analysis.locally_convex.bounded
β·
Mathlib.Analysis.LocallyConvex.Bounded
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -150,7 +150,7 @@ theorem IsVonNBounded.image {Ο : πβ β+* πβ} [RingHomSurjective Ο]
have hanz : a β 0 := norm_pos_iff.mp (hrpos.trans_le ha)
have : Ο'.symm a β 0 := (map_ne_zero Ο'.symm.to_ring_hom).mpr hanz
change _ β Ο _ β’ _
- rw [Set.image_subset_iff, preimage_smul_setββ _ _ _ f this.is_unit]
+ rw [Set.image_subset_iff, preimage_smul_setββ_of_units _ _ _ f this.is_unit]
refine' hr (Ο'.symm a) _
rwa [Ο'_symm_iso.norm_map_of_map_zero (map_zero _)]
#align bornology.is_vonN_bounded.image Bornology.IsVonNBounded.image
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -3,7 +3,7 @@ Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll
-/
-import Analysis.LocallyConvex.Basic
+import Topology.Bornology.Absorbs
import Analysis.LocallyConvex.BalancedCoreHull
import Analysis.Seminorm
import Topology.Bornology.Basic
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -142,7 +142,7 @@ theorem IsVonNBounded.image {Ο : πβ β+* πβ} [RingHomSurjective Ο]
have Ο_iso : Isometry Ο := AddMonoidHomClass.isometry_of_norm Ο fun x => RingHomIsometric.is_iso
have Ο'_symm_iso : Isometry Ο'.symm := Ο_iso.right_inv Ο'.right_inv
have f_tendsto_zero := f.continuous.tendsto 0
- rw [map_zero] at f_tendsto_zero
+ rw [map_zero] at f_tendsto_zero
intro V hV
rcases hs (f_tendsto_zero hV) with β¨r, hrpos, hrβ©
refine' β¨r, hrpos, fun a ha => _β©
@@ -173,7 +173,7 @@ theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ
filter_upwards [hxS, hΞ΅ _ (Metric.ball_mem_nhds 0 <| inv_pos.mpr r_pos)] with n hnS hnr
by_cases this : Ξ΅ n = 0
Β· simp [this, mem_of_mem_nhds hV]
- Β· rw [mem_preimage, mem_ball_zero_iff, lt_inv (norm_pos_iff.mpr this) r_pos, β norm_inv] at hnr
+ Β· rw [mem_preimage, mem_ball_zero_iff, lt_inv (norm_pos_iff.mpr this) r_pos, β norm_inv] at hnr
rw [mem_preimage, Pi.smul_apply', β Set.mem_inv_smul_set_iffβ this]
exact hrS _ hnr.le hnS
#align bornology.is_vonN_bounded.smul_tendsto_zero Bornology.IsVonNBounded.smul_tendsto_zero
@@ -190,12 +190,12 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
have : βαΆ n in l, β x : S, Ξ΅ n β’ (x : E) β V :=
by
filter_upwards [hΞ΅] with n hn
- rw [Absorbs] at hVS
- push_neg at hVS
+ rw [Absorbs] at hVS
+ push_neg at hVS
rcases hVS _ (norm_pos_iff.mpr <| inv_ne_zero hn) with β¨a, haΞ΅, haSβ©
rcases set.not_subset.mp haS with β¨x, hxS, hxβ©
refine' β¨β¨x, hxSβ©, fun hnx => _β©
- rw [β Set.mem_inv_smul_set_iffβ hn] at hnx
+ rw [β Set.mem_inv_smul_set_iffβ hn] at hnx
exact hx (hVb.smul_mono haΞ΅ hnx)
rcases this.choice with β¨x, hxβ©
refine' Filter.frequently_false l (Filter.Eventually.frequently _)
@@ -280,13 +280,13 @@ variable [UniformSpace E] [UniformAddGroup E] [ContinuousSMul π E]
theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
Bornology.IsVonNBounded π s :=
by
- rw [totallyBounded_iff_subset_finite_iUnion_nhds_zero] at hs
+ rw [totallyBounded_iff_subset_finite_iUnion_nhds_zero] at hs
intro U hU
have h : Filter.Tendsto (fun x : E Γ E => x.fst + x.snd) (π (0, 0)) (π ((0 : E) + (0 : E))) :=
tendsto_add
- rw [add_zero] at h
+ rw [add_zero] at h
have h' := (nhds_basis_balanced π E).Prod (nhds_basis_balanced π E)
- simp_rw [β nhds_prod_eq, id.def] at h'
+ simp_rw [β nhds_prod_eq, id.def] at h'
rcases h.basis_left h' U hU with β¨x, hx, h''β©
rcases hs x.snd hx.2.1 with β¨t, ht, hsβ©
refine' Absorbs.mono_right _ hs
@@ -335,7 +335,7 @@ theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Borno
rcases NormedField.exists_lt_norm π Ο with β¨a, haβ©
specialize hΟball a ha.le
rw [β ball_normSeminorm π E, Seminorm.smul_ball_zero (norm_pos_iff.1 <| hΟ.trans ha),
- ball_normSeminorm, mul_one] at hΟball
+ ball_normSeminorm, mul_one] at hΟball
exact β¨βaβ, hΟball.trans Metric.ball_subset_closedBallβ©
Β· exact fun β¨C, hCβ© => (is_vonN_bounded_closed_ball π E C).Subset hC
#align normed_space.is_vonN_bounded_iff NormedSpace.isVonNBounded_iff
@@ -351,7 +351,7 @@ theorem isVonNBounded_iff' (s : Set E) :
#print NormedSpace.image_isVonNBounded_iff /-
theorem image_isVonNBounded_iff (f : E' β E) (s : Set E') :
Bornology.IsVonNBounded π (f '' s) β β r : β, β (x : E') (hx : x β s), βf xβ β€ r := by
- simp_rw [is_vonN_bounded_iff', Set.ball_image_iff]
+ simp_rw [is_vonN_bounded_iff', Set.forall_mem_image]
#align normed_space.image_is_vonN_bounded_iff NormedSpace.image_isVonNBounded_iff
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -73,7 +73,7 @@ variable (E)
#print Bornology.isVonNBounded_empty /-
@[simp]
-theorem isVonNBounded_empty : IsVonNBounded π (β
: Set E) := fun _ _ => absorbs_empty
+theorem isVonNBounded_empty : IsVonNBounded π (β
: Set E) := fun _ _ => Absorbs.empty
#align bornology.is_vonN_bounded_empty Bornology.isVonNBounded_empty
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -85,14 +85,14 @@ theorem isVonNBounded_iff (s : Set E) : IsVonNBounded π s β β V β π
#align bornology.is_vonN_bounded_iff Bornology.isVonNBounded_iff
-/
-#print Filter.HasBasis.isVonNBounded_basis_iff /-
-theorem Filter.HasBasis.isVonNBounded_basis_iff {q : ΞΉ β Prop} {s : ΞΉ β Set E} {A : Set E}
+#print Filter.HasBasis.isVonNBounded_iff /-
+theorem Filter.HasBasis.isVonNBounded_iff {q : ΞΉ β Prop} {s : ΞΉ β Set E} {A : Set E}
(h : (π (0 : E)).HasBasis q s) : IsVonNBounded π A β β (i) (hi : q i), Absorbs π (s i) A :=
by
refine' β¨fun hA i hi => hA (h.mem_of_mem hi), fun hA V hV => _β©
rcases h.mem_iff.mp hV with β¨i, hi, hVβ©
exact (hA i hi).mono_left hV
-#align filter.has_basis.is_vonN_bounded_basis_iff Filter.HasBasis.isVonNBounded_basis_iff
+#align filter.has_basis.is_vonN_bounded_basis_iff Filter.HasBasis.isVonNBounded_iff
-/
#print Bornology.IsVonNBounded.subset /-
@@ -184,7 +184,7 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
(hΞ΅ : βαΆ n in l, Ξ΅ n β 0) {S : Set E}
(H : β x : ΞΉ β E, (β n, x n β S) β Tendsto (Ξ΅ β’ x) l (π 0)) : IsVonNBounded π S :=
by
- rw [(nhds_basis_balanced π E).isVonNBounded_basis_iff]
+ rw [(nhds_basis_balanced π E).isVonNBounded_iff]
by_contra! H'
rcases H' with β¨V, β¨hV, hVbβ©, hVSβ©
have : βαΆ n in l, β x : S, Ξ΅ n β’ (x : E) β V :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -185,7 +185,7 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
(H : β x : ΞΉ β E, (β n, x n β S) β Tendsto (Ξ΅ β’ x) l (π 0)) : IsVonNBounded π S :=
by
rw [(nhds_basis_balanced π E).isVonNBounded_basis_iff]
- by_contra' H'
+ by_contra! H'
rcases H' with β¨V, β¨hV, hVbβ©, hVSβ©
have : βαΆ n in l, β x : S, Ξ΅ n β’ (x : E) β V :=
by
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,12 +3,12 @@ Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll
-/
-import Mathbin.Analysis.LocallyConvex.Basic
-import Mathbin.Analysis.LocallyConvex.BalancedCoreHull
-import Mathbin.Analysis.Seminorm
-import Mathbin.Topology.Bornology.Basic
-import Mathbin.Topology.Algebra.UniformGroup
-import Mathbin.Topology.UniformSpace.Cauchy
+import Analysis.LocallyConvex.Basic
+import Analysis.LocallyConvex.BalancedCoreHull
+import Analysis.Seminorm
+import Topology.Bornology.Basic
+import Topology.Algebra.UniformGroup
+import Topology.UniformSpace.Cauchy
#align_import analysis.locally_convex.bounded from "leanprover-community/mathlib"@"9d2f0748e6c50d7a2657c564b1ff2c695b39148d"
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -328,7 +328,7 @@ theorem isVonNBounded_closedBall (r : β) :
#print NormedSpace.isVonNBounded_iff /-
theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Bornology.IsBounded s :=
by
- rw [β Metric.bounded_iff_isBounded, Metric.bounded_iff_subset_ball (0 : E)]
+ rw [β Metric.isBounded_iff_isBounded, Metric.isBounded_iff_subset_closedBall (0 : E)]
constructor
Β· intro h
rcases h (Metric.ball_mem_nhds 0 zero_lt_one) with β¨Ο, hΟ, hΟballβ©
@@ -344,7 +344,7 @@ theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Borno
#print NormedSpace.isVonNBounded_iff' /-
theorem isVonNBounded_iff' (s : Set E) :
Bornology.IsVonNBounded π s β β r : β, β (x : E) (hx : x β s), βxβ β€ r := by
- rw [NormedSpace.isVonNBounded_iff, β Metric.bounded_iff_isBounded, bounded_iff_forall_norm_le]
+ rw [NormedSpace.isVonNBounded_iff, β Metric.isBounded_iff_isBounded, isBounded_iff_forall_norm_le]
#align normed_space.is_vonN_bounded_iff' NormedSpace.isVonNBounded_iff'
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,11 +2,6 @@
Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll
-
-! This file was ported from Lean 3 source module analysis.locally_convex.bounded
-! leanprover-community/mathlib commit 9d2f0748e6c50d7a2657c564b1ff2c695b39148d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.LocallyConvex.Basic
import Mathbin.Analysis.LocallyConvex.BalancedCoreHull
@@ -15,6 +10,8 @@ import Mathbin.Topology.Bornology.Basic
import Mathbin.Topology.Algebra.UniformGroup
import Mathbin.Topology.UniformSpace.Cauchy
+#align_import analysis.locally_convex.bounded from "leanprover-community/mathlib"@"9d2f0748e6c50d7a2657c564b1ff2c695b39148d"
+
/-!
