSet.{u1} E))))))) (convexHull.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_4)) s))
+Case conversion may be inaccurate. Consider using '#align balanced_convex_hull_of_balanced balanced_convexHull_of_balancedβ‚“'. -/
 theorem balanced_convexHull_of_balanced (hs : Balanced π•œ s) : Balanced π•œ (convexHull ℝ s) :=
   by
   suffices Convex ℝ { x | βˆ€ a : π•œ, β€–aβ€– ≀ 1 β†’ a β€’ x ∈ convexHull ℝ s }
@@ -439,6 +711,12 @@ section Real
 
 variable [AddCommGroup E] [Module ℝ E] {s : Set E}
 
+/- warning: balanced_iff_neg_mem -> balanced_iff_neg_mem is a dubious translation:
+lean 3 declaration is
+  forall {E : Type.{u1}} [_inst_1 : AddCommGroup.{u1} E] [_inst_2 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)] {s : Set.{u1} E}, (Convex.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1) (SMulZeroClass.toHasSmul.{0, u1} Real E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)))) (SMulWithZero.toSmulZeroClass.{0, u1} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1) _inst_2)))) s) -> (Iff (Balanced.{0, u1} Real E (SeminormedCommRing.toSemiNormedRing.{0} Real (NormedCommRing.toSeminormedCommRing.{0} Real Real.normedCommRing)) (SMulZeroClass.toHasSmul.{0, u1} Real E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)))) (SMulWithZero.toSmulZeroClass.{0, u1} Real E (MulZeroClass.toHasZero.{0} Real (MulZeroOneClass.toMulZeroClass.{0} Real (MonoidWithZero.toMulZeroOneClass.{0} Real (Semiring.toMonoidWithZero.{0} Real Real.semiring)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E (Semiring.toMonoidWithZero.{0} Real Real.semiring) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1) _inst_2)))) s) (forall {{x : E}}, (Membership.Mem.{u1, u1} E (Set.{u1} E) (Set.hasMem.{u1} E) x s) -> (Membership.Mem.{u1, u1} E (Set.{u1} E) (Set.hasMem.{u1} E) (Neg.neg.{u1} E (SubNegMonoid.toHasNeg.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_1))) x) s)))
+but is expected to have type
+  forall {E : Type.{u1}} [_inst_1 : AddCommGroup.{u1} E] [_inst_2 : Module.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1)] {s : Set.{u1} E}, (Convex.{0, u1} Real E Real.orderedSemiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1) _inst_2)))) s) -> (Iff (Balanced.{0, u1} Real E (SeminormedCommRing.toSeminormedRing.{0} Real (NormedCommRing.toSeminormedCommRing.{0} Real Real.normedCommRing)) (SMulZeroClass.toSMul.{0, u1} Real E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) (SMulWithZero.toSMulZeroClass.{0, u1} Real E Real.instZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) (MulActionWithZero.toSMulWithZero.{0, u1} Real E Real.instMonoidWithZeroReal (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) (Module.toMulActionWithZero.{0, u1} Real E Real.semiring (AddCommGroup.toAddCommMonoid.{u1} E _inst_1) _inst_2)))) s) (forall {{x : E}}, (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) x s) -> (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (Neg.neg.{u1} E (NegZeroClass.toNeg.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_1))))) x) s)))
+Case conversion may be inaccurate. Consider using '#align balanced_iff_neg_mem balanced_iff_neg_memβ‚“'. -/
 theorem balanced_iff_neg_mem (hs : Convex ℝ s) : Balanced ℝ s ↔ βˆ€ ⦃x⦄, x ∈ s β†’ -x ∈ s :=
   by
   refine' ⟨fun h x => h.neg_mem_iff.2, fun h a ha => smul_set_subset_iff.2 fun x hx => _⟩
Diff
@@ -48,9 +48,9 @@ open Pointwise Topology
 
 variable {π•œ 𝕝 E : Type _} {ΞΉ : Sort _} {ΞΊ : ΞΉ β†’ Sort _}
 
-section SemiNormedRing
+section SeminormedRing
 
-variable [SemiNormedRing π•œ]
+variable [SeminormedRing π•œ]
 
 section SMul
 
@@ -259,7 +259,7 @@ theorem balanced_zero : Balanced π•œ (0 : Set E) := fun a ha => (smul_zero _).S
 
 end Module
 
-end SemiNormedRing
+end SeminormedRing
 
 section NormedField
 

Changes in mathlib4

mathlib3
mathlib4
chore: unify date formatting in lemma deprecations (#12334)
  • consistently use the YYYY-MM-DD format
  • when easily possible, put the date on the same line as the deprecated attribute
  • when easily possible, format the entire declaration on the same line

Why these changes?

  • consistency makes it easier for tools to parse this information
  • compactness: I don't see a good reason for these declarations taking up more space than needed; as I understand it, deprecated lemmas are not supposed to be used in mathlib anyway
  • putting the date on the same line as the attribute makes it easier to discover un-dated deprecations; they also ease writing a tool to replace these by a machine-readable version using leanprover/lean4#3968
Diff
@@ -236,8 +236,7 @@ theorem Balanced.smul_mem_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a
   ⟨(hs.smul_mem_mono · h.ge), (hs.smul_mem_mono · h.le)⟩
 #align balanced.mem_smul_iff Balanced.smul_mem_iff
 
-@[deprecated] -- Since 2024/02/02
-alias Balanced.mem_smul_iff := Balanced.smul_mem_iff
+@[deprecated] alias Balanced.mem_smul_iff := Balanced.smul_mem_iff -- since 2024-02-02
 
 variable [TopologicalSpace E] [ContinuousSMul π•œ E]
 
@@ -281,7 +280,7 @@ section NontriviallyNormedField
 
 variable [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] {s : Set E}
 
-@[deprecated Absorbent.zero_mem] -- Since 2024/02/02
+@[deprecated Absorbent.zero_mem] -- Since 2024-02-02
 theorem Absorbent.zero_mem' (hs : Absorbent π•œ s) : (0 : E) ∈ s := hs.zero_mem
 
 variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
@@ -296,8 +295,7 @@ protected theorem Balanced.convexHull (hs : Balanced π•œ s) : Balanced π•œ (co
   exact convex_convexHull ℝ s (hx a ha) (hy a ha) hu hv huv
 #align balanced_convex_hull_of_balanced Balanced.convexHull
 
-@[deprecated] -- Since 2024/02/02
-alias balanced_convexHull_of_balanced := Balanced.convexHull
+@[deprecated] alias balanced_convexHull_of_balanced := Balanced.convexHull -- Since 2024-02-02
 
 end NontriviallyNormedField
 
chore: Remove ball and bex from lemma names (#10816)

ball for "bounded forall" and bex for "bounded exists" are from experience very confusing abbreviations. This PR renames them to forall_mem and exists_mem in the few Set lemma names that mention them.

Also deprecate ball_image_of_ball, mem_image_elim, mem_image_elim_on since those lemmas are duplicates of the renamed lemmas (apart from argument order and implicitness, which I am also fixing by making the binder in the RHS of forall_mem_image semi-implicit), have obscure names and are completely unused.

Diff
@@ -105,7 +105,7 @@ protected lemma sUnion (hT : T.Finite) (hs : βˆ€ t ∈ T, Absorbs M s t) :
 @[simp]
 lemma _root_.absorbs_iUnion {ΞΉ : Sort*} [Finite ΞΉ] {t : ΞΉ β†’ Set Ξ±} :
     Absorbs M s (⋃ i, t i) ↔ βˆ€ i, Absorbs M s (t i) :=
-  (finite_range t).absorbs_sUnion.trans forall_range_iff
+  (finite_range t).absorbs_sUnion.trans forall_mem_range
 
 protected alias ⟨_, iUnion⟩ := absorbs_iUnion
 
@@ -180,13 +180,13 @@ protected lemma inter (hs : Absorbs Gβ‚€ s u) (ht : Absorbs Gβ‚€ t u) : Absorbs
 @[simp]
 lemma _root_.absorbs_iInter {ΞΉ : Sort*} [Finite ΞΉ] {s : ΞΉ β†’ Set Ξ±} :
     Absorbs Gβ‚€ (β‹‚ i, s i) t ↔ βˆ€ i, Absorbs Gβ‚€ (s i) t :=
-  (finite_range s).absorbs_sInter.trans forall_range_iff
+  (finite_range s).absorbs_sInter.trans forall_mem_range
 
 protected alias ⟨_, iInter⟩ := absorbs_iInter
 
 lemma _root_.Set.Finite.absorbs_biInter {ΞΉ : Type*} {I : Set ΞΉ} (hI : I.Finite) {s : ΞΉ β†’ Set Ξ±} :
     Absorbs Gβ‚€ (β‹‚ i ∈ I, s i) t ↔ βˆ€ i ∈ I, Absorbs Gβ‚€ (s i) t := by
-  simpa only [sInter_image, ball_image_iff] using (hI.image s).absorbs_sInter
+  simpa only [sInter_image, forall_mem_image] using (hI.image s).absorbs_sInter
 