# Von Neumann Boundedness
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -74,9 +74,11 @@ def IsVonNBounded (s : Set E) : Prop :=
variable (E)
+#print Bornology.isVonNBounded_empty /-
@[simp]
theorem isVonNBounded_empty : IsVonNBounded π (β
: Set E) := fun _ _ => absorbs_empty
#align bornology.is_vonN_bounded_empty Bornology.isVonNBounded_empty
+-/
variable {π E}
@@ -86,6 +88,7 @@ theorem isVonNBounded_iff (s : Set E) : IsVonNBounded π s β β V β π
#align bornology.is_vonN_bounded_iff Bornology.isVonNBounded_iff
-/
+#print Filter.HasBasis.isVonNBounded_basis_iff /-
theorem Filter.HasBasis.isVonNBounded_basis_iff {q : ΞΉ β Prop} {s : ΞΉ β Set E} {A : Set E}
(h : (π (0 : E)).HasBasis q s) : IsVonNBounded π A β β (i) (hi : q i), Absorbs π (s i) A :=
by
@@ -93,6 +96,7 @@ theorem Filter.HasBasis.isVonNBounded_basis_iff {q : ΞΉ β Prop} {s : ΞΉ β Se
rcases h.mem_iff.mp hV with β¨i, hi, hVβ©
exact (hA i hi).mono_left hV
#align filter.has_basis.is_vonN_bounded_basis_iff Filter.HasBasis.isVonNBounded_basis_iff
+-/
#print Bornology.IsVonNBounded.subset /-
/-- Subsets of bounded sets are bounded. -/
@@ -101,10 +105,12 @@ theorem IsVonNBounded.subset {sβ sβ : Set E} (h : sβ β sβ) (hsβ : Is
#align bornology.is_vonN_bounded.subset Bornology.IsVonNBounded.subset
-/
+#print Bornology.IsVonNBounded.union /-
/-- The union of two bounded sets is bounded. -/
theorem IsVonNBounded.union {sβ sβ : Set E} (hsβ : IsVonNBounded π sβ) (hsβ : IsVonNBounded π sβ) :
IsVonNBounded π (sβ βͺ sβ) := fun V hV => (hsβ hV).union (hsβ hV)
#align bornology.is_vonN_bounded.union Bornology.IsVonNBounded.union
+-/
end Zero
@@ -114,12 +120,14 @@ section MultipleTopologies
variable [SeminormedRing π] [AddCommGroup E] [Module π E]
+#print Bornology.IsVonNBounded.of_topologicalSpace_le /-
/-- If a topology `t'` is coarser than `t`, then any set `s` that is bounded with respect to
`t` is bounded with respect to `t'`. -/
theorem IsVonNBounded.of_topologicalSpace_le {t t' : TopologicalSpace E} (h : t β€ t') {s : Set E}
(hs : @IsVonNBounded π E _ _ _ t s) : @IsVonNBounded π E _ _ _ t' s := fun V hV =>
hs <| (le_iff_nhds t t').mp h 0 hV
#align bornology.is_vonN_bounded.of_topological_space_le Bornology.IsVonNBounded.of_topologicalSpace_le
+-/
end MultipleTopologies
@@ -128,6 +136,7 @@ section Image
variable {πβ πβ : Type _} [NormedDivisionRing πβ] [NormedDivisionRing πβ] [AddCommGroup E]
[Module πβ E] [AddCommGroup F] [Module πβ F] [TopologicalSpace E] [TopologicalSpace F]
+#print Bornology.IsVonNBounded.image /-
/-- A continuous linear image of a bounded set is bounded. -/
theorem IsVonNBounded.image {Ο : πβ β+* πβ} [RingHomSurjective Ο] [RingHomIsometric Ο] {s : Set E}
(hs : IsVonNBounded πβ s) (f : E βSL[Ο] F) : IsVonNBounded πβ (f '' s) :=
@@ -148,6 +157,7 @@ theorem IsVonNBounded.image {Ο : πβ β+* πβ} [RingHomSurjective Ο]
refine' hr (Ο'.symm a) _
rwa [Ο'_symm_iso.norm_map_of_map_zero (map_zero _)]
#align bornology.is_vonN_bounded.image Bornology.IsVonNBounded.image
+-/
end Image
@@ -156,6 +166,7 @@ section sequence
variable {π : Type _} [NormedField π] [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
[Module π E] [TopologicalSpace E] [ContinuousSMul π E]
+#print Bornology.IsVonNBounded.smul_tendsto_zero /-
theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ β E} {l : Filter ΞΉ}
(hS : IsVonNBounded π S) (hxS : βαΆ n in l, x n β S) (hΞ΅ : Tendsto Ξ΅ l (π 0)) :
Tendsto (Ξ΅ β’ x) l (π 0) := by
@@ -169,7 +180,9 @@ theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ
rw [mem_preimage, Pi.smul_apply', β Set.mem_inv_smul_set_iffβ this]
exact hrS _ hnr.le hnS
#align bornology.is_vonN_bounded.smul_tendsto_zero Bornology.IsVonNBounded.smul_tendsto_zero
+-/
+#print Bornology.isVonNBounded_of_smul_tendsto_zero /-
theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l.ne_bot]
(hΞ΅ : βαΆ n in l, Ξ΅ n β 0) {S : Set E}
(H : β x : ΞΉ β E, (β n, x n β S) β Tendsto (Ξ΅ β’ x) l (π 0)) : IsVonNBounded π S :=
@@ -192,7 +205,9 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
filter_upwards [hx, (H (coe β x) fun n => (x n).2).Eventually (eventually_mem_set.mpr hV)] using
fun n => id
#align bornology.is_vonN_bounded_of_smul_tendsto_zero Bornology.isVonNBounded_of_smul_tendsto_zero
+-/
+#print Bornology.isVonNBounded_iff_smul_tendsto_zero /-
/-- Given any sequence `Ξ΅` of scalars which tends to `π[β ] 0`, we have that a set `S` is bounded
if and only if for any sequence `x : β β S`, `Ξ΅ β’ x` tends to 0. This actually works for any
indexing type `ΞΉ`, but in the special case `ΞΉ = β` we get the important fact that convergent
@@ -203,6 +218,7 @@ theorem isVonNBounded_iff_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [
β¨fun hS x hxS => hS.smul_tendsto_zero (eventually_of_forall hxS) (le_trans hΞ΅ nhdsWithin_le_nhds),
isVonNBounded_of_smul_tendsto_zero (hΞ΅ self_mem_nhdsWithin)β©
#align bornology.is_vonN_bounded_iff_smul_tendsto_zero Bornology.isVonNBounded_iff_smul_tendsto_zero
+-/
end sequence
@@ -212,16 +228,20 @@ variable [NormedField π] [AddCommGroup E] [Module π E]
variable [TopologicalSpace E] [ContinuousSMul π E]
+#print Bornology.isVonNBounded_singleton /-
/-- Singletons are bounded. -/
theorem isVonNBounded_singleton (x : E) : IsVonNBounded π ({x} : Set E) := fun V hV =>
(absorbent_nhds_zero hV).Absorbs
#align bornology.is_vonN_bounded_singleton Bornology.isVonNBounded_singleton
+-/
+#print Bornology.isVonNBounded_covers /-
/-- The union of all bounded set is the whole space. -/
theorem isVonNBounded_covers : ββ setOf (IsVonNBounded π) = (Set.univ : Set E) :=
Set.eq_univ_iff_forall.mpr fun x =>
Set.mem_sUnion.mpr β¨{x}, isVonNBounded_singleton _, Set.mem_singleton _β©
#align bornology.is_vonN_bounded_covers Bornology.isVonNBounded_covers
+-/
variable (π E)
@@ -240,11 +260,13 @@ def vonNBornology : Bornology E :=
variable {E}
+#print Bornology.isBounded_iff_isVonNBounded /-
@[simp]
theorem isBounded_iff_isVonNBounded {s : Set E} :
@IsBounded _ (vonNBornology π E) s β IsVonNBounded π s :=
isBounded_ofBounded_iff _
#align bornology.is_bounded_iff_is_vonN_bounded Bornology.isBounded_iff_isVonNBounded
+-/
end NormedField
@@ -257,6 +279,7 @@ variable (π) [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
variable [UniformSpace E] [UniformAddGroup E] [ContinuousSMul π E]
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
+#print TotallyBounded.isVonNBounded /-
theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
Bornology.IsVonNBounded π s :=
by
@@ -280,6 +303,7 @@ theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
rw [β Set.singleton_vadd, vadd_eq_add]
exact (absorbent_nhds_zero hx.1.1).Absorbs.add hx.2.2.absorbs_self
#align totally_bounded.is_vonN_bounded TotallyBounded.isVonNBounded
+-/
end UniformAddGroup
@@ -289,17 +313,22 @@ variable (π E) [NontriviallyNormedField π] [SeminormedAddCommGroup E] [Nor
namespace NormedSpace
+#print NormedSpace.isVonNBounded_ball /-
theorem isVonNBounded_ball (r : β) : Bornology.IsVonNBounded π (Metric.ball (0 : E) r) :=
by
rw [metric.nhds_basis_ball.is_vonN_bounded_basis_iff, β ball_normSeminorm π E]
exact fun Ξ΅ hΞ΅ => (normSeminorm π E).ball_zero_absorbs_ball_zero hΞ΅
#align normed_space.is_vonN_bounded_ball NormedSpace.isVonNBounded_ball
+-/
+#print NormedSpace.isVonNBounded_closedBall /-
theorem isVonNBounded_closedBall (r : β) :
Bornology.IsVonNBounded π (Metric.closedBall (0 : E) r) :=
(isVonNBounded_ball π E (r + 1)).Subset (Metric.closedBall_subset_ball <| by linarith)
#align normed_space.is_vonN_bounded_closed_ball NormedSpace.isVonNBounded_closedBall
+-/
+#print NormedSpace.isVonNBounded_iff /-
theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Bornology.IsBounded s :=
by
rw [β Metric.bounded_iff_isBounded, Metric.bounded_iff_subset_ball (0 : E)]
@@ -313,16 +342,21 @@ theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Borno
exact β¨βaβ, hΟball.trans Metric.ball_subset_closedBallβ©
Β· exact fun β¨C, hCβ© => (is_vonN_bounded_closed_ball π E C).Subset hC
#align normed_space.is_vonN_bounded_iff NormedSpace.isVonNBounded_iff
+-/
+#print NormedSpace.isVonNBounded_iff' /-
theorem isVonNBounded_iff' (s : Set E) :
Bornology.IsVonNBounded π s β β r : β, β (x : E) (hx : x β s), βxβ β€ r := by
rw [NormedSpace.isVonNBounded_iff, β Metric.bounded_iff_isBounded, bounded_iff_forall_norm_le]
#align normed_space.is_vonN_bounded_iff' NormedSpace.isVonNBounded_iff'
+-/
+#print NormedSpace.image_isVonNBounded_iff /-
theorem image_isVonNBounded_iff (f : E' β E) (s : Set E') :
Bornology.IsVonNBounded π (f '' s) β β r : β, β (x : E') (hx : x β s), βf xβ β€ r := by
simp_rw [is_vonN_bounded_iff', Set.ball_image_iff]
#align normed_space.image_is_vonN_bounded_iff NormedSpace.image_isVonNBounded_iff
+-/
#print NormedSpace.vonNBornology_eq /-
/-- In a normed space, the von Neumann bornology (`bornology.vonN_bornology`) is equal to the
@@ -338,6 +372,7 @@ theorem vonNBornology_eq : Bornology.vonNBornology π E = PseudoMetricSpace.to
variable (π)
+#print NormedSpace.isBounded_iff_subset_smul_ball /-
theorem isBounded_iff_subset_smul_ball {s : Set E} :
Bornology.IsBounded s β β a : π, s β a β’ Metric.ball 0 1 :=
by
@@ -350,7 +385,9 @@ theorem isBounded_iff_subset_smul_ball {s : Set E} :
Β· rintro β¨a, haβ©
exact ((is_vonN_bounded_ball π E 1).image (a β’ 1 : E βL[π] E)).Subset ha
#align normed_space.is_bounded_iff_subset_smul_ball NormedSpace.isBounded_iff_subset_smul_ball
+-/
+#print NormedSpace.isBounded_iff_subset_smul_closedBall /-
theorem isBounded_iff_subset_smul_closedBall {s : Set E} :
Bornology.IsBounded s β β a : π, s β a β’ Metric.closedBall 0 1 :=
by
@@ -361,6 +398,7 @@ theorem isBounded_iff_subset_smul_closedBall {s : Set E} :
rintro β¨a, haβ©
exact ((is_vonN_bounded_closed_ball π E 1).image (a β’ 1 : E βL[π] E)).Subset ha
#align normed_space.is_bounded_iff_subset_smul_closed_ball NormedSpace.isBounded_iff_subset_smul_closedBall
+-/
end NormedSpace
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -162,7 +162,7 @@ theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ
rw [tendsto_def] at *
intro V hV
rcases hS hV with β¨r, r_pos, hrSβ©
- filter_upwards [hxS, hΞ΅ _ (Metric.ball_mem_nhds 0 <| inv_pos.mpr r_pos)]with n hnS hnr
+ filter_upwards [hxS, hΞ΅ _ (Metric.ball_mem_nhds 0 <| inv_pos.mpr r_pos)] with n hnS hnr
by_cases this : Ξ΅ n = 0
Β· simp [this, mem_of_mem_nhds hV]
Β· rw [mem_preimage, mem_ball_zero_iff, lt_inv (norm_pos_iff.mpr this) r_pos, β norm_inv] at hnr
@@ -179,9 +179,9 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
rcases H' with β¨V, β¨hV, hVbβ©, hVSβ©
have : βαΆ n in l, β x : S, Ξ΅ n β’ (x : E) β V :=
by
- filter_upwards [hΞ΅]with n hn
+ filter_upwards [hΞ΅] with n hn
rw [Absorbs] at hVS
- push_neg at hVS
+ push_neg at hVS
rcases hVS _ (norm_pos_iff.mpr <| inv_ne_zero hn) with β¨a, haΞ΅, haSβ©