 protected alias ⟨_, biInter⟩ := Set.Finite.absorbs_biInter
 
feat(LocallyConvex/Bounded): add isVonNBounded_iff_tendsto_smallSets_nhds (#10776)
  • add absorbs_iff_eventually_nhds_zero, isVonNBounded_iff_tendsto_smallSets_nhds, and isVonNBounded_pi_iff;
  • generalize some lemmas from NormedField to NormedDivisionRing;
  • use new lemmas to golf 2 proofs
Diff
@@ -159,10 +159,9 @@ end Module
 
 end SeminormedRing
 
-section NormedField
+section NormedDivisionRing
 
-variable [NormedField π•œ] [NormedRing 𝕝] [NormedSpace π•œ 𝕝] [AddCommGroup E] [Module π•œ E]
-  [SMulWithZero 𝕝 E] [IsScalarTower π•œ 𝕝 E] {s t u v A B : Set E} {x : E} {a b : π•œ}
+variable [NormedDivisionRing π•œ] [AddCommGroup E] [Module π•œ E] {s t : Set E} {x : E} {a b : π•œ}
 
 theorem absorbs_iff_eventually_nhdsWithin_zero :
     Absorbs π•œ s t ↔ βˆ€αΆ  c : π•œ in 𝓝[β‰ ] 0, MapsTo (c β€’ Β·) t s := by
@@ -170,19 +169,30 @@ theorem absorbs_iff_eventually_nhdsWithin_zero :
 
 alias ⟨Absorbs.eventually_nhdsWithin_zero, _⟩ := absorbs_iff_eventually_nhdsWithin_zero
 
-theorem Absorbs.eventually_nhds_zero (h : Absorbs π•œ s t) (hβ‚€ : 0 ∈ s) :
-    βˆ€αΆ  c : π•œ in 𝓝 0, MapsTo (c β€’ Β·) t s := by
-  rw [← nhdsWithin_compl_singleton_sup_pure, Filter.eventually_sup, Filter.eventually_pure,
-    ← absorbs_iff_eventually_nhdsWithin_zero]
-  refine ⟨h, fun x _ ↦ ?_⟩
-  simpa only [zero_smul]
-
 theorem absorbent_iff_eventually_nhdsWithin_zero :
     Absorbent π•œ s ↔ βˆ€ x : E, βˆ€αΆ  c : π•œ in 𝓝[β‰ ] 0, c β€’ x ∈ s :=
   forall_congr' fun x ↦ by simp only [absorbs_iff_eventually_nhdsWithin_zero, mapsTo_singleton]
 
 alias ⟨Absorbent.eventually_nhdsWithin_zero, _⟩ := absorbent_iff_eventually_nhdsWithin_zero
 
+theorem absorbs_iff_eventually_nhds_zero (hβ‚€ : 0 ∈ s) :
+    Absorbs π•œ s t ↔ βˆ€αΆ  c : π•œ in 𝓝 0, MapsTo (c β€’ Β·) t s := by
+  rw [← nhdsWithin_compl_singleton_sup_pure, Filter.eventually_sup, Filter.eventually_pure,
+    ← absorbs_iff_eventually_nhdsWithin_zero, and_iff_left]
+  intro x _
+  simpa only [zero_smul]
+
+theorem Absorbs.eventually_nhds_zero (h : Absorbs π•œ s t) (hβ‚€ : 0 ∈ s) :
+    βˆ€αΆ  c : π•œ in 𝓝 0, MapsTo (c β€’ Β·) t s :=
+  (absorbs_iff_eventually_nhds_zero hβ‚€).1 h
+
+end NormedDivisionRing
+
+section NormedField
+
+variable [NormedField π•œ] [NormedRing 𝕝] [NormedSpace π•œ 𝕝] [AddCommGroup E] [Module π•œ E]
+  [SMulWithZero 𝕝 E] [IsScalarTower π•œ 𝕝 E] {s t u v A B : Set E} {x : E} {a b : π•œ}
+
 /-- Scalar multiplication (by possibly different types) of a balanced set is monotone. -/
 theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–aβ€– ≀ β€–bβ€–) : a β€’ s βŠ† b β€’ s := by
   obtain rfl | hb := eq_or_ne b 0
chore(Analysis/Seminorm): golf (#10323)
  • Add absorbent_iff_eventually_nhdsWithin_zero.
  • Use it to golf Seminorm.bddAbove_of_absorbent.
Diff
@@ -177,6 +177,12 @@ theorem Absorbs.eventually_nhds_zero (h : Absorbs π•œ s t) (hβ‚€ : 0 ∈ s) :
   refine ⟨h, fun x _ ↦ ?_⟩
   simpa only [zero_smul]
 
+theorem absorbent_iff_eventually_nhdsWithin_zero :
+    Absorbent π•œ s ↔ βˆ€ x : E, βˆ€αΆ  c : π•œ in 𝓝[β‰ ] 0, c β€’ x ∈ s :=
+  forall_congr' fun x ↦ by simp only [absorbs_iff_eventually_nhdsWithin_zero, mapsTo_singleton]
+
+alias ⟨Absorbent.eventually_nhdsWithin_zero, _⟩ := absorbent_iff_eventually_nhdsWithin_zero
+
 /-- Scalar multiplication (by possibly different types) of a balanced set is monotone. -/
 theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–aβ€– ≀ β€–bβ€–) : a β€’ s βŠ† b β€’ s := by
   obtain rfl | hb := eq_or_ne b 0
feat(Algebra/UniformConvergence): drop unneeded assumptions (#10321)
  • Prove a version of UniformOnFun.continuousSMul_induced_of_image_bounded for UniformFuns.
  • Deal with Ο† : H β†’β‚—[π•œ] (Ξ± β†’ E) and ofFun ∘ Ο†, not Ο† : H β†’β‚—[π•œ] (Ξ± β†’α΅€[𝔖] E).
  • Drop unneeded assumptions (nonempty, directed).
Diff
@@ -164,6 +164,19 @@ section NormedField
 variable [NormedField π•œ] [NormedRing 𝕝] [NormedSpace π•œ 𝕝] [AddCommGroup E] [Module π•œ E]
   [SMulWithZero 𝕝 E] [IsScalarTower π•œ 𝕝 E] {s t u v A B : Set E} {x : E} {a b : π•œ}
 
+theorem absorbs_iff_eventually_nhdsWithin_zero :
+    Absorbs π•œ s t ↔ βˆ€αΆ  c : π•œ in 𝓝[β‰ ] 0, MapsTo (c β€’ Β·) t s := by
+  rw [absorbs_iff_eventually_cobounded_mapsTo, ← Filter.inv_coboundedβ‚€]; rfl
+
+alias ⟨Absorbs.eventually_nhdsWithin_zero, _⟩ := absorbs_iff_eventually_nhdsWithin_zero
+
+theorem Absorbs.eventually_nhds_zero (h : Absorbs π•œ s t) (hβ‚€ : 0 ∈ s) :
+    βˆ€αΆ  c : π•œ in 𝓝 0, MapsTo (c β€’ Β·) t s := by
+  rw [← nhdsWithin_compl_singleton_sup_pure, Filter.eventually_sup, Filter.eventually_pure,
+    ← absorbs_iff_eventually_nhdsWithin_zero]
+  refine ⟨h, fun x _ ↦ ?_⟩
+  simpa only [zero_smul]
+
 /-- Scalar multiplication (by possibly different types) of a balanced set is monotone. -/
 theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–aβ€– ≀ β€–bβ€–) : a β€’ s βŠ† b β€’ s := by
   obtain rfl | hb := eq_or_ne b 0
chore(Absorbs, Balanced): more lemmas, golf, generalize (#10201)
  • add balanced_iff_closedBall_smul, balanced_neg;
  • generalize Balanced.neg_mem_iff to a SeminormedRing + NormOneClass, add Balanced.neg_eq
  • add Balanced.smul_mem_mono and Balanced.smul_congr;
  • rename Balanced.mem_smul_iff to Balanced.smul_mem_iff;
  • rename balanced_zero_union_interior to Balanced.zero_insert_interior, use insert 0 (interior A) instead of 0 βˆͺ interior A;
  • make Balanced.interior and Balanced.closure protected;
  • deprecate Absorbs.zero_mem';
  • rename balanced_convexHull_of_balanced to Balanced.convexHull;
  • add absorbs_iff_eventually_cobounded_mapsTo, use it to golf some proofs.
Diff
@@ -155,11 +155,16 @@ variable {Gβ‚€ Ξ± : Type*} [GroupWithZero Gβ‚€] [Bornology Gβ‚€] [MulAction Gβ‚€
 protected lemma univ : Absorbs Gβ‚€ univ s :=
   (eventually_ne_cobounded 0).mono fun a ha ↦ by rw [smul_set_univβ‚€ ha]; apply subset_univ
 
+lemma _root_.absorbs_iff_eventually_cobounded_mapsTo :
+    Absorbs Gβ‚€ s t ↔ βˆ€αΆ  c in cobounded Gβ‚€, MapsTo (c⁻¹ β€’ Β·) t s :=
+  eventually_congr <| (eventually_ne_cobounded 0).mono fun c hc ↦ by
+    rw [← preimage_smul_invβ‚€ hc]; rfl
+
+alias ⟨eventually_cobounded_mapsTo, _⟩ := absorbs_iff_eventually_cobounded_mapsTo
+
 lemma _root_.Set.Finite.absorbs_sInter (hS : S.Finite) :
     Absorbs Gβ‚€ (β‹‚β‚€ S) t ↔ βˆ€ s ∈ S, Absorbs Gβ‚€ s t := by
-  simp only [Absorbs, ← hS.eventually_all]
-  refine eventually_congr <| (eventually_ne_cobounded 0).mono fun a ha ↦ ?_
-  simp only [← preimage_smul_invβ‚€ ha, preimage_sInter, subset_iInter_iff]
+  simp only [absorbs_iff_eventually_cobounded_mapsTo, mapsTo_sInter, hS.eventually_all]
 
 protected alias ⟨_, sInter⟩ := Set.Finite.absorbs_sInter
 
@@ -188,10 +193,8 @@ protected alias ⟨_, biInter⟩ := Set.Finite.absorbs_biInter
 @[simp]
 lemma _root_.absorbs_zero_iff [NeBot (cobounded Gβ‚€)] {E : Type*} [AddMonoid E]
     [DistribMulAction Gβ‚€ E] {s : Set E} : Absorbs Gβ‚€ s 0 ↔ 0 ∈ s := by
-  refine ⟨fun h ↦ ?_, .zero⟩
-  rcases (h.and (eventually_ne_cobounded 0)).exists with ⟨c, hc, hcβ‚€βŸ©
-  rcases hc rfl with ⟨x, hx, hxβ‚€βŸ©
-  rwa [← smul_zero c⁻¹, ← hxβ‚€, inv_smul_smulβ‚€ hcβ‚€]
+  simp only [absorbs_iff_eventually_cobounded_mapsTo, ← singleton_zero,
+    mapsTo_singleton, smul_zero, eventually_const]
 #align absorbs_zero_iff absorbs_zero_iff
 
 end GroupWithZero
@@ -259,8 +262,7 @@ lemma absorbent_univ : Absorbent Gβ‚€ (univ : Set Ξ±) := fun _ ↦ .univ
 
 lemma absorbent_iff_inv_smul {s : Set Ξ±} :
     Absorbent Gβ‚€ s ↔ βˆ€ x, βˆ€αΆ  c in cobounded Gβ‚€, c⁻¹ β€’ x ∈ s :=
-  forall_congr' fun x ↦ eventually_congr <| (eventually_ne_cobounded 0).mono fun c hc ↦ by
-    rw [singleton_subset_iff, ← preimage_smul_invβ‚€ hc, mem_preimage]
+  forall_congr' fun x ↦ by simp only [absorbs_iff_eventually_cobounded_mapsTo, mapsTo_singleton]
 
 lemma Absorbent.zero_mem [NeBot (cobounded Gβ‚€)] [AddMonoid E] [DistribMulAction Gβ‚€ E]
     {s : Set E} (hs : Absorbent Gβ‚€ s) : (0 : E) ∈ s :=
chore(Absorbs, Balanced): more lemmas, golf, generalize (#10201)
  • add balanced_iff_closedBall_smul, balanced_neg;
  • generalize Balanced.neg_mem_iff to a SeminormedRing + NormOneClass, add Balanced.neg_eq
  • add Balanced.smul_mem_mono and Balanced.smul_congr;
  • rename Balanced.mem_smul_iff to Balanced.smul_mem_iff;
  • rename balanced_zero_union_interior to Balanced.zero_insert_interior, use insert 0 (interior A) instead of 0 βˆͺ interior A;
  • make Balanced.interior and Balanced.closure protected;
  • deprecate Absorbs.zero_mem';
  • rename balanced_convexHull_of_balanced to Balanced.convexHull;
  • add absorbs_iff_eventually_cobounded_mapsTo, use it to golf some proofs.
Diff
@@ -78,6 +78,9 @@ theorem balanced_iff_smul_mem : Balanced π•œ s ↔ βˆ€ ⦃a : π•œβ¦„, β€–aβ€–
 alias ⟨Balanced.smul_mem, _⟩ := balanced_iff_smul_mem
 #align balanced.smul_mem Balanced.smul_mem
 
+theorem balanced_iff_closedBall_smul : Balanced π•œ s ↔ Metric.closedBall (0 : π•œ) 1 β€’ s βŠ† s := by
+  simp [balanced_iff_smul_mem, smul_subset_iff]
+
 @[simp]
 theorem balanced_empty : Balanced π•œ (βˆ… : Set E) := fun _ _ => by rw [smul_set_empty]
 #align balanced_empty balanced_empty
@@ -128,6 +131,18 @@ theorem Balanced.neg : Balanced π•œ s β†’ Balanced π•œ (-s) :=
   forallβ‚‚_imp fun _ _ h => (smul_set_neg _ _).subset.trans <| neg_subset_neg.2 h
 #align balanced.neg Balanced.neg
 
+@[simp]
+theorem balanced_neg : Balanced π•œ (-s) ↔ Balanced π•œ s :=
+  ⟨fun h ↦ neg_neg s β–Έ h.neg, fun h ↦ h.neg⟩
+
+theorem Balanced.neg_mem_iff [NormOneClass π•œ] (h : Balanced π•œ s) {x : E} : -x ∈ s ↔ x ∈ s :=
+  ⟨fun hx ↦ by simpa using h.smul_mem (a := -1) (by simp) hx,
+    fun hx ↦ by simpa using h.smul_mem (a := -1) (by simp) hx⟩
+#align balanced.neg_mem_iff Balanced.neg_mem_iff
+
+theorem Balanced.neg_eq [NormOneClass π•œ] (h : Balanced π•œ s) : -s = s :=
+  Set.ext fun _ ↦ h.neg_mem_iff
+
 theorem Balanced.add (hs : Balanced π•œ s) (ht : Balanced π•œ t) : Balanced π•œ (s + t) := fun _a ha =>
   (smul_add _ _ _).subset.trans <| add_subset_add (hs _ ha) <| ht _ ha
 #align balanced.add Balanced.add
@@ -152,23 +167,33 @@ variable [NormedField π•œ] [NormedRing 𝕝] [NormedSpace π•œ 𝕝] [AddCommGr
 /-- Scalar multiplication (by possibly different types) of a balanced set is monotone. -/
 theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–aβ€– ≀ β€–bβ€–) : a β€’ s βŠ† b β€’ s := by
   obtain rfl | hb := eq_or_ne b 0
-  Β· rw [norm_zero] at h
-    rw [norm_eq_zero.1 (h.antisymm <| norm_nonneg _)]
-    obtain rfl | h := s.eq_empty_or_nonempty
-    Β· simp_rw [smul_set_empty]; rfl
-    Β· simp_rw [zero_smul_set h]; rfl
-  rintro _ ⟨x, hx, rfl⟩
-  refine' ⟨b⁻¹ β€’ a β€’ x, _, smul_inv_smulβ‚€ hb _⟩
-  rw [← smul_assoc]
-  refine' hs _ _ (smul_mem_smul_set hx)
-  rw [norm_smul, norm_inv, ← div_eq_inv_mul]
-  exact div_le_one_of_le h (norm_nonneg _)
+  Β· rw [norm_zero, norm_le_zero_iff] at h
+    simp only [h, ← image_smul, zero_smul, Subset.rfl]
+  Β· calc
+      a β€’ s = b β€’ (b⁻¹ β€’ a) β€’ s := by rw [smul_assoc, smul_inv_smulβ‚€ hb]
+      _ βŠ† b β€’ s := smul_set_mono <| hs _ <| by
+        rw [norm_smul, norm_inv, ← div_eq_inv_mul]
+        exact div_le_one_of_le h (norm_nonneg _)
 #align balanced.smul_mono Balanced.smul_mono
 