rcases set.not_subset.mp haS with β¨x, hxS, hxβ©
refine' β¨β¨x, hxSβ©, fun hnx => _β©
@@ -189,8 +189,8 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
exact hx (hVb.smul_mono haΞ΅ hnx)
rcases this.choice with β¨x, hxβ©
refine' Filter.frequently_false l (Filter.Eventually.frequently _)
- filter_upwards [hx,
- (H (coe β x) fun n => (x n).2).Eventually (eventually_mem_set.mpr hV)]using fun n => id
+ filter_upwards [hx, (H (coe β x) fun n => (x n).2).Eventually (eventually_mem_set.mpr hV)] using
+ fun n => id
#align bornology.is_vonN_bounded_of_smul_tendsto_zero Bornology.isVonNBounded_of_smul_tendsto_zero
/-- Given any sequence `Ξ΅` of scalars which tends to `π[β ] 0`, we have that a set `S` is bounded
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -136,7 +136,7 @@ theorem IsVonNBounded.image {Ο : πβ β+* πβ} [RingHomSurjective Ο]
have Ο_iso : Isometry Ο := AddMonoidHomClass.isometry_of_norm Ο fun x => RingHomIsometric.is_iso
have Ο'_symm_iso : Isometry Ο'.symm := Ο_iso.right_inv Ο'.right_inv
have f_tendsto_zero := f.continuous.tendsto 0
- rw [map_zero] at f_tendsto_zero
+ rw [map_zero] at f_tendsto_zero
intro V hV
rcases hs (f_tendsto_zero hV) with β¨r, hrpos, hrβ©
refine' β¨r, hrpos, fun a ha => _β©
@@ -165,7 +165,7 @@ theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ
filter_upwards [hxS, hΞ΅ _ (Metric.ball_mem_nhds 0 <| inv_pos.mpr r_pos)]with n hnS hnr
by_cases this : Ξ΅ n = 0
Β· simp [this, mem_of_mem_nhds hV]
- Β· rw [mem_preimage, mem_ball_zero_iff, lt_inv (norm_pos_iff.mpr this) r_pos, β norm_inv] at hnr
+ Β· rw [mem_preimage, mem_ball_zero_iff, lt_inv (norm_pos_iff.mpr this) r_pos, β norm_inv] at hnr
rw [mem_preimage, Pi.smul_apply', β Set.mem_inv_smul_set_iffβ this]
exact hrS _ hnr.le hnS
#align bornology.is_vonN_bounded.smul_tendsto_zero Bornology.IsVonNBounded.smul_tendsto_zero
@@ -180,12 +180,12 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
have : βαΆ n in l, β x : S, Ξ΅ n β’ (x : E) β V :=
by
filter_upwards [hΞ΅]with n hn
- rw [Absorbs] at hVS
- push_neg at hVS
+ rw [Absorbs] at hVS
+ push_neg at hVS
rcases hVS _ (norm_pos_iff.mpr <| inv_ne_zero hn) with β¨a, haΞ΅, haSβ©
rcases set.not_subset.mp haS with β¨x, hxS, hxβ©
refine' β¨β¨x, hxSβ©, fun hnx => _β©
- rw [β Set.mem_inv_smul_set_iffβ hn] at hnx
+ rw [β Set.mem_inv_smul_set_iffβ hn] at hnx
exact hx (hVb.smul_mono haΞ΅ hnx)
rcases this.choice with β¨x, hxβ©
refine' Filter.frequently_false l (Filter.Eventually.frequently _)
@@ -260,13 +260,13 @@ variable [UniformSpace E] [UniformAddGroup E] [ContinuousSMul π E]
theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
Bornology.IsVonNBounded π s :=
by
- rw [totallyBounded_iff_subset_finite_iUnion_nhds_zero] at hs
+ rw [totallyBounded_iff_subset_finite_iUnion_nhds_zero] at hs
intro U hU
have h : Filter.Tendsto (fun x : E Γ E => x.fst + x.snd) (π (0, 0)) (π ((0 : E) + (0 : E))) :=
tendsto_add
- rw [add_zero] at h
+ rw [add_zero] at h
have h' := (nhds_basis_balanced π E).Prod (nhds_basis_balanced π E)
- simp_rw [β nhds_prod_eq, id.def] at h'
+ simp_rw [β nhds_prod_eq, id.def] at h'
rcases h.basis_left h' U hU with β¨x, hx, h''β©
rcases hs x.snd hx.2.1 with β¨t, ht, hsβ©
refine' Absorbs.mono_right _ hs
@@ -309,7 +309,7 @@ theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Borno
rcases NormedField.exists_lt_norm π Ο with β¨a, haβ©
specialize hΟball a ha.le
rw [β ball_normSeminorm π E, Seminorm.smul_ball_zero (norm_pos_iff.1 <| hΟ.trans ha),
- ball_normSeminorm, mul_one] at hΟball
+ ball_normSeminorm, mul_one] at hΟball
exact β¨βaβ, hΟball.trans Metric.ball_subset_closedBallβ©
Β· exact fun β¨C, hCβ© => (is_vonN_bounded_closed_ball π E C).Subset hC
#align normed_space.is_vonN_bounded_iff NormedSpace.isVonNBounded_iff
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -51,7 +51,7 @@ variable {π π' E E' F ΞΉ : Type _}
open Set Filter
-open Topology Pointwise
+open scoped Topology Pointwise
namespace Bornology
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -74,12 +74,6 @@ def IsVonNBounded (s : Set E) : Prop :=
variable (E)
-/- warning: bornology.is_vonN_bounded_empty -> Bornology.isVonNBounded_empty is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : SMul.{u1, u2} π E] [_inst_3 : Zero.{u2} E] [_inst_4 : TopologicalSpace.{u2} E], Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 (EmptyCollection.emptyCollection.{u2} (Set.{u2} E) (Set.hasEmptyc.{u2} E))
-but is expected to have type
- forall (π : Type.{u2}) (E : Type.{u1}) [_inst_1 : SeminormedRing.{u2} π] [_inst_2 : SMul.{u2, u1} π E] [_inst_3 : Zero.{u1} E] [_inst_4 : TopologicalSpace.{u1} E], Bornology.IsVonNBounded.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 (EmptyCollection.emptyCollection.{u1} (Set.{u1} E) (Set.instEmptyCollectionSet.{u1} E))
-Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_empty Bornology.isVonNBounded_emptyβ'. -/
@[simp]
theorem isVonNBounded_empty : IsVonNBounded π (β
: Set E) := fun _ _ => absorbs_empty
#align bornology.is_vonN_bounded_empty Bornology.isVonNBounded_empty
@@ -92,12 +86,6 @@ theorem isVonNBounded_iff (s : Set E) : IsVonNBounded π s β β V β π
#align bornology.is_vonN_bounded_iff Bornology.isVonNBounded_iff
-/
-/- warning: filter.has_basis.is_vonN_bounded_basis_iff -> Filter.HasBasis.isVonNBounded_basis_iff is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : SMul.{u1, u2} π E] [_inst_3 : Zero.{u2} E] [_inst_4 : TopologicalSpace.{u2} E] {q : ΞΉ -> Prop} {s : ΞΉ -> (Set.{u2} E)} {A : Set.{u2} E}, (Filter.HasBasis.{u2, succ u3} E ΞΉ (nhds.{u2} E _inst_4 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E _inst_3)))) q s) -> (Iff (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 A) (forall (i : ΞΉ), (q i) -> (Absorbs.{u1, u2} π E _inst_1 _inst_2 (s i) A)))
-but is expected to have type
- forall {π : Type.{u1}} {E : Type.{u3}} {ΞΉ : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : SMul.{u1, u3} π E] [_inst_3 : Zero.{u3} E] [_inst_4 : TopologicalSpace.{u3} E] {q : ΞΉ -> Prop} {s : ΞΉ -> (Set.{u3} E)} {A : Set.{u3} E}, (Filter.HasBasis.{u3, succ u2} E ΞΉ (nhds.{u3} E _inst_4 (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E _inst_3))) q s) -> (Iff (Bornology.IsVonNBounded.{u1, u3} π E _inst_1 _inst_2 _inst_3 _inst_4 A) (forall (i : ΞΉ), (q i) -> (Absorbs.{u1, u3} π E _inst_1 _inst_2 (s i) A)))
-Case conversion may be inaccurate. Consider using '#align filter.has_basis.is_vonN_bounded_basis_iff Filter.HasBasis.isVonNBounded_basis_iffβ'. -/
theorem Filter.HasBasis.isVonNBounded_basis_iff {q : ΞΉ β Prop} {s : ΞΉ β Set E} {A : Set E}
(h : (π (0 : E)).HasBasis q s) : IsVonNBounded π A β β (i) (hi : q i), Absorbs π (s i) A :=
by
@@ -113,12 +101,6 @@ theorem IsVonNBounded.subset {sβ sβ : Set E} (h : sβ β sβ) (hsβ : Is
#align bornology.is_vonN_bounded.subset Bornology.IsVonNBounded.subset
-/
-/- warning: bornology.is_vonN_bounded.union -> Bornology.IsVonNBounded.union is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : SMul.{u1, u2} π E] [_inst_3 : Zero.{u2} E] [_inst_4 : TopologicalSpace.{u2} E] {sβ : Set.{u2} E} {sβ : Set.{u2} E}, (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 sβ) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 sβ) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 (Union.union.{u2} (Set.{u2} E) (Set.hasUnion.{u2} E) sβ sβ))
-but is expected to have type
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : SMul.{u1, u2} π E] [_inst_3 : Zero.{u2} E] [_inst_4 : TopologicalSpace.{u2} E] {sβ : Set.{u2} E} {sβ : Set.{u2} E}, (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 sβ) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 sβ) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 (Union.union.{u2} (Set.{u2} E) (Set.instUnionSet.{u2} E) sβ sβ))
-Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.union Bornology.IsVonNBounded.unionβ'. -/
/-- The union of two bounded sets is bounded. -/
theorem IsVonNBounded.union {sβ sβ : Set E} (hsβ : IsVonNBounded π sβ) (hsβ : IsVonNBounded π sβ) :
IsVonNBounded π (sβ βͺ sβ) := fun V hV => (hsβ hV).union (hsβ hV)
@@ -132,12 +114,6 @@ section MultipleTopologies
variable [SeminormedRing π] [AddCommGroup E] [Module π E]
-/- warning: bornology.is_vonN_bounded.of_topological_space_le -> Bornology.IsVonNBounded.of_topologicalSpace_le is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {t : TopologicalSpace.{u2} E} {t' : TopologicalSpace.{u2} E}, (LE.le.{u2} (TopologicalSpace.{u2} E) (Preorder.toHasLe.{u2} (TopologicalSpace.{u2} E) (PartialOrder.toPreorder.{u2} (TopologicalSpace.{u2} E) (TopologicalSpace.partialOrder.{u2} E))) t t') -> (forall {s : Set.{u2} E}, (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) t s) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) t' s))
-but is expected to have type
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {t : TopologicalSpace.{u2} E} {t' : TopologicalSpace.{u2} E}, (LE.le.{u2} (TopologicalSpace.{u2} E) (Preorder.toLE.{u2} (TopologicalSpace.{u2} E) (PartialOrder.toPreorder.{u2} (TopologicalSpace.{u2} E) (TopologicalSpace.instPartialOrderTopologicalSpace.{u2} E))) t t') -> (forall {s : Set.{u2} E}, (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) t s) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) t' s))
-Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.of_topological_space_le Bornology.IsVonNBounded.of_topologicalSpace_leβ'. -/
/-- If a topology `t'` is coarser than `t`, then any set `s` that is bounded with respect to
`t` is bounded with respect to `t'`. -/
theorem IsVonNBounded.of_topologicalSpace_le {t t' : TopologicalSpace E} (h : t β€ t') {s : Set E}
@@ -152,9 +128,6 @@ section Image
variable {πβ πβ : Type _} [NormedDivisionRing πβ] [NormedDivisionRing πβ] [AddCommGroup E]
[Module πβ E] [AddCommGroup F] [Module πβ F] [TopologicalSpace E] [TopologicalSpace F]
-/- warning: bornology.is_vonN_bounded.image -> Bornology.IsVonNBounded.image is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.image Bornology.IsVonNBounded.imageβ'. -/
/-- A continuous linear image of a bounded set is bounded. -/
theorem IsVonNBounded.image {Ο : πβ β+* πβ} [RingHomSurjective Ο] [RingHomIsometric Ο] {s : Set E}
(hs : IsVonNBounded πβ s) (f : E βSL[Ο] F) : IsVonNBounded πβ (f '' s) :=
@@ -183,9 +156,6 @@ section sequence
variable {π : Type _} [NormedField π] [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
[Module π E] [TopologicalSpace E] [ContinuousSMul π E]
-/- warning: bornology.is_vonN_bounded.smul_tendsto_zero -> Bornology.IsVonNBounded.smul_tendsto_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.smul_tendsto_zero Bornology.IsVonNBounded.smul_tendsto_zeroβ'. -/
theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ β E} {l : Filter ΞΉ}