+theorem Balanced.smul_mem_mono [SMulCommClass 𝕝 π•œ E] (hs : Balanced 𝕝 s) {a : π•œ} {b : 𝕝}
+    (ha : a β€’ x ∈ s) (hba : β€–bβ€– ≀ β€–aβ€–) : b β€’ x ∈ s := by
+  rcases eq_or_ne a 0 with rfl | haβ‚€
+  Β· simp_all
+  Β· calc
+      b β€’ x = (a⁻¹ β€’ b) β€’ a β€’ x := by rw [smul_comm, smul_assoc, smul_inv_smulβ‚€ haβ‚€]
+      _ ∈ s := by
+        refine hs.smul_mem ?_ ha
+        rw [norm_smul, norm_inv, ← div_eq_inv_mul]
+        exact div_le_one_of_le hba (norm_nonneg _)
+
 theorem Balanced.subset_smul (hA : Balanced π•œ A) (ha : 1 ≀ β€–aβ€–) : A βŠ† a β€’ A := by
   rw [← @norm_one π•œ] at ha; simpa using hA.smul_mono ha
 #align balanced.subset_smul Balanced.subset_smul
 
+theorem Balanced.smul_congr (hs : Balanced π•œ A) (h : β€–aβ€– = β€–bβ€–) : a β€’ A = b β€’ A :=
+  (hs.smul_mono h.le).antisymm (hs.smul_mono h.ge)
+
 theorem Balanced.smul_eq (hA : Balanced π•œ A) (ha : β€–aβ€– = 1) : a β€’ A = A :=
   (hA _ ha.le).antisymm <| hA.subset_smul ha.ge
 #align balanced.smul_eq Balanced.smul_eq
@@ -178,22 +203,12 @@ theorem Balanced.absorbs_self (hA : Balanced π•œ A) : Absorbs π•œ A A :=
   .of_norm ⟨1, fun _ => hA.subset_smul⟩
 #align balanced.absorbs_self Balanced.absorbs_self
 
-theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a β€’ x ∈ s ↔ b β€’ x ∈ s := by
-  obtain rfl | hb := eq_or_ne b 0
-  Β· rw [norm_zero, norm_eq_zero] at h
-    rw [h]
-  have ha : a β‰  0 := norm_ne_zero_iff.1 (ne_of_eq_of_ne h <| norm_ne_zero_iff.2 hb)
-  constructor <;> intro h' <;> [rw [← inv_mul_cancel_rightβ‚€ ha b];
-      rw [← inv_mul_cancel_rightβ‚€ hb a]] <;>
-    Β· rw [← smul_eq_mul, smul_assoc]
-      refine' hs.smul_mem _ h'
-      simp [← h, ha]
-#align balanced.mem_smul_iff Balanced.mem_smul_iff
-
-theorem Balanced.neg_mem_iff (hs : Balanced π•œ s) : -x ∈ s ↔ x ∈ s := by
-  convert hs.mem_smul_iff (x := x) (norm_neg 1) using 0;
-  simp only [neg_smul, one_smul π•œ x]
-#align balanced.neg_mem_iff Balanced.neg_mem_iff
+theorem Balanced.smul_mem_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a β€’ x ∈ s ↔ b β€’ x ∈ s :=
+  ⟨(hs.smul_mem_mono · h.ge), (hs.smul_mem_mono · h.le)⟩
+#align balanced.mem_smul_iff Balanced.smul_mem_iff
+
+@[deprecated] -- Since 2024/02/02
+alias Balanced.mem_smul_iff := Balanced.smul_mem_iff
 
 variable [TopologicalSpace E] [ContinuousSMul π•œ E]
 
@@ -204,30 +219,30 @@ theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A :=
 #align absorbent_nhds_zero absorbent_nhds_zero
 
 /-- The union of `{0}` with the interior of a balanced set is balanced. -/
-theorem balanced_zero_union_interior (hA : Balanced π•œ A) :
-    Balanced π•œ ((0 : Set E) βˆͺ interior A) := by
+theorem Balanced.zero_insert_interior (hA : Balanced π•œ A) :
+    Balanced π•œ (insert 0 (interior A)) := by
   intro a ha
   obtain rfl | h := eq_or_ne a 0
   Β· rw [zero_smul_set]
     exacts [subset_union_left _ _, ⟨0, Or.inl rfl⟩]
-  Β· rw [← image_smul, image_union]
-    apply union_subset_union
-    Β· rw [image_zero, smul_zero]
-      rfl
-    Β· calc
-        a β€’ interior A βŠ† interior (a β€’ A) := (isOpenMap_smulβ‚€ h).image_interior_subset A
-        _ βŠ† interior A := interior_mono (hA _ ha)
-#align balanced_zero_union_interior balanced_zero_union_interior
+  Β· rw [← image_smul, image_insert_eq, smul_zero]
+    apply insert_subset_insert
+    exact ((isOpenMap_smulβ‚€ h).mapsTo_interior <| hA.smul_mem ha).image_subset
+#align balanced_zero_union_interior Balanced.zero_insert_interior
+
+@[deprecated Balanced.zero_insert_interior]
+theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0 : Set E) βˆͺ interior A) :=
+  hA.zero_insert_interior
 
 /-- The interior of a balanced set is balanced if it contains the origin. -/
-theorem Balanced.interior (hA : Balanced π•œ A) (h : (0 : E) ∈ interior A) :
+protected theorem Balanced.interior (hA : Balanced π•œ A) (h : (0 : E) ∈ interior A) :
     Balanced π•œ (interior A) := by
-  rw [← union_eq_self_of_subset_left (singleton_subset_iff.2 h)]
-  exact balanced_zero_union_interior hA
+  rw [← insert_eq_self.2 h]
+  exact hA.zero_insert_interior
 #align balanced.interior Balanced.interior
 
-theorem Balanced.closure (hA : Balanced π•œ A) : Balanced π•œ (closure A) := fun _a ha =>
-  (image_closure_subset_closure_image <| continuous_id.const_smul _).trans <|
+protected theorem Balanced.closure (hA : Balanced π•œ A) : Balanced π•œ (closure A) := fun _a ha =>
+  (image_closure_subset_closure_image <| continuous_const_smul _).trans <|
     closure_mono <| hA _ ha
 #align balanced.closure Balanced.closure
 
@@ -237,11 +252,12 @@ section NontriviallyNormedField
 
 variable [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] {s : Set E}
 
+@[deprecated Absorbent.zero_mem] -- Since 2024/02/02
 theorem Absorbent.zero_mem' (hs : Absorbent π•œ s) : (0 : E) ∈ s := hs.zero_mem
 
 variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 
-theorem balanced_convexHull_of_balanced (hs : Balanced π•œ s) : Balanced π•œ (convexHull ℝ s) := by
+protected theorem Balanced.convexHull (hs : Balanced π•œ s) : Balanced π•œ (convexHull ℝ s) := by
   suffices Convex ℝ { x | βˆ€ a : π•œ, β€–aβ€– ≀ 1 β†’ a β€’ x ∈ convexHull ℝ s } by
     rw [balanced_iff_smul_mem] at hs ⊒
     refine' fun a ha x hx => convexHull_min _ this hx a ha
@@ -249,7 +265,10 @@ theorem balanced_convexHull_of_balanced (hs : Balanced π•œ s) : Balanced π•œ (
   intro x hx y hy u v hu hv huv a ha
   simp only [smul_add, ← smul_comm]
   exact convex_convexHull ℝ s (hx a ha) (hy a ha) hu hv huv
-#align balanced_convex_hull_of_balanced balanced_convexHull_of_balanced
+#align balanced_convex_hull_of_balanced Balanced.convexHull
+
+@[deprecated] -- Since 2024/02/02
+alias balanced_convexHull_of_balanced := Balanced.convexHull
 
 end NontriviallyNormedField
 
chore: reduce imports (#9830)

This uses the improved shake script from #9772 to reduce imports across mathlib. The corresponding noshake.json file has been added to #9772.

Co-authored-by: Mario Carneiro <di.gama@gmail.com>

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jean Lo, Yury Kudryashov
 -/
 import Mathlib.Data.Set.Pointwise.SMul
-import Mathlib.Topology.Bornology.Constructions
+import Mathlib.Topology.Bornology.Basic
 
 #align_import analysis.locally_convex.basic from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 
refactor: redefine Absorbs (#9676)

Redefine Absorbs and Absorbent in terms of the cobounded filter.

refactor: redefine Absorbs (#9676)

Redefine Absorbs and Absorbent in terms of the cobounded filter.

Diff
@@ -6,6 +6,7 @@ Authors: Jean Lo, Bhavik Mehta, YaΓ«l Dillies
 import Mathlib.Analysis.Convex.Basic
 import Mathlib.Analysis.Convex.Hull
 import Mathlib.Analysis.NormedSpace.Basic
+import Mathlib.Topology.Bornology.Absorbs
 
 #align_import analysis.locally_convex.basic from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 
@@ -51,106 +52,7 @@ variable [SeminormedRing π•œ]
 
 section SMul
 
-variable (π•œ) [SMul π•œ E]
-
-/-- A set `A` absorbs another set `B` if `B` is contained in all scalings of `A` by elements of
-sufficiently large norm. -/
-def Absorbs (A B : Set E) :=
-  βˆƒ r, 0 < r ∧ βˆ€ a : π•œ, r ≀ β€–aβ€– β†’ B βŠ† a β€’ A
-#align absorbs Absorbs
-
-variable {π•œ} {s t u v A B : Set E}
-
-@[simp]
-theorem absorbs_empty {s : Set E} : Absorbs π•œ s (βˆ… : Set E) :=
-  ⟨1, one_pos, fun _a _ha => Set.empty_subset _⟩
-#align absorbs_empty absorbs_empty
-
-theorem Absorbs.mono (hs : Absorbs π•œ s u) (hst : s βŠ† t) (hvu : v βŠ† u) : Absorbs π•œ t v :=
-  let ⟨r, hr, h⟩ := hs
-  ⟨r, hr, fun _a ha => hvu.trans <| (h _ ha).trans <| smul_set_mono hst⟩
-#align absorbs.mono Absorbs.mono
-
-theorem Absorbs.mono_left (hs : Absorbs π•œ s u) (h : s βŠ† t) : Absorbs π•œ t u :=
-  hs.mono h Subset.rfl
-#align absorbs.mono_left Absorbs.mono_left
-
-theorem Absorbs.mono_right (hs : Absorbs π•œ s u) (h : v βŠ† u) : Absorbs π•œ s v :=
-  hs.mono Subset.rfl h
-#align absorbs.mono_right Absorbs.mono_right
-
-theorem Absorbs.union (hu : Absorbs π•œ s u) (hv : Absorbs π•œ s v) : Absorbs π•œ s (u βˆͺ v) := by
-  obtain ⟨a, ha, hu⟩ := hu
-  obtain ⟨b, _hb, hv⟩ := hv
-  exact
-    ⟨max a b, lt_max_of_lt_left ha, fun c hc =>
-      union_subset (hu _ <| le_of_max_le_left hc) (hv _ <| le_of_max_le_right hc)⟩
-#align absorbs.union Absorbs.union
-
-@[simp]
-theorem absorbs_union : Absorbs π•œ s (u βˆͺ v) ↔ Absorbs π•œ s u ∧ Absorbs π•œ s v :=
-  ⟨fun h => ⟨h.mono_right <| subset_union_left _ _, h.mono_right <| subset_union_right _ _⟩,
-    fun h => h.1.union h.2⟩
-#align absorbs_union absorbs_union
-
-theorem absorbs_iUnion_finset {ΞΉ : Type*} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
-    Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
-  classical
-    induction' t using Finset.induction_on with i t _ht hi
-    Β· simp only [Finset.not_mem_empty, Set.iUnion_false, Set.iUnion_empty, absorbs_empty,
-        IsEmpty.forall_iff, imp_true_iff]
-    rw [Finset.set_biUnion_insert, absorbs_union, hi]
-    constructor <;> intro h
-    Β· refine' fun _ hi' => (Finset.mem_insert.mp hi').elim _ (h.2 _)
-      exact fun hi'' => by
-        rw [hi'']
-        exact h.1
-    exact ⟨h i (Finset.mem_insert_self i t), fun i' hi' => h i' (Finset.mem_insert_of_mem hi')⟩
-#align absorbs_Union_finset absorbs_iUnion_finset
-
-theorem Set.Finite.absorbs_iUnion {ΞΉ : Type*} {s : Set E} {t : Set ΞΉ} {f : ΞΉ β†’ Set E}
-    (hi : t.Finite) : Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
-  lift t to Finset ΞΉ using hi
-  simp only [Finset.mem_coe]
-  exact absorbs_iUnion_finset
-#align set.finite.absorbs_Union Set.Finite.absorbs_iUnion
-
-variable (π•œ)
-
-/-- A set is absorbent if it absorbs every singleton. -/
-def Absorbent (A : Set E) :=
-  βˆ€ x, βˆƒ r, 0 < r ∧ βˆ€ a : π•œ, r ≀ β€–aβ€– β†’ x ∈ a β€’ A
-#align absorbent Absorbent
-
-variable {π•œ}
-
-theorem Absorbent.subset (hA : Absorbent π•œ A) (hAB : A βŠ† B) : Absorbent π•œ B := by
-  refine' forall_imp (fun x => _) hA
-  exact Exists.imp fun r => And.imp_right <| forallβ‚‚_imp fun a _ha hx => Set.smul_set_mono hAB hx
-#align absorbent.subset Absorbent.subset
-
-theorem absorbent_iff_forall_absorbs_singleton : Absorbent π•œ A ↔ βˆ€ x, Absorbs π•œ A {x} := by
-  simp_rw [Absorbs, Absorbent, singleton_subset_iff]
-#align absorbent_iff_forall_absorbs_singleton absorbent_iff_forall_absorbs_singleton
-
-theorem Absorbent.absorbs (hs : Absorbent π•œ s) {x : E} : Absorbs π•œ s {x} :=
-  absorbent_iff_forall_absorbs_singleton.1 hs _
-#align absorbent.absorbs Absorbent.absorbs
-
-theorem absorbent_iff_nonneg_lt :
-    Absorbent π•œ A ↔ βˆ€ x, βˆƒ r, 0 ≀ r ∧ βˆ€ ⦃a : π•œβ¦„, r < β€–aβ€– β†’ x ∈ a β€’ A :=
-  forall_congr' fun _x =>
-    ⟨fun ⟨r, hr, hx⟩ => ⟨r, hr.le, fun a ha => hx a ha.le⟩, fun ⟨r, hr, hx⟩ =>
-      ⟨r + 1, add_pos_of_nonneg_of_pos hr zero_lt_one, fun _a ha =>
-        hx ((lt_add_of_pos_right r zero_lt_one).trans_le ha)⟩⟩
-#align absorbent_iff_nonneg_lt absorbent_iff_nonneg_lt
-
-theorem Absorbent.absorbs_finite {s : Set E} (hs : Absorbent π•œ s) {v : Set E} (hv : v.Finite) :
-    Absorbs π•œ s v := by
-  rw [← Set.biUnion_of_singleton v]
-  exact hv.absorbs_iUnion.mpr fun _ _ => hs.absorbs
-#align absorbent.absorbs_finite Absorbent.absorbs_finite
-
+variable [SMul π•œ E] {s t u v A B : Set E}
 variable (π•œ)
 
 /-- A set `A` is balanced if `a β€’ A` is contained in `A` whenever `a` has norm at most `1`. -/
@@ -160,6 +62,15 @@ def Balanced (A : Set E) :=
 
 variable {π•œ}
 
+lemma absorbs_iff_norm : Absorbs π•œ A B ↔ βˆƒ r, βˆ€ c : π•œ, r ≀ β€–cβ€– β†’ B βŠ† c β€’ A :=
+  Filter.atTop_basis.cobounded_of_norm.eventually_iff.trans <| by simp only [true_and]; rfl
+
+alias ⟨_, Absorbs.of_norm⟩ := absorbs_iff_norm
+
+lemma Absorbs.exists_pos (h : Absorbs π•œ A B) : βˆƒ r > 0, βˆ€ c : π•œ, r ≀ β€–cβ€– β†’ B βŠ† c β€’ A :=
+  let ⟨r, hr₁, hr⟩ := (Filter.atTop_basis' 1).cobounded_of_norm.eventually_iff.1 h
+  ⟨r, one_pos.trans_le hr₁, hr⟩
+
 theorem balanced_iff_smul_mem : Balanced π•œ s ↔ βˆ€ ⦃a : π•œβ¦„, β€–aβ€– ≀ 1 β†’ βˆ€ ⦃x : E⦄, x ∈ s β†’ a β€’ x ∈ s :=
   forallβ‚‚_congr fun _a _ha => smul_set_subset_iff
 #align balanced_iff_smul_mem balanced_iff_smul_mem
@@ -213,32 +124,14 @@ section Module
 
 variable [AddCommGroup E] [Module π•œ E] {s s₁ sβ‚‚ t t₁ tβ‚‚ : Set E}
 
-theorem Absorbs.neg : Absorbs π•œ s t β†’ Absorbs π•œ (-s) (-t) :=
-  Exists.imp fun _r =>
-    And.imp_right <| forallβ‚‚_imp fun _ _ h => (neg_subset_neg.2 h).trans (smul_set_neg _ _).superset
-#align absorbs.neg Absorbs.neg
-
 theorem Balanced.neg : Balanced π•œ s β†’ Balanced π•œ (-s) :=
   forallβ‚‚_imp fun _ _ h => (smul_set_neg _ _).subset.trans <| neg_subset_neg.2 h
 #align balanced.neg Balanced.neg
 