(hS : IsVonNBounded π S) (hxS : βαΆ n in l, x n β S) (hΞ΅ : Tendsto Ξ΅ l (π 0)) :
Tendsto (Ξ΅ β’ x) l (π 0) := by
@@ -200,9 +170,6 @@ theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ
exact hrS _ hnr.le hnS
#align bornology.is_vonN_bounded.smul_tendsto_zero Bornology.IsVonNBounded.smul_tendsto_zero
-/- warning: bornology.is_vonN_bounded_of_smul_tendsto_zero -> Bornology.isVonNBounded_of_smul_tendsto_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_of_smul_tendsto_zero Bornology.isVonNBounded_of_smul_tendsto_zeroβ'. -/
theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l.ne_bot]
(hΞ΅ : βαΆ n in l, Ξ΅ n β 0) {S : Set E}
(H : β x : ΞΉ β E, (β n, x n β S) β Tendsto (Ξ΅ β’ x) l (π 0)) : IsVonNBounded π S :=
@@ -226,9 +193,6 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
(H (coe β x) fun n => (x n).2).Eventually (eventually_mem_set.mpr hV)]using fun n => id
#align bornology.is_vonN_bounded_of_smul_tendsto_zero Bornology.isVonNBounded_of_smul_tendsto_zero
-/- warning: bornology.is_vonN_bounded_iff_smul_tendsto_zero -> Bornology.isVonNBounded_iff_smul_tendsto_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_iff_smul_tendsto_zero Bornology.isVonNBounded_iff_smul_tendsto_zeroβ'. -/
/-- Given any sequence `Ξ΅` of scalars which tends to `π[β ] 0`, we have that a set `S` is bounded
if and only if for any sequence `x : β β S`, `Ξ΅ β’ x` tends to 0. This actually works for any
indexing type `ΞΉ`, but in the special case `ΞΉ = β` we get the important fact that convergent
@@ -248,23 +212,11 @@ variable [NormedField π] [AddCommGroup E] [Module π E]
variable [TopologicalSpace E] [ContinuousSMul π E]
-/- warning: bornology.is_vonN_bounded_singleton -> Bornology.isVonNBounded_singleton is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4] (x : E), Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_4 (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) x)
-but is expected to have type
- forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_4 : TopologicalSpace.{u1} E] [_inst_5 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) _inst_4] (x : E), Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) _inst_4 (Singleton.singleton.{u1, u1} E (Set.{u1} E) (Set.instSingletonSet.{u1} E) x)
-Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_singleton Bornology.isVonNBounded_singletonβ'. -/
/-- Singletons are bounded. -/
theorem isVonNBounded_singleton (x : E) : IsVonNBounded π ({x} : Set E) := fun V hV =>
(absorbent_nhds_zero hV).Absorbs
#align bornology.is_vonN_bounded_singleton Bornology.isVonNBounded_singleton
-/- warning: bornology.is_vonN_bounded_covers -> Bornology.isVonNBounded_covers is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4], Eq.{succ u2} (Set.{u2} E) (Set.sUnion.{u2} E (setOf.{u2} (Set.{u2} E) (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_4))) (Set.univ.{u2} E)
-but is expected to have type
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4], Eq.{succ u2} (Set.{u2} E) (Set.sUnion.{u2} E (setOf.{u2} (Set.{u2} E) (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) _inst_4))) (Set.univ.{u2} E)
-Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_covers Bornology.isVonNBounded_coversβ'. -/
/-- The union of all bounded set is the whole space. -/
theorem isVonNBounded_covers : ββ setOf (IsVonNBounded π) = (Set.univ : Set E) :=
Set.eq_univ_iff_forall.mpr fun x =>
@@ -288,12 +240,6 @@ def vonNBornology : Bornology E :=
variable {E}
-/- warning: bornology.is_bounded_iff_is_vonN_bounded -> Bornology.isBounded_iff_isVonNBounded is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4] {s : Set.{u2} E}, Iff (Bornology.IsBounded.{u2} E (Bornology.vonNBornology.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5) s) (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_4 s)
-but is expected to have type
- forall (π : Type.{u1}) {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4] {s : Set.{u2} E}, Iff (Bornology.IsBounded.{u2} E (Bornology.vonNBornology.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5) s) (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) _inst_4 s)
-Case conversion may be inaccurate. Consider using '#align bornology.is_bounded_iff_is_vonN_bounded Bornology.isBounded_iff_isVonNBoundedβ'. -/
@[simp]
theorem isBounded_iff_isVonNBounded {s : Set E} :
@IsBounded _ (vonNBornology π E) s β IsVonNBounded π s :=
@@ -310,12 +256,6 @@ variable (π) [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
variable [UniformSpace E] [UniformAddGroup E] [ContinuousSMul π E]
-/- warning: totally_bounded.is_vonN_bounded -> TotallyBounded.isVonNBounded is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : UniformSpace.{u2} E] [_inst_5 : UniformAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E _inst_4)] {s : Set.{u2} E}, (TotallyBounded.{u2} E _inst_4 s) -> (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (UniformSpace.toTopologicalSpace.{u2} E _inst_4) s)
-but is expected to have type
- forall (π : Type.{u1}) {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : UniformSpace.{u2} E] [_inst_5 : UniformAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E _inst_4)] {s : Set.{u2} E}, (TotallyBounded.{u2} E _inst_4 s) -> (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (UniformSpace.toTopologicalSpace.{u2} E _inst_4) s)
-Case conversion may be inaccurate. Consider using '#align totally_bounded.is_vonN_bounded TotallyBounded.isVonNBoundedβ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
Bornology.IsVonNBounded π s :=
@@ -349,35 +289,17 @@ variable (π E) [NontriviallyNormedField π] [SeminormedAddCommGroup E] [Nor
namespace NormedSpace
-/- warning: normed_space.is_vonN_bounded_ball -> NormedSpace.isVonNBounded_ball is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (r : Real), Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (Metric.ball.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))) r)
-but is expected to have type
- forall (π : Type.{u2}) (E : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u2} π] [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2] (r : Real), Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (Metric.ball.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)
-Case conversion may be inaccurate. Consider using '#align normed_space.is_vonN_bounded_ball NormedSpace.isVonNBounded_ballβ'. -/
theorem isVonNBounded_ball (r : β) : Bornology.IsVonNBounded π (Metric.ball (0 : E) r) :=
by
rw [metric.nhds_basis_ball.is_vonN_bounded_basis_iff, β ball_normSeminorm π E]
exact fun Ξ΅ hΞ΅ => (normSeminorm π E).ball_zero_absorbs_ball_zero hΞ΅
#align normed_space.is_vonN_bounded_ball NormedSpace.isVonNBounded_ball
-/- warning: normed_space.is_vonN_bounded_closed_ball -> NormedSpace.isVonNBounded_closedBall is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (r : Real), Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))) r)
-but is expected to have type
- forall (π : Type.{u2}) (E : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u2} π] [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2] (r : Real), Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)
-Case conversion may be inaccurate. Consider using '#align normed_space.is_vonN_bounded_closed_ball NormedSpace.isVonNBounded_closedBallβ'. -/
theorem isVonNBounded_closedBall (r : β) :
Bornology.IsVonNBounded π (Metric.closedBall (0 : E) r) :=
(isVonNBounded_ball π E (r + 1)).Subset (Metric.closedBall_subset_ball <| by linarith)
#align normed_space.is_vonN_bounded_closed_ball NormedSpace.isVonNBounded_closedBall
-/- warning: normed_space.is_vonN_bounded_iff -> NormedSpace.isVonNBounded_iff is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (s : Set.{u2} E), Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) s) (Bornology.IsBounded.{u2} E (PseudoMetricSpace.toBornology.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)) s)
-but is expected to have type
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (s : Set.{u2} E), Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) s) (Bornology.IsBounded.{u2} E (PseudoMetricSpace.toBornology.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)) s)
-Case conversion may be inaccurate. Consider using '#align normed_space.is_vonN_bounded_iff NormedSpace.isVonNBounded_iffβ'. -/
theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Bornology.IsBounded s :=
by
rw [β Metric.bounded_iff_isBounded, Metric.bounded_iff_subset_ball (0 : E)]
@@ -392,23 +314,11 @@ theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Borno
Β· exact fun β¨C, hCβ© => (is_vonN_bounded_closed_ball π E C).Subset hC
#align normed_space.is_vonN_bounded_iff NormedSpace.isVonNBounded_iff
-/- warning: normed_space.is_vonN_bounded_iff' -> NormedSpace.isVonNBounded_iff' is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (s : Set.{u2} E), Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) s) (Exists.{1} Real (fun (r : Real) => forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u2} E (SeminormedAddCommGroup.toHasNorm.{u2} E _inst_2) x) r)))
-but is expected to have type
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (s : Set.{u2} E), Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) s) (Exists.{1} Real (fun (r : Real) => forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} E (SeminormedAddCommGroup.toNorm.{u2} E _inst_2) x) r)))
-Case conversion may be inaccurate. Consider using '#align normed_space.is_vonN_bounded_iff' NormedSpace.isVonNBounded_iff'β'. -/
theorem isVonNBounded_iff' (s : Set E) :
Bornology.IsVonNBounded π s β β r : β, β (x : E) (hx : x β s), βxβ β€ r := by
rw [NormedSpace.isVonNBounded_iff, β Metric.bounded_iff_isBounded, bounded_iff_forall_norm_le]
#align normed_space.is_vonN_bounded_iff' NormedSpace.isVonNBounded_iff'
-/- warning: normed_space.image_is_vonN_bounded_iff -> NormedSpace.image_isVonNBounded_iff is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) {E' : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (f : E' -> E) (s : Set.{u3} E'), Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (Set.image.{u3, u2} E' E f s)) (Exists.{1} Real (fun (r : Real) => forall (x : E'), (Membership.Mem.{u3, u3} E' (Set.{u3} E') (Set.hasMem.{u3} E') x s) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u2} E (SeminormedAddCommGroup.toHasNorm.{u2} E _inst_2) (f x)) r)))
-but is expected to have type
- forall (π : Type.{u2}) (E : Type.{u1}) {E' : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u2} π] [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2] (f : E' -> E) (s : Set.{u3} E'), Iff (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (Set.image.{u3, u1} E' E f s)) (Exists.{1} Real (fun (r : Real) => forall (x : E'), (Membership.mem.{u3, u3} E' (Set.{u3} E') (Set.instMembershipSet.{u3} E') x s) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u1} E (SeminormedAddCommGroup.toNorm.{u1} E _inst_2) (f x)) r)))
-Case conversion may be inaccurate. Consider using '#align normed_space.image_is_vonN_bounded_iff NormedSpace.image_isVonNBounded_iffβ'. -/
theorem image_isVonNBounded_iff (f : E' β E) (s : Set E') :
Bornology.IsVonNBounded π (f '' s) β β r : β, β (x : E') (hx : x β s), βf xβ β€ r := by
simp_rw [is_vonN_bounded_iff', Set.ball_image_iff]
@@ -428,12 +338,6 @@ theorem vonNBornology_eq : Bornology.vonNBornology π E = PseudoMetricSpace.to
variable (π)
-/- warning: normed_space.is_bounded_iff_subset_smul_ball -> NormedSpace.isBounded_iff_subset_smul_ball is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] {s : Set.{u2} E}, Iff (Bornology.IsBounded.{u2} E (PseudoMetricSpace.toBornology.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)) s) (Exists.{succ u1} π (fun (a : π) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s (SMul.smul.{u1, u2} π (Set.{u2} E) (Set.smulSet.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3)))))) a (Metric.ball.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))))))
-but is expected to have type
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] {s : Set.{u2} E}, Iff (Bornology.IsBounded.{u2} E (PseudoMetricSpace.toBornology.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)) s) (Exists.{succ u1} π (fun (a : π) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s (HSMul.hSMul.{u1, u2, u2} π (Set.{u2} E) (Set.{u2} E) (instHSMul.{u1, u2} π (Set.{u2} E) (Set.smulSet.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))))) a (Metric.ball.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))))))
-Case conversion may be inaccurate. Consider using '#align normed_space.is_bounded_iff_subset_smul_ball NormedSpace.isBounded_iff_subset_smul_ballβ'. -/
theorem isBounded_iff_subset_smul_ball {s : Set E} :
Bornology.IsBounded s β β a : π, s β a β’ Metric.ball 0 1 :=
by
@@ -447,12 +351,6 @@ theorem isBounded_iff_subset_smul_ball {s : Set E} :
exact ((is_vonN_bounded_ball π E 1).image (a β’ 1 : E βL[π] E)).Subset ha
#align normed_space.is_bounded_iff_subset_smul_ball NormedSpace.isBounded_iff_subset_smul_ball
-/- warning: normed_space.is_bounded_iff_subset_smul_closed_ball -> NormedSpace.isBounded_iff_subset_smul_closedBall is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] {s : Set.{u2} E}, Iff (Bornology.IsBounded.{u2} E (PseudoMetricSpace.toBornology.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)) s) (Exists.{succ u1} π (fun (a : π) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s (SMul.smul.{u1, u2} π (Set.{u2} E) (Set.smulSet.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3)))))) a (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))))))
-but is expected to have type
- forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] {s : Set.{u2} E}, Iff (Bornology.IsBounded.{u2} E (PseudoMetricSpace.toBornology.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)) s) (Exists.{succ u1} π (fun (a : π) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s (HSMul.hSMul.{u1, u2, u2} π (Set.{u2} E) (Set.{u2} E) (instHSMul.{u1, u2} π (Set.{u2} E) (Set.smulSet.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))))) a (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))))))
-Case conversion may be inaccurate. Consider using '#align normed_space.is_bounded_iff_subset_smul_closed_ball NormedSpace.isBounded_iff_subset_smul_closedBallβ'. -/
theorem isBounded_iff_subset_smul_closedBall {s : Set E} :
Bornology.IsBounded s β β a : π, s β a β’ Metric.closedBall 0 1 :=
by
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -153,10 +153,7 @@ variable {πβ πβ : Type _} [NormedDivisionRing πβ] [NormedDivision
[Module πβ E] [AddCommGroup F] [Module πβ F] [TopologicalSpace E] [TopologicalSpace F]
/- warning: bornology.is_vonN_bounded.image -> Bornology.IsVonNBounded.image is a dubious translation:
-lean 3 declaration is
- forall {E : Type.{u1}} {F : Type.{u2}} {πβ : Type.{u3}} {πβ : Type.{u4}} [_inst_1 : NormedDivisionRing.{u3} πβ] [_inst_2 : NormedDivisionRing.{u4} πβ] [_inst_3 : AddCommGroup.{u1} E] [_inst_4 : Module.{u3, u1} πβ E (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_5 : AddCommGroup.{u2} F] [_inst_6 : Module.{u4, u2} πβ F (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)] [_inst_7 : TopologicalSpace.{u1} E] [_inst_8 : TopologicalSpace.{u2} F] {Ο : RingHom.{u3, u4} πβ πβ (NonAssocRing.toNonAssocSemiring.{u3} πβ (Ring.toNonAssocRing.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u4} πβ (Ring.toNonAssocRing.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))))} [_inst_9 : RingHomSurjective.{u3, u4} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο] [_inst_10 : RingHomIsometric.{u3, u4} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) (NormedDivisionRing.toHasNorm.{u3} πβ _inst_1) (NormedDivisionRing.toHasNorm.{u4} πβ _inst_2) Ο] {s : Set.{u1} E}, (Bornology.IsVonNBounded.{u3, u1} πβ E (NormedRing.toSeminormedRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1)) (SMulZeroClass.toHasSmul.{u3, u1} πβ E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} πβ E (MulZeroClass.toHasZero.{u3} πβ (MulZeroOneClass.toMulZeroClass.{u3} πβ (MonoidWithZero.toMulZeroOneClass.{u3} πβ (Semiring.toMonoidWithZero.{u3} πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} πβ E (Semiring.toMonoidWithZero.{u3} πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} πβ E (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))) _inst_7 s) -> (forall (f : ContinuousLinearMap.{u3, u4, u1, u2} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_4 _inst_6), Bornology.IsVonNBounded.{u4, u2} πβ F (NormedRing.toSeminormedRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2)) (SMulZeroClass.toHasSmul.{u4, u2} πβ F (AddZeroClass.toHasZero.{u2} F (AddMonoid.toAddZeroClass.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u4, u2} πβ F (MulZeroClass.toHasZero.{u4} πβ (MulZeroOneClass.toMulZeroClass.{u4} πβ (MonoidWithZero.toMulZeroOneClass.{u4} πβ (Semiring.toMonoidWithZero.{u4} πβ (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))))))) (AddZeroClass.toHasZero.{u2} F (AddMonoid.toAddZeroClass.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u4, u2} πβ F (Semiring.toMonoidWithZero.{u4} πβ (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2)))) (AddZeroClass.toHasZero.{u2} F (AddMonoid.toAddZeroClass.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)))) (Module.toMulActionWithZero.{u4, u2} πβ F (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_6)))) (AddZeroClass.toHasZero.{u2} F (AddMonoid.toAddZeroClass.{u2} F (SubNegMonoid.toAddMonoid.{u2} F (AddGroup.toSubNegMonoid.{u2} F (AddCommGroup.toAddGroup.{u2} F _inst_5))))) _inst_8 (Set.image.{u1, u2} E F (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_4 _inst_6) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_4 _inst_6) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_4 _inst_6) f) s))
-but is expected to have type
- forall {E : Type.{u2}} {F : Type.{u1}} {πβ : Type.{u4}} {πβ : Type.{u3}} [_inst_1 : NormedDivisionRing.{u4} πβ] [_inst_2 : NormedDivisionRing.{u3} πβ] [_inst_3 : AddCommGroup.{u2} E] [_inst_4 : Module.{u4, u2} πβ E (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)] [_inst_5 : AddCommGroup.{u1} F] [_inst_6 : Module.{u3, u1} πβ F (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F _inst_5)] [_inst_7 : TopologicalSpace.{u2} E] [_inst_8 : TopologicalSpace.{u1} F] {Ο : RingHom.{u4, u3} πβ πβ (Semiring.toNonAssocSemiring.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1)))) (Semiring.toNonAssocSemiring.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))))} [_inst_9 : RingHomSurjective.{u4, u3} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο] [_inst_10 : RingHomIsometric.{u4, u3} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) (NormedDivisionRing.toNorm.{u4} πβ _inst_1) (NormedDivisionRing.toNorm.{u3} πβ _inst_2) Ο] {s : Set.{u2} E}, (Bornology.IsVonNBounded.{u4, u2} πβ E (NormedRing.toSeminormedRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_1)) (SMulZeroClass.toSMul.{u4, u2} πβ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u4, u2} πβ E (MonoidWithZero.toZero.{u4} πβ (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u4, u2} πβ E (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) (Module.toMulActionWithZero.{u4, u2} πβ E (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) _inst_7 s) -> (forall (f : ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6), Bornology.IsVonNBounded.{u3, u1} πβ F (NormedRing.toSeminormedRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_2)) (SMulZeroClass.toSMul.{u3, u1} πβ F (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u3, u1} πβ F (MonoidWithZero.toZero.{u3} πβ (Semiring.toMonoidWithZero.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))))) (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u3, u1} πβ F (Semiring.toMonoidWithZero.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2)))) (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) (Module.toMulActionWithZero.{u3, u1} πβ F (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_6)))) (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) _inst_8 (Set.image.{u2, u1} E F (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6) E F _inst_7 _inst_8 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u4, u3, u2, u1} (ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6) πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6 (ContinuousLinearMap.continuousSemilinearMapClass.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6))) f) s))
+<too large>
Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.image Bornology.IsVonNBounded.imageβ'. -/
/-- A continuous linear image of a bounded set is bounded. -/
theorem IsVonNBounded.image {Ο : πβ β+* πβ} [RingHomSurjective Ο] [RingHomIsometric Ο] {s : Set E}
@@ -187,10 +184,7 @@ variable {π : Type _} [NormedField π] [NontriviallyNormedField π] [AddC
[Module π E] [TopologicalSpace E] [ContinuousSMul π E]
/- warning: bornology.is_vonN_bounded.smul_tendsto_zero -> Bornology.IsVonNBounded.smul_tendsto_zero is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_3 : AddCommGroup.{u2} E] [_inst_4 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)] [_inst_6 : TopologicalSpace.{u2} E] {S : Set.{u2} E} {Ξ΅ : ΞΉ -> π} {x : ΞΉ -> E} {l : Filter.{u3} ΞΉ}, (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_3))))) _inst_6 S) -> (Filter.Eventually.{u3} ΞΉ (fun (n : ΞΉ) => Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (x n) S) l) -> (Filter.Tendsto.{u3, u1} ΞΉ π Ξ΅ l (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (OfNat.mk.{u1} π 0 (Zero.zero.{u1} π (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))))))) -> (Filter.Tendsto.{u3, u2} ΞΉ E (SMul.smul.{max u3 u1, max u3 u2} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u3, u1, u2} ΞΉ (fun (αΎ° : ΞΉ) => π) (fun (αΎ° : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) _inst_4))))) Ξ΅ x) l (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_3))))))))))