-theorem Absorbs.add : Absorbs π•œ s₁ t₁ β†’ Absorbs π•œ sβ‚‚ tβ‚‚ β†’ Absorbs π•œ (s₁ + sβ‚‚) (t₁ + tβ‚‚) :=
-  fun ⟨r₁, hr₁, hβ‚βŸ© ⟨rβ‚‚, _hrβ‚‚, hβ‚‚βŸ© =>
-  ⟨max r₁ rβ‚‚, lt_max_of_lt_left hr₁, fun _a ha =>
-    (add_subset_add (h₁ _ <| le_of_max_le_left ha) <| hβ‚‚ _ <| le_of_max_le_right ha).trans
-      (smul_add _ _ _).superset⟩
-#align absorbs.add Absorbs.add
-
 theorem Balanced.add (hs : Balanced π•œ s) (ht : Balanced π•œ t) : Balanced π•œ (s + t) := fun _a ha =>
   (smul_add _ _ _).subset.trans <| add_subset_add (hs _ ha) <| ht _ ha
 #align balanced.add Balanced.add
 
-theorem Absorbs.sub (h₁ : Absorbs π•œ s₁ t₁) (hβ‚‚ : Absorbs π•œ sβ‚‚ tβ‚‚) :
-    Absorbs π•œ (s₁ - sβ‚‚) (t₁ - tβ‚‚) := by
-  simp_rw [sub_eq_add_neg]
-  exact h₁.add hβ‚‚.neg
-#align absorbs.sub Absorbs.sub
-
 theorem Balanced.sub (hs : Balanced π•œ s) (ht : Balanced π•œ t) : Balanced π•œ (s - t) := by
   simp_rw [sub_eq_add_neg]
   exact hs.add ht.neg
@@ -272,28 +165,19 @@ theorem Balanced.smul_mono (hs : Balanced 𝕝 s) {a : 𝕝} {b : π•œ} (h : β€–
   exact div_le_one_of_le h (norm_nonneg _)
 #align balanced.smul_mono Balanced.smul_mono
 
-/-- A balanced set absorbs itself. -/
-theorem Balanced.absorbs_self (hA : Balanced π•œ A) : Absorbs π•œ A A := by
-  refine' ⟨1, zero_lt_one, fun a ha x hx => _⟩
-  rw [mem_smul_set_iff_inv_smul_memβ‚€ (norm_pos_iff.1 <| zero_lt_one.trans_le ha)]
-  refine' hA a⁻¹ _ (smul_mem_smul_set hx)
-  rw [norm_inv]
-  exact inv_le_one ha
-#align balanced.absorbs_self Balanced.absorbs_self
-
 theorem Balanced.subset_smul (hA : Balanced π•œ A) (ha : 1 ≀ β€–aβ€–) : A βŠ† a β€’ A := by
-  refine' (subset_set_smul_iffβ‚€ _).2 (hA a⁻¹ _)
-  Β· rintro rfl
-    rw [norm_zero] at ha
-    exact zero_lt_one.not_le ha
-  Β· rw [norm_inv]
-    exact inv_le_one ha
+  rw [← @norm_one π•œ] at ha; simpa using hA.smul_mono ha
 #align balanced.subset_smul Balanced.subset_smul
 
 theorem Balanced.smul_eq (hA : Balanced π•œ A) (ha : β€–aβ€– = 1) : a β€’ A = A :=
   (hA _ ha.le).antisymm <| hA.subset_smul ha.ge
 #align balanced.smul_eq Balanced.smul_eq
 
+/-- A balanced set absorbs itself. -/
+theorem Balanced.absorbs_self (hA : Balanced π•œ A) : Absorbs π•œ A A :=
+  .of_norm ⟨1, fun _ => hA.subset_smul⟩
+#align balanced.absorbs_self Balanced.absorbs_self
+
 theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a β€’ x ∈ s ↔ b β€’ x ∈ s := by
   obtain rfl | hb := eq_or_ne b 0
   Β· rw [norm_zero, norm_eq_zero] at h
@@ -311,44 +195,12 @@ theorem Balanced.neg_mem_iff (hs : Balanced π•œ s) : -x ∈ s ↔ x ∈ s := by
   simp only [neg_smul, one_smul π•œ x]
 #align balanced.neg_mem_iff Balanced.neg_mem_iff
 
-theorem Absorbs.inter (hs : Absorbs π•œ s u) (ht : Absorbs π•œ t u) : Absorbs π•œ (s ∩ t) u := by
-  obtain ⟨a, ha, hs⟩ := hs
-  obtain ⟨b, _hb, ht⟩ := ht
-  have h : 0 < max a b := lt_max_of_lt_left ha
-  refine' ⟨max a b, lt_max_of_lt_left ha, fun c hc => _⟩
-  rw [smul_set_interβ‚€ (norm_pos_iff.1 <| h.trans_le hc)]
-  exact subset_inter (hs _ <| le_of_max_le_left hc) (ht _ <| le_of_max_le_right hc)
-#align absorbs.inter Absorbs.inter
-
-@[simp]
-theorem absorbs_inter : Absorbs π•œ (s ∩ t) u ↔ Absorbs π•œ s u ∧ Absorbs π•œ t u :=
-  ⟨fun h => ⟨h.mono_left <| inter_subset_left _ _, h.mono_left <| inter_subset_right _ _⟩, fun h =>
-    h.1.inter h.2⟩
-#align absorbs_inter absorbs_inter
-
-theorem absorbent_univ : Absorbent π•œ (univ : Set E) := by
-  refine' fun x => ⟨1, zero_lt_one, fun a ha => _⟩
-  rw [smul_set_univβ‚€ (norm_pos_iff.1 <| zero_lt_one.trans_le ha)]
-  exact trivial
-#align absorbent_univ absorbent_univ
-
 variable [TopologicalSpace E] [ContinuousSMul π•œ E]
 
 /-- Every neighbourhood of the origin is absorbent. -/
-theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A := by
-  intro x
-  obtain ⟨w, hw₁, hwβ‚‚, hwβ‚ƒβŸ© := mem_nhds_iff.mp hA
-  have hc : Continuous fun t : π•œ => t β€’ x := continuous_id.smul continuous_const
-  obtain ⟨r, hr₁, hrβ‚‚βŸ© :=
-    Metric.isOpen_iff.mp (hwβ‚‚.preimage hc) 0 (by rwa [mem_preimage, zero_smul])
-  have hr₃ := inv_pos.mpr (half_pos hr₁)
-  refine' ⟨(r / 2)⁻¹, hr₃, fun a ha₁ => _⟩
-  have haβ‚‚ : 0 < β€–aβ€– := hr₃.trans_le ha₁
-  refine' (mem_smul_set_iff_inv_smul_memβ‚€ (norm_pos_iff.mp haβ‚‚) _ _).2 (hw₁ <| hrβ‚‚ _)
-  rw [Metric.mem_ball, dist_zero_right, norm_inv]
-  calc
-    β€–a‖⁻¹ ≀ r / 2 := (inv_le (half_pos hr₁) haβ‚‚).mp ha₁
-    _ < r := half_lt_self hr₁
+theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A :=
+  absorbent_iff_inv_smul.2 fun x ↦ Filter.tendsto_invβ‚€_cobounded.smul tendsto_const_nhds <| by
+    rwa [zero_smul]
 #align absorbent_nhds_zero absorbent_nhds_zero
 
 /-- The union of `{0}` with the interior of a balanced set is balanced. -/
@@ -385,18 +237,7 @@ section NontriviallyNormedField
 
 variable [NontriviallyNormedField π•œ] [AddCommGroup E] [Module π•œ E] {s : Set E}
 
-theorem absorbs_zero_iff : Absorbs π•œ s 0 ↔ (0 : E) ∈ s := by
-  refine' ⟨_, fun h => ⟨1, zero_lt_one, fun a _ => zero_subset.2 <| zero_mem_smul_set h⟩⟩
-  rintro ⟨r, hr, h⟩
-  obtain ⟨a, ha⟩ := NormedSpace.exists_lt_norm π•œ π•œ r
-  have := h _ ha.le
-  rwa [zero_subset, zero_mem_smul_set_iff] at this
-  exact norm_ne_zero_iff.1 (hr.trans ha).ne'
-#align absorbs_zero_iff absorbs_zero_iff
-
-theorem Absorbent.zero_mem (hs : Absorbent π•œ s) : (0 : E) ∈ s :=
-  absorbs_zero_iff.1 <| absorbent_iff_forall_absorbs_singleton.1 hs _
-#align absorbent.zero_mem Absorbent.zero_mem
+theorem Absorbent.zero_mem' (hs : Absorbent π•œ s) : (0 : E) ∈ s := hs.zero_mem
 
 variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 
@@ -420,9 +261,8 @@ theorem balanced_iff_neg_mem (hs : Convex ℝ s) : Balanced ℝ s ↔ βˆ€ ⦃x
   refine' ⟨fun h x => h.neg_mem_iff.2, fun h a ha => smul_set_subset_iff.2 fun x hx => _⟩
   rw [Real.norm_eq_abs, abs_le] at ha
   rw [show a = -((1 - a) / 2) + (a - -1) / 2 by ring, add_smul, neg_smul, ← smul_neg]
-  exact
-    hs (h hx) hx (div_nonneg (sub_nonneg_of_le ha.2) zero_le_two)
-      (div_nonneg (sub_nonneg_of_le ha.1) zero_le_two) (by ring)
+  exact hs (h hx) hx (div_nonneg (sub_nonneg_of_le ha.2) zero_le_two)
+    (div_nonneg (sub_nonneg_of_le ha.1) zero_le_two) (by ring)
 #align balanced_iff_neg_mem balanced_iff_neg_mem
 
 end Real
chore: clean up names with iUnion instead of Union (#7550)
Diff
@@ -184,7 +184,7 @@ theorem Balanced.inter (hA : Balanced π•œ A) (hB : Balanced π•œ B) : Balanced
 #align balanced.inter Balanced.inter
 
 theorem balanced_iUnion {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (⋃ i, f i) :=
-  fun _a ha => (smul_set_Union _ _).subset.trans <| iUnion_mono fun _ => h _ _ ha
+  fun _a ha => (smul_set_iUnion _ _).subset.trans <| iUnion_mono fun _ => h _ _ ha
 #align balanced_Union balanced_iUnion
 
 theorem balanced_iUnionβ‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
feat: patch for new alias command (#6172)
Diff
@@ -164,7 +164,7 @@ theorem balanced_iff_smul_mem : Balanced π•œ s ↔ βˆ€ ⦃a : π•œβ¦„, β€–aβ€–
   forallβ‚‚_congr fun _a _ha => smul_set_subset_iff
 #align balanced_iff_smul_mem balanced_iff_smul_mem
 
-alias balanced_iff_smul_mem ↔ Balanced.smul_mem _
+alias ⟨Balanced.smul_mem, _⟩ := balanced_iff_smul_mem
 #align balanced.smul_mem Balanced.smul_mem
 
 @[simp]
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -43,7 +43,7 @@ open Set
 
 open Pointwise Topology
 
-variable {π•œ 𝕝 E : Type _} {ΞΉ : Sort _} {ΞΊ : ΞΉ β†’ Sort _}
+variable {π•œ 𝕝 E : Type*} {ΞΉ : Sort*} {ΞΊ : ΞΉ β†’ Sort*}
 
 section SeminormedRing
 
@@ -93,7 +93,7 @@ theorem absorbs_union : Absorbs π•œ s (u βˆͺ v) ↔ Absorbs π•œ s u ∧ Absorb
     fun h => h.1.union h.2⟩
 #align absorbs_union absorbs_union
 
-theorem absorbs_iUnion_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
+theorem absorbs_iUnion_finset {ΞΉ : Type*} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
     Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
   classical
     induction' t using Finset.induction_on with i t _ht hi
@@ -108,7 +108,7 @@ theorem absorbs_iUnion_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
     exact ⟨h i (Finset.mem_insert_self i t), fun i' hi' => h i' (Finset.mem_insert_of_mem hi')⟩
 #align absorbs_Union_finset absorbs_iUnion_finset
 
-theorem Set.Finite.absorbs_iUnion {ΞΉ : Type _} {s : Set E} {t : Set ΞΉ} {f : ΞΉ β†’ Set E}
+theorem Set.Finite.absorbs_iUnion {ΞΉ : Type*} {s : Set E} {t : Set ΞΉ} {f : ΞΉ β†’ Set E}
     (hi : t.Finite) : Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
   lift t to Finset ΞΉ using hi
   simp only [Finset.mem_coe]
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2019 Jean Lo. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jean Lo, Bhavik Mehta, YaΓ«l Dillies
-
-! This file was ported from Lean 3 source module analysis.locally_convex.basic
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Analysis.Convex.Basic
 import Mathlib.Analysis.Convex.Hull
 import Mathlib.Analysis.NormedSpace.Basic
 
+#align_import analysis.locally_convex.basic from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # Local convexity
 
chore: fix focusing dots (#5708)

This PR is the result of running

find . -type f -name "*.lean" -exec sed -i -E 's/^( +)\. /\1Β· /' {} \;
find . -type f -name "*.lean" -exec sed -i -E 'N;s/^( +Β·)\n +(.*)$/\1 \2/;P;D' {} \;

which firstly replaces . focusing dots with Β· and secondly removes isolated instances of such dots, unifying them with the following line. A new rule is placed in the style linter to verify this.

Diff
@@ -100,8 +100,7 @@ theorem absorbs_iUnion_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
     Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
   classical
     induction' t using Finset.induction_on with i t _ht hi
-    Β·
-      simp only [Finset.not_mem_empty, Set.iUnion_false, Set.iUnion_empty, absorbs_empty,
+    Β· simp only [Finset.not_mem_empty, Set.iUnion_false, Set.iUnion_empty, absorbs_empty,
         IsEmpty.forall_iff, imp_true_iff]
     rw [Finset.set_biUnion_insert, absorbs_union, hi]
     constructor <;> intro h
chore: clean up spacing around at and goals (#5387)

Changes are of the form

  • some_tactic at h⊒ -> some_tactic at h ⊒
  • some_tactic at h -> some_tactic at h
Diff
@@ -406,7 +406,7 @@ variable [Module ℝ E] [SMulCommClass ℝ π•œ E]
 
 theorem balanced_convexHull_of_balanced (hs : Balanced π•œ s) : Balanced π•œ (convexHull ℝ s) := by
   suffices Convex ℝ { x | βˆ€ a : π•œ, β€–aβ€– ≀ 1 β†’ a β€’ x ∈ convexHull ℝ s } by
-    rw [balanced_iff_smul_mem] at hs⊒
+    rw [balanced_iff_smul_mem] at hs ⊒
     refine' fun a ha x hx => convexHull_min _ this hx a ha
     exact fun y hy a ha => subset_convexHull ℝ s (hs ha hy)
   intro x hx y hy u v hu hv huv a ha
chore: add space after exacts (#4945)

Too often tempted to change these during other PRs, so doing a mass edit here.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au>

Diff
@@ -361,7 +361,7 @@ theorem balanced_zero_union_interior (hA : Balanced π•œ A) :
   intro a ha
   obtain rfl | h := eq_or_ne a 0
   Β· rw [zero_smul_set]
-    exacts[subset_union_left _ _, ⟨0, Or.inl rfl⟩]
+    exacts [subset_union_left _ _, ⟨0, Or.inl rfl⟩]
   Β· rw [← image_smul, image_union]
     apply union_subset_union
     Β· rw [image_zero, smul_zero]
chore: update std 05-22 (#4248)

The main breaking change is that tac <;> [t1, t2] is now written tac <;> [t1; t2], to avoid clashing with tactics like cases and use that take comma-separated lists.

Diff
@@ -303,7 +303,7 @@ theorem Balanced.mem_smul_iff (hs : Balanced π•œ s) (h : β€–aβ€– = β€–bβ€–) : a
   Β· rw [norm_zero, norm_eq_zero] at h
     rw [h]
   have ha : a β‰  0 := norm_ne_zero_iff.1 (ne_of_eq_of_ne h <| norm_ne_zero_iff.2 hb)
-  constructor <;> intro h' <;> [rw [← inv_mul_cancel_rightβ‚€ ha b],
+  constructor <;> intro h' <;> [rw [← inv_mul_cancel_rightβ‚€ ha b];
       rw [← inv_mul_cancel_rightβ‚€ hb a]] <;>
     Β· rw [← smul_eq_mul, smul_assoc]
       refine' hs.smul_mem _ h'
chore: Rename to sSup/iSup (#3938)

As discussed on Zulip

Renames

  • supβ‚› β†’ sSup
  • infβ‚› β†’ sInf
  • supα΅’ β†’ iSup
  • infα΅’ β†’ iInf
  • bsupβ‚› β†’ bsSup
  • binfβ‚› β†’ bsInf
  • bsupα΅’ β†’ biSup
  • binfα΅’ β†’ biInf
  • csupβ‚› β†’ csSup
  • cinfβ‚› β†’ csInf
  • csupα΅’ β†’ ciSup
  • cinfα΅’ β†’ ciInf
  • unionβ‚› β†’ sUnion
  • interβ‚› β†’ sInter
  • unionα΅’ β†’ iUnion
  • interα΅’ β†’ iInter
  • bunionβ‚› β†’ bsUnion
  • binterβ‚› β†’ bsInter
  • bunionα΅’ β†’ biUnion
  • binterα΅’ β†’ biInter

Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>

Diff
@@ -96,28 +96,28 @@ theorem absorbs_union : Absorbs π•œ s (u βˆͺ v) ↔ Absorbs π•œ s u ∧ Absorb
     fun h => h.1.union h.2⟩
 #align absorbs_union absorbs_union
 