-but is expected to have type
- forall {π : Type.{u1}} {E : Type.{u3}} {ΞΉ : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_6 : TopologicalSpace.{u3} E] {S : Set.{u3} E} {Ξ΅ : ΞΉ -> π} {x : ΞΉ -> E} {l : Filter.{u2} ΞΉ}, (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) _inst_6 S) -> (Filter.Eventually.{u2} ΞΉ (fun (n : ΞΉ) => Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) (x n) S) l) -> (Filter.Tendsto.{u2, u1} ΞΉ π Ξ΅ l (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (Zero.toOfNat0.{u1} π (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))))))) -> (Filter.Tendsto.{u2, u3} ΞΉ E (HSMul.hSMul.{max u1 u2, max u3 u2, max u3 u2} (ΞΉ -> π) (ΞΉ -> E) (ΞΉ -> E) (instHSMul.{max u1 u2, max u3 u2} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u2, u1, u3} ΞΉ (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1071 : ΞΉ) => π) (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1074 : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))))) Ξ΅ x) l (nhds.{u3} E _inst_6 (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3)))))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.smul_tendsto_zero Bornology.IsVonNBounded.smul_tendsto_zeroβ'. -/
theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ β E} {l : Filter ΞΉ}
(hS : IsVonNBounded π S) (hxS : βαΆ n in l, x n β S) (hΞ΅ : Tendsto Ξ΅ l (π 0)) :
@@ -207,10 +201,7 @@ theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ
#align bornology.is_vonN_bounded.smul_tendsto_zero Bornology.IsVonNBounded.smul_tendsto_zero
/- warning: bornology.is_vonN_bounded_of_smul_tendsto_zero -> Bornology.isVonNBounded_of_smul_tendsto_zero is a dubious translation:
-lean 3 declaration is
- forall {E : Type.{u1}} {ΞΉ : Type.{u2}} {π : Type.{u3}} [_inst_2 : NontriviallyNormedField.{u3} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u3, u1} π E (SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u2} ΞΉ} [_inst_8 : Filter.NeBot.{u2} ΞΉ l], (Filter.Eventually.{u2} ΞΉ (fun (n : ΞΉ) => Ne.{succ u3} π (Ξ΅ n) (OfNat.ofNat.{u3} π 0 (OfNat.mk.{u3} π 0 (Zero.zero.{u3} π (MulZeroClass.toHasZero.{u3} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} π (NonAssocRing.toNonUnitalNonAssocRing.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))))))) l) -> (forall {S : Set.{u1} E}, (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.Mem.{u1, u1} E (Set.{u1} E) (Set.hasMem.{u1} E) (x n) S) -> (Filter.Tendsto.{u2, u1} ΞΉ E (SMul.smul.{max u2 u3, max u2 u1} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u2, u3, u1} ΞΉ (fun (αΎ° : ΞΉ) => π) (fun (αΎ° : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (OfNat.mk.{u1} E 0 (Zero.zero.{u1} E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))))))))) -> (Bornology.IsVonNBounded.{u3, u1} π E (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))) (SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))) _inst_6 S))
-but is expected to have type
- forall {E : Type.{u1}} {ΞΉ : Type.{u3}} {π : Type.{u2}} [_inst_2 : NontriviallyNormedField.{u2} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u3} ΞΉ} [_inst_8 : Filter.NeBot.{u3} ΞΉ l], (Filter.Eventually.{u3} ΞΉ (fun (n : ΞΉ) => Ne.{succ u2} π (Ξ΅ n) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))))) l) -> (forall {S : Set.{u1} E}, (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (x n) S) -> (Filter.Tendsto.{u3, u1} ΞΉ E (HSMul.hSMul.{max u3 u2, max u1 u3, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (ΞΉ -> E) (instHSMul.{max u3 u2, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u3, u2, u1} ΞΉ (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1362 : ΞΉ) => π) (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1398 : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3)))))))))) -> (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_6 S))
+<too large>
Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_of_smul_tendsto_zero Bornology.isVonNBounded_of_smul_tendsto_zeroβ'. -/
theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l.ne_bot]
(hΞ΅ : βαΆ n in l, Ξ΅ n β 0) {S : Set E}
@@ -236,10 +227,7 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
#align bornology.is_vonN_bounded_of_smul_tendsto_zero Bornology.isVonNBounded_of_smul_tendsto_zero
/- warning: bornology.is_vonN_bounded_iff_smul_tendsto_zero -> Bornology.isVonNBounded_iff_smul_tendsto_zero is a dubious translation:
-lean 3 declaration is
- forall {E : Type.{u1}} {ΞΉ : Type.{u2}} {π : Type.{u3}} [_inst_2 : NontriviallyNormedField.{u3} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u3, u1} π E (SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u2} ΞΉ} [_inst_8 : Filter.NeBot.{u2} ΞΉ l], (Filter.Tendsto.{u2, u3} ΞΉ π Ξ΅ l (nhdsWithin.{u3} π (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))) (OfNat.ofNat.{u3} π 0 (OfNat.mk.{u3} π 0 (Zero.zero.{u3} π (MulZeroClass.toHasZero.{u3} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} π (NonAssocRing.toNonUnitalNonAssocRing.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))))))))) (HasCompl.compl.{u3} (Set.{u3} π) (BooleanAlgebra.toHasCompl.{u3} (Set.{u3} π) (Set.booleanAlgebra.{u3} π)) (Singleton.singleton.{u3, u3} π (Set.{u3} π) (Set.hasSingleton.{u3} π) (OfNat.ofNat.{u3} π 0 (OfNat.mk.{u3} π 0 (Zero.zero.{u3} π (MulZeroClass.toHasZero.{u3} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} π (NonAssocRing.toNonUnitalNonAssocRing.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))))))))))))) -> (forall {S : Set.{u1} E}, Iff (Bornology.IsVonNBounded.{u3, u1} π E (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))) (SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))) _inst_6 S) (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.Mem.{u1, u1} E (Set.{u1} E) (Set.hasMem.{u1} E) (x n) S) -> (Filter.Tendsto.{u2, u1} ΞΉ E (SMul.smul.{max u2 u3, max u2 u1} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u2, u3, u1} ΞΉ (fun (αΎ° : ΞΉ) => π) (fun (αΎ° : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (OfNat.mk.{u1} E 0 (Zero.zero.{u1} E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))))))))))
-but is expected to have type
- forall {E : Type.{u1}} {ΞΉ : Type.{u3}} {π : Type.{u2}} [_inst_2 : NontriviallyNormedField.{u2} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u3} ΞΉ} [_inst_8 : Filter.NeBot.{u3} ΞΉ l], (Filter.Tendsto.{u3, u2} ΞΉ π Ξ΅ l (nhdsWithin.{u2} π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))))) (HasCompl.compl.{u2} (Set.{u2} π) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} π) (Set.instBooleanAlgebraSet.{u2} π)) (Singleton.singleton.{u2, u2} π (Set.{u2} π) (Set.instSingletonSet.{u2} π) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))))))))) -> (forall {S : Set.{u1} E}, Iff (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_6 S) (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (x n) S) -> (Filter.Tendsto.{u3, u1} ΞΉ E (HSMul.hSMul.{max u3 u2, max u1 u3, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (ΞΉ -> E) (instHSMul.{max u3 u2, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u3, u2, u1} ΞΉ (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1749 : ΞΉ) => π) (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.3297 : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3)))))))))))
+<too large>
Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_iff_smul_tendsto_zero Bornology.isVonNBounded_iff_smul_tendsto_zeroβ'. -/
/-- Given any sequence `Ξ΅` of scalars which tends to `π[β ] 0`, we have that a set `S` is bounded
if and only if for any sequence `x : β β S`, `Ξ΅ β’ x` tends to 0. This actually works for any
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -134,7 +134,7 @@ variable [SeminormedRing π] [AddCommGroup E] [Module π E]
/- warning: bornology.is_vonN_bounded.of_topological_space_le -> Bornology.IsVonNBounded.of_topologicalSpace_le is a dubious translation:
lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {t : TopologicalSpace.{u2} E} {t' : TopologicalSpace.{u2} E}, (LE.le.{u2} (TopologicalSpace.{u2} E) (Preorder.toLE.{u2} (TopologicalSpace.{u2} E) (PartialOrder.toPreorder.{u2} (TopologicalSpace.{u2} E) (TopologicalSpace.partialOrder.{u2} E))) t t') -> (forall {s : Set.{u2} E}, (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) t s) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) t' s))
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {t : TopologicalSpace.{u2} E} {t' : TopologicalSpace.{u2} E}, (LE.le.{u2} (TopologicalSpace.{u2} E) (Preorder.toHasLe.{u2} (TopologicalSpace.{u2} E) (PartialOrder.toPreorder.{u2} (TopologicalSpace.{u2} E) (TopologicalSpace.partialOrder.{u2} E))) t t') -> (forall {s : Set.{u2} E}, (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) t s) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) t' s))
but is expected to have type
forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {t : TopologicalSpace.{u2} E} {t' : TopologicalSpace.{u2} E}, (LE.le.{u2} (TopologicalSpace.{u2} E) (Preorder.toLE.{u2} (TopologicalSpace.{u2} E) (PartialOrder.toPreorder.{u2} (TopologicalSpace.{u2} E) (TopologicalSpace.instPartialOrderTopologicalSpace.{u2} E))) t t') -> (forall {s : Set.{u2} E}, (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) t s) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) t' s))
Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.of_topological_space_le Bornology.IsVonNBounded.of_topologicalSpace_leβ'. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/0b9eaaa7686280fad8cce467f5c3c57ee6ce77f8
@@ -190,7 +190,7 @@ variable {π : Type _} [NormedField π] [NontriviallyNormedField π] [AddC
lean 3 declaration is
forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_3 : AddCommGroup.{u2} E] [_inst_4 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)] [_inst_6 : TopologicalSpace.{u2} E] {S : Set.{u2} E} {Ξ΅ : ΞΉ -> π} {x : ΞΉ -> E} {l : Filter.{u3} ΞΉ}, (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_3))))) _inst_6 S) -> (Filter.Eventually.{u3} ΞΉ (fun (n : ΞΉ) => Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (x n) S) l) -> (Filter.Tendsto.{u3, u1} ΞΉ π Ξ΅ l (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (OfNat.mk.{u1} π 0 (Zero.zero.{u1} π (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))))))) -> (Filter.Tendsto.{u3, u2} ΞΉ E (SMul.smul.{max u3 u1, max u3 u2} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u3, u1, u2} ΞΉ (fun (αΎ° : ΞΉ) => π) (fun (αΎ° : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) _inst_4))))) Ξ΅ x) l (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_3))))))))))
but is expected to have type
- forall {π : Type.{u1}} {E : Type.{u3}} {ΞΉ : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_6 : TopologicalSpace.{u3} E] {S : Set.{u3} E} {Ξ΅ : ΞΉ -> π} {x : ΞΉ -> E} {l : Filter.{u2} ΞΉ}, (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) _inst_6 S) -> (Filter.Eventually.{u2} ΞΉ (fun (n : ΞΉ) => Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) (x n) S) l) -> (Filter.Tendsto.{u2, u1} ΞΉ π Ξ΅ l (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (Zero.toOfNat0.{u1} π (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))))))) -> (Filter.Tendsto.{u2, u3} ΞΉ E (HSMul.hSMul.{max u1 u2, max u3 u2, max u3 u2} (ΞΉ -> π) (ΞΉ -> E) (ΞΉ -> E) (instHSMul.{max u1 u2, max u3 u2} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u2, u1, u3} ΞΉ (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1077 : ΞΉ) => π) (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1080 : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))))) Ξ΅ x) l (nhds.{u3} E _inst_6 (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3)))))))))
+ forall {π : Type.{u1}} {E : Type.{u3}} {ΞΉ : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_6 : TopologicalSpace.{u3} E] {S : Set.{u3} E} {Ξ΅ : ΞΉ -> π} {x : ΞΉ -> E} {l : Filter.{u2} ΞΉ}, (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) _inst_6 S) -> (Filter.Eventually.{u2} ΞΉ (fun (n : ΞΉ) => Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) (x n) S) l) -> (Filter.Tendsto.{u2, u1} ΞΉ π Ξ΅ l (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (Zero.toOfNat0.{u1} π (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))))))) -> (Filter.Tendsto.{u2, u3} ΞΉ E (HSMul.hSMul.{max u1 u2, max u3 u2, max u3 u2} (ΞΉ -> π) (ΞΉ -> E) (ΞΉ -> E) (instHSMul.{max u1 u2, max u3 u2} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u2, u1, u3} ΞΉ (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1071 : ΞΉ) => π) (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1074 : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))))) Ξ΅ x) l (nhds.{u3} E _inst_6 (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3)))))))))
Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.smul_tendsto_zero Bornology.IsVonNBounded.smul_tendsto_zeroβ'. -/
theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ β E} {l : Filter ΞΉ}
(hS : IsVonNBounded π S) (hxS : βαΆ n in l, x n β S) (hΞ΅ : Tendsto Ξ΅ l (π 0)) :
@@ -210,7 +210,7 @@ theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ
lean 3 declaration is
forall {E : Type.{u1}} {ΞΉ : Type.{u2}} {π : Type.{u3}} [_inst_2 : NontriviallyNormedField.{u3} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u3, u1} π E (SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u2} ΞΉ} [_inst_8 : Filter.NeBot.{u2} ΞΉ l], (Filter.Eventually.{u2} ΞΉ (fun (n : ΞΉ) => Ne.{succ u3} π (Ξ΅ n) (OfNat.ofNat.{u3} π 0 (OfNat.mk.{u3} π 0 (Zero.zero.{u3} π (MulZeroClass.toHasZero.{u3} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} π (NonAssocRing.toNonUnitalNonAssocRing.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))))))) l) -> (forall {S : Set.{u1} E}, (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.Mem.{u1, u1} E (Set.{u1} E) (Set.hasMem.{u1} E) (x n) S) -> (Filter.Tendsto.{u2, u1} ΞΉ E (SMul.smul.{max u2 u3, max u2 u1} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u2, u3, u1} ΞΉ (fun (αΎ° : ΞΉ) => π) (fun (αΎ° : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (OfNat.mk.{u1} E 0 (Zero.zero.{u1} E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))))))))) -> (Bornology.IsVonNBounded.{u3, u1} π E (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))) (SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))) _inst_6 S))
but is expected to have type
- forall {E : Type.{u1}} {ΞΉ : Type.{u3}} {π : Type.{u2}} [_inst_2 : NontriviallyNormedField.{u2} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u3} ΞΉ} [_inst_8 : Filter.NeBot.{u3} ΞΉ l], (Filter.Eventually.{u3} ΞΉ (fun (n : ΞΉ) => Ne.{succ u2} π (Ξ΅ n) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))))) l) -> (forall {S : Set.{u1} E}, (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (x n) S) -> (Filter.Tendsto.{u3, u1} ΞΉ E (HSMul.hSMul.{max u3 u2, max u1 u3, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (ΞΉ -> E) (instHSMul.{max u3 u2, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u3, u2, u1} ΞΉ (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1368 : ΞΉ) => π) (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1404 : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3)))))))))) -> (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_6 S))
+ forall {E : Type.{u1}} {ΞΉ : Type.{u3}} {π : Type.{u2}} [_inst_2 : NontriviallyNormedField.{u2} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u3} ΞΉ} [_inst_8 : Filter.NeBot.{u3} ΞΉ l], (Filter.Eventually.{u3} ΞΉ (fun (n : ΞΉ) => Ne.{succ u2} π (Ξ΅ n) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))))) l) -> (forall {S : Set.{u1} E}, (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (x n) S) -> (Filter.Tendsto.{u3, u1} ΞΉ E (HSMul.hSMul.{max u3 u2, max u1 u3, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (ΞΉ -> E) (instHSMul.{max u3 u2, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u3, u2, u1} ΞΉ (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1362 : ΞΉ) => π) (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1398 : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3)))))))))) -> (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_6 S))
Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_of_smul_tendsto_zero Bornology.isVonNBounded_of_smul_tendsto_zeroβ'. -/
theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l.ne_bot]
(hΞ΅ : βαΆ n in l, Ξ΅ n β 0) {S : Set E}
@@ -239,7 +239,7 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
lean 3 declaration is
forall {E : Type.{u1}} {ΞΉ : Type.{u2}} {π : Type.{u3}} [_inst_2 : NontriviallyNormedField.{u3} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u3, u1} π E (SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u2} ΞΉ} [_inst_8 : Filter.NeBot.{u2} ΞΉ l], (Filter.Tendsto.{u2, u3} ΞΉ π Ξ΅ l (nhdsWithin.{u3} π (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))) (OfNat.ofNat.{u3} π 0 (OfNat.mk.{u3} π 0 (Zero.zero.{u3} π (MulZeroClass.toHasZero.{u3} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} π (NonAssocRing.toNonUnitalNonAssocRing.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))))))))) (HasCompl.compl.{u3} (Set.{u3} π) (BooleanAlgebra.toHasCompl.{u3} (Set.{u3} π) (Set.booleanAlgebra.{u3} π)) (Singleton.singleton.{u3, u3} π (Set.{u3} π) (Set.hasSingleton.{u3} π) (OfNat.ofNat.{u3} π 0 (OfNat.mk.{u3} π 0 (Zero.zero.{u3} π (MulZeroClass.toHasZero.{u3} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} π (NonAssocRing.toNonUnitalNonAssocRing.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))))))))))))) -> (forall {S : Set.{u1} E}, Iff (Bornology.IsVonNBounded.{u3, u1} π E (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))) (SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))) _inst_6 S) (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.Mem.{u1, u1} E (Set.{u1} E) (Set.hasMem.{u1} E) (x n) S) -> (Filter.Tendsto.{u2, u1} ΞΉ E (SMul.smul.{max u2 u3, max u2 u1} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u2, u3, u1} ΞΉ (fun (αΎ° : ΞΉ) => π) (fun (αΎ° : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (OfNat.mk.{u1} E 0 (Zero.zero.{u1} E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))))))))))
but is expected to have type
- forall {E : Type.{u1}} {ΞΉ : Type.{u3}} {π : Type.{u2}} [_inst_2 : NontriviallyNormedField.{u2} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u3} ΞΉ} [_inst_8 : Filter.NeBot.{u3} ΞΉ l], (Filter.Tendsto.{u3, u2} ΞΉ π Ξ΅ l (nhdsWithin.{u2} π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))))) (HasCompl.compl.{u2} (Set.{u2} π) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} π) (Set.instBooleanAlgebraSet.{u2} π)) (Singleton.singleton.{u2, u2} π (Set.{u2} π) (Set.instSingletonSet.{u2} π) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))))))))) -> (forall {S : Set.{u1} E}, Iff (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_6 S) (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (x n) S) -> (Filter.Tendsto.{u3, u1} ΞΉ E (HSMul.hSMul.{max u3 u2, max u1 u3, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (ΞΉ -> E) (instHSMul.{max u3 u2, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u3, u2, u1} ΞΉ (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1755 : ΞΉ) => π) (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.3303 : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3)))))))))))
+ forall {E : Type.{u1}} {ΞΉ : Type.{u3}} {π : Type.{u2}} [_inst_2 : NontriviallyNormedField.{u2} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u3} ΞΉ} [_inst_8 : Filter.NeBot.{u3} ΞΉ l], (Filter.Tendsto.{u3, u2} ΞΉ π Ξ΅ l (nhdsWithin.{u2} π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))))) (HasCompl.compl.{u2} (Set.{u2} π) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} π) (Set.instBooleanAlgebraSet.{u2} π)) (Singleton.singleton.{u2, u2} π (Set.{u2} π) (Set.instSingletonSet.{u2} π) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))))))))) -> (forall {S : Set.{u1} E}, Iff (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_6 S) (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (x n) S) -> (Filter.Tendsto.{u3, u1} ΞΉ E (HSMul.hSMul.{max u3 u2, max u1 u3, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (ΞΉ -> E) (instHSMul.{max u3 u2, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u3, u2, u1} ΞΉ (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1749 : ΞΉ) => π) (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.3297 : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3)))))))))))
Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_iff_smul_tendsto_zero Bornology.isVonNBounded_iff_smul_tendsto_zeroβ'. -/
/-- Given any sequence `Ξ΅` of scalars which tends to `π[β ] 0`, we have that a set `S` is bounded
if and only if for any sequence `x : β β S`, `Ξ΅ β’ x` tends to 0. This actually works for any
mathlib commit https://github.com/leanprover-community/mathlib/commit/e3fb84046afd187b710170887195d50bada934ee
@@ -273,14 +273,14 @@ theorem isVonNBounded_singleton (x : E) : IsVonNBounded π ({x} : Set E) := fu
/- warning: bornology.is_vonN_bounded_covers -> Bornology.isVonNBounded_covers is a dubious translation:
lean 3 declaration is