-theorem absorbs_unionα΅’_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
+theorem absorbs_iUnion_finset {ΞΉ : Type _} {t : Finset ΞΉ} {f : ΞΉ β†’ Set E} :
     Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
   classical
     induction' t using Finset.induction_on with i t _ht hi
     Β·
-      simp only [Finset.not_mem_empty, Set.unionα΅’_false, Set.unionα΅’_empty, absorbs_empty,
+      simp only [Finset.not_mem_empty, Set.iUnion_false, Set.iUnion_empty, absorbs_empty,
         IsEmpty.forall_iff, imp_true_iff]
-    rw [Finset.set_bunionα΅’_insert, absorbs_union, hi]
+    rw [Finset.set_biUnion_insert, absorbs_union, hi]
     constructor <;> intro h
     Β· refine' fun _ hi' => (Finset.mem_insert.mp hi').elim _ (h.2 _)
       exact fun hi'' => by
         rw [hi'']
         exact h.1
     exact ⟨h i (Finset.mem_insert_self i t), fun i' hi' => h i' (Finset.mem_insert_of_mem hi')⟩
-#align absorbs_Union_finset absorbs_unionα΅’_finset
+#align absorbs_Union_finset absorbs_iUnion_finset
 
-theorem Set.Finite.absorbs_unionα΅’ {ΞΉ : Type _} {s : Set E} {t : Set ΞΉ} {f : ΞΉ β†’ Set E}
+theorem Set.Finite.absorbs_iUnion {ΞΉ : Type _} {s : Set E} {t : Set ΞΉ} {f : ΞΉ β†’ Set E}
     (hi : t.Finite) : Absorbs π•œ s (⋃ i ∈ t, f i) ↔ βˆ€ i ∈ t, Absorbs π•œ s (f i) := by
   lift t to Finset ΞΉ using hi
   simp only [Finset.mem_coe]
-  exact absorbs_unionα΅’_finset
-#align set.finite.absorbs_Union Set.Finite.absorbs_unionα΅’
+  exact absorbs_iUnion_finset
+#align set.finite.absorbs_Union Set.Finite.absorbs_iUnion
 
 variable (π•œ)
 
@@ -151,8 +151,8 @@ theorem absorbent_iff_nonneg_lt :
 
 theorem Absorbent.absorbs_finite {s : Set E} (hs : Absorbent π•œ s) {v : Set E} (hv : v.Finite) :
     Absorbs π•œ s v := by
-  rw [← Set.bunionα΅’_of_singleton v]
-  exact hv.absorbs_unionα΅’.mpr fun _ _ => hs.absorbs
+  rw [← Set.biUnion_of_singleton v]
+  exact hv.absorbs_iUnion.mpr fun _ _ => hs.absorbs
 #align absorbent.absorbs_finite Absorbent.absorbs_finite
 
 variable (π•œ)
@@ -187,23 +187,23 @@ theorem Balanced.inter (hA : Balanced π•œ A) (hB : Balanced π•œ B) : Balanced
   smul_set_inter_subset.trans <| inter_subset_inter (hA _ ha) <| hB _ ha
 #align balanced.inter Balanced.inter
 
-theorem balanced_unionα΅’ {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (⋃ i, f i) :=
-  fun _a ha => (smul_set_Union _ _).subset.trans <| unionα΅’_mono fun _ => h _ _ ha
-#align balanced_Union balanced_unionα΅’
+theorem balanced_iUnion {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (⋃ i, f i) :=
+  fun _a ha => (smul_set_Union _ _).subset.trans <| iUnion_mono fun _ => h _ _ ha
+#align balanced_Union balanced_iUnion
 
-theorem balanced_unionα΅’β‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
+theorem balanced_iUnionβ‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
     Balanced π•œ (⋃ (i) (j), f i j) :=
-  balanced_unionα΅’ fun _ => balanced_unionα΅’ <| h _
-#align balanced_Unionβ‚‚ balanced_unionα΅’β‚‚
+  balanced_iUnion fun _ => balanced_iUnion <| h _
+#align balanced_Unionβ‚‚ balanced_iUnionβ‚‚
 
-theorem balanced_interα΅’ {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (β‹‚ i, f i) :=
-  fun _a ha => (smul_set_interα΅’_subset _ _).trans <| interα΅’_mono fun _ => h _ _ ha
-#align balanced_Inter balanced_interα΅’
+theorem balanced_iInter {f : ΞΉ β†’ Set E} (h : βˆ€ i, Balanced π•œ (f i)) : Balanced π•œ (β‹‚ i, f i) :=
+  fun _a ha => (smul_set_iInter_subset _ _).trans <| iInter_mono fun _ => h _ _ ha
+#align balanced_Inter balanced_iInter
 
-theorem balanced_interα΅’β‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
+theorem balanced_iInterβ‚‚ {f : βˆ€ i, ΞΊ i β†’ Set E} (h : βˆ€ i j, Balanced π•œ (f i j)) :
     Balanced π•œ (β‹‚ (i) (j), f i j) :=
-  balanced_interα΅’ fun _ => balanced_interα΅’ <| h _
-#align balanced_Interβ‚‚ balanced_interα΅’β‚‚
+  balanced_iInter fun _ => balanced_iInter <| h _
+#align balanced_Interβ‚‚ balanced_iInterβ‚‚
 
 variable [SMul 𝕝 E] [SMulCommClass π•œ 𝕝 E]
 
chore: bye-bye, solo bys! (#3825)

This PR puts, with one exception, every single remaining by that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh. The exception is when the by begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.

Essentially this is s/\n *by$/ by/g, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated bys".

Diff
@@ -237,8 +237,8 @@ theorem Balanced.add (hs : Balanced π•œ s) (ht : Balanced π•œ t) : Balanced 
   (smul_add _ _ _).subset.trans <| add_subset_add (hs _ ha) <| ht _ ha
 #align balanced.add Balanced.add
 
-theorem Absorbs.sub (h₁ : Absorbs π•œ s₁ t₁) (hβ‚‚ : Absorbs π•œ sβ‚‚ tβ‚‚) : Absorbs π•œ (s₁ - sβ‚‚) (t₁ - tβ‚‚) :=
-  by
+theorem Absorbs.sub (h₁ : Absorbs π•œ s₁ t₁) (hβ‚‚ : Absorbs π•œ sβ‚‚ tβ‚‚) :
+    Absorbs π•œ (s₁ - sβ‚‚) (t₁ - tβ‚‚) := by
   simp_rw [sub_eq_add_neg]
   exact h₁.add hβ‚‚.neg
 #align absorbs.sub Absorbs.sub
@@ -356,8 +356,8 @@ theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A := by
 #align absorbent_nhds_zero absorbent_nhds_zero
 
 /-- The union of `{0}` with the interior of a balanced set is balanced. -/
-theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0 : Set E) βˆͺ interior A) :=
-  by
+theorem balanced_zero_union_interior (hA : Balanced π•œ A) :
+    Balanced π•œ ((0 : Set E) βˆͺ interior A) := by
   intro a ha
   obtain rfl | h := eq_or_ne a 0
   Β· rw [zero_smul_set]
chore: fix #align lines (#3640)

This PR fixes two things:

  • Most align statements for definitions and theorems and instances that are separated by two newlines from the relevant declaration (s/\n\n#align/\n#align). This is often seen in the mathport output after ending calc blocks.
  • All remaining more-than-one-line #align statements. (This was needed for a script I wrote for #3630.)
Diff
@@ -353,7 +353,6 @@ theorem absorbent_nhds_zero (hA : A ∈ 𝓝 (0 : E)) : Absorbent π•œ A := by
   calc
     β€–a‖⁻¹ ≀ r / 2 := (inv_le (half_pos hr₁) haβ‚‚).mp ha₁
     _ < r := half_lt_self hr₁
-
 #align absorbent_nhds_zero absorbent_nhds_zero
 
 /-- The union of `{0}` with the interior of a balanced set is balanced. -/
@@ -367,11 +366,9 @@ theorem balanced_zero_union_interior (hA : Balanced π•œ A) : Balanced π•œ ((0
     apply union_subset_union
     Β· rw [image_zero, smul_zero]
       rfl
-    Β·
-      calc
+    Β· calc
         a β€’ interior A βŠ† interior (a β€’ A) := (isOpenMap_smulβ‚€ h).image_interior_subset A
         _ βŠ† interior A := interior_mono (hA _ ha)
-
 #align balanced_zero_union_interior balanced_zero_union_interior
 
 /-- The interior of a balanced set is balanced if it contains the origin. -/
feat: port Analysis.LocallyConvex.Basic (#3398)

Dependencies 10 + 622

623 files ported (98.4%)
273008 lines ported (98.1%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file