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4], Eq.{succ u2} (Set.{u2} E) (Set.unionβ.{u2} E (setOf.{u2} (Set.{u2} E) (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_4))) (Set.univ.{u2} E)
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4], Eq.{succ u2} (Set.{u2} E) (Set.sUnion.{u2} E (setOf.{u2} (Set.{u2} E) (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_4))) (Set.univ.{u2} E)
but is expected to have type
- forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4], Eq.{succ u2} (Set.{u2} E) (Set.unionβ.{u2} E (setOf.{u2} (Set.{u2} E) (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) _inst_4))) (Set.univ.{u2} E)
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4], Eq.{succ u2} (Set.{u2} E) (Set.sUnion.{u2} E (setOf.{u2} (Set.{u2} E) (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) _inst_4))) (Set.univ.{u2} E)
Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_covers Bornology.isVonNBounded_coversβ'. -/
/-- The union of all bounded set is the whole space. -/
theorem isVonNBounded_covers : ββ setOf (IsVonNBounded π) = (Set.univ : Set E) :=
Set.eq_univ_iff_forall.mpr fun x =>
- Set.mem_unionβ.mpr β¨{x}, isVonNBounded_singleton _, Set.mem_singleton _β©
+ Set.mem_sUnion.mpr β¨{x}, isVonNBounded_singleton _, Set.mem_singleton _β©
#align bornology.is_vonN_bounded_covers Bornology.isVonNBounded_covers
variable (π E)
@@ -332,7 +332,7 @@ Case conversion may be inaccurate. Consider using '#align totally_bounded.is_von
theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
Bornology.IsVonNBounded π s :=
by
- rw [totallyBounded_iff_subset_finite_unionα΅’_nhds_zero] at hs
+ rw [totallyBounded_iff_subset_finite_iUnion_nhds_zero] at hs
intro U hU
have h : Filter.Tendsto (fun x : E Γ E => x.fst + x.snd) (π (0, 0)) (π ((0 : E) + (0 : E))) :=
tendsto_add
mathlib commit https://github.com/leanprover-community/mathlib/commit/08e1d8d4d989df3a6df86f385e9053ec8a372cc1
@@ -156,7 +156,7 @@ variable {πβ πβ : Type _} [NormedDivisionRing πβ] [NormedDivision
lean 3 declaration is
forall {E : Type.{u1}} {F : Type.{u2}} {πβ : Type.{u3}} {πβ : Type.{u4}} [_inst_1 : NormedDivisionRing.{u3} πβ] [_inst_2 : NormedDivisionRing.{u4} πβ] [_inst_3 : AddCommGroup.{u1} E] [_inst_4 : Module.{u3, u1} πβ E (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_5 : AddCommGroup.{u2} F] [_inst_6 : Module.{u4, u2} πβ F (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)] [_inst_7 : TopologicalSpace.{u1} E] [_inst_8 : TopologicalSpace.{u2} F] {Ο : RingHom.{u3, u4} πβ πβ (NonAssocRing.toNonAssocSemiring.{u3} πβ (Ring.toNonAssocRing.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u4} πβ (Ring.toNonAssocRing.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))))} [_inst_9 : RingHomSurjective.{u3, u4} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο] [_inst_10 : RingHomIsometric.{u3, u4} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) (NormedDivisionRing.toHasNorm.{u3} πβ _inst_1) (NormedDivisionRing.toHasNorm.{u4} πβ _inst_2) Ο] {s : Set.{u1} E}, (Bornology.IsVonNBounded.{u3, u1} πβ E (NormedRing.toSeminormedRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1)) (SMulZeroClass.toHasSmul.{u3, u1} πβ E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} πβ E (MulZeroClass.toHasZero.{u3} πβ (MulZeroOneClass.toMulZeroClass.{u3} πβ (MonoidWithZero.toMulZeroOneClass.{u3} πβ (Semiring.toMonoidWithZero.{u3} πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} πβ E (Semiring.toMonoidWithZero.{u3} πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} πβ E (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))) _inst_7 s) -> (forall (f : ContinuousLinearMap.{u3, u4, u1, u2} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_4 _inst_6), Bornology.IsVonNBounded.{u4, u2} πβ F (NormedRing.toSeminormedRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2)) (SMulZeroClass.toHasSmul.{u4, u2} πβ F (AddZeroClass.toHasZero.{u2} F (AddMonoid.toAddZeroClass.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u4, u2} πβ F (MulZeroClass.toHasZero.{u4} πβ (MulZeroOneClass.toMulZeroClass.{u4} πβ (MonoidWithZero.toMulZeroOneClass.{u4} πβ (Semiring.toMonoidWithZero.{u4} πβ (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))))))) (AddZeroClass.toHasZero.{u2} F (AddMonoid.toAddZeroClass.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u4, u2} πβ F (Semiring.toMonoidWithZero.{u4} πβ (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2)))) (AddZeroClass.toHasZero.{u2} F (AddMonoid.toAddZeroClass.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)))) (Module.toMulActionWithZero.{u4, u2} πβ F (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_6)))) (AddZeroClass.toHasZero.{u2} F (AddMonoid.toAddZeroClass.{u2} F (SubNegMonoid.toAddMonoid.{u2} F (AddGroup.toSubNegMonoid.{u2} F (AddCommGroup.toAddGroup.{u2} F _inst_5))))) _inst_8 (Set.image.{u1, u2} E F (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_4 _inst_6) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_4 _inst_6) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_4 _inst_6) f) s))
but is expected to have type
- forall {E : Type.{u2}} {F : Type.{u1}} {πβ : Type.{u4}} {πβ : Type.{u3}} [_inst_1 : NormedDivisionRing.{u4} πβ] [_inst_2 : NormedDivisionRing.{u3} πβ] [_inst_3 : AddCommGroup.{u2} E] [_inst_4 : Module.{u4, u2} πβ E (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)] [_inst_5 : AddCommGroup.{u1} F] [_inst_6 : Module.{u3, u1} πβ F (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F _inst_5)] [_inst_7 : TopologicalSpace.{u2} E] [_inst_8 : TopologicalSpace.{u1} F] {Ο : RingHom.{u4, u3} πβ πβ (NonAssocRing.toNonAssocSemiring.{u4} πβ (Ring.toNonAssocRing.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u3} πβ (Ring.toNonAssocRing.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_2))))} [_inst_9 : RingHomSurjective.{u4, u3} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο] [_inst_10 : RingHomIsometric.{u4, u3} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) (NormedDivisionRing.toNorm.{u4} πβ _inst_1) (NormedDivisionRing.toNorm.{u3} πβ _inst_2) Ο] {s : Set.{u2} E}, (Bornology.IsVonNBounded.{u4, u2} πβ E (NormedRing.toSeminormedRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_1)) (SMulZeroClass.toSMul.{u4, u2} πβ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u4, u2} πβ E (MonoidWithZero.toZero.{u4} πβ (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u4, u2} πβ E (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) (Module.toMulActionWithZero.{u4, u2} πβ E (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) _inst_7 s) -> (forall (f : ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6), Bornology.IsVonNBounded.{u3, u1} πβ F (NormedRing.toSeminormedRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_2)) (SMulZeroClass.toSMul.{u3, u1} πβ F (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u3, u1} πβ F (MonoidWithZero.toZero.{u3} πβ (Semiring.toMonoidWithZero.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))))) (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u3, u1} πβ F (Semiring.toMonoidWithZero.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2)))) (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) (Module.toMulActionWithZero.{u3, u1} πβ F (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_6)))) (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) _inst_8 (Set.image.{u2, u1} E F (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6) E F _inst_7 _inst_8 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u4, u3, u2, u1} (ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6) πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6 (ContinuousLinearMap.continuousSemilinearMapClass.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6))) f) s))
+ forall {E : Type.{u2}} {F : Type.{u1}} {πβ : Type.{u4}} {πβ : Type.{u3}} [_inst_1 : NormedDivisionRing.{u4} πβ] [_inst_2 : NormedDivisionRing.{u3} πβ] [_inst_3 : AddCommGroup.{u2} E] [_inst_4 : Module.{u4, u2} πβ E (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)] [_inst_5 : AddCommGroup.{u1} F] [_inst_6 : Module.{u3, u1} πβ F (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F _inst_5)] [_inst_7 : TopologicalSpace.{u2} E] [_inst_8 : TopologicalSpace.{u1} F] {Ο : RingHom.{u4, u3} πβ πβ (Semiring.toNonAssocSemiring.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1)))) (Semiring.toNonAssocSemiring.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))))} [_inst_9 : RingHomSurjective.{u4, u3} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο] [_inst_10 : RingHomIsometric.{u4, u3} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) (NormedDivisionRing.toNorm.{u4} πβ _inst_1) (NormedDivisionRing.toNorm.{u3} πβ _inst_2) Ο] {s : Set.{u2} E}, (Bornology.IsVonNBounded.{u4, u2} πβ E (NormedRing.toSeminormedRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_1)) (SMulZeroClass.toSMul.{u4, u2} πβ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u4, u2} πβ E (MonoidWithZero.toZero.{u4} πβ (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u4, u2} πβ E (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) (Module.toMulActionWithZero.{u4, u2} πβ E (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) _inst_7 s) -> (forall (f : ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6), Bornology.IsVonNBounded.{u3, u1} πβ F (NormedRing.toSeminormedRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_2)) (SMulZeroClass.toSMul.{u3, u1} πβ F (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u3, u1} πβ F (MonoidWithZero.toZero.{u3} πβ (Semiring.toMonoidWithZero.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))))) (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u3, u1} πβ F (Semiring.toMonoidWithZero.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2)))) (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) (Module.toMulActionWithZero.{u3, u1} πβ F (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_6)))) (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) _inst_8 (Set.image.{u2, u1} E F (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6) E F _inst_7 _inst_8 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u4, u3, u2, u1} (ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6) πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6 (ContinuousLinearMap.continuousSemilinearMapClass.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6))) f) s))
Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.image Bornology.IsVonNBounded.imageβ'. -/
/-- A continuous linear image of a bounded set is bounded. -/
theorem IsVonNBounded.image {Ο : πβ β+* πβ} [RingHomSurjective Ο] [RingHomIsometric Ο] {s : Set E}
mathlib commit https://github.com/leanprover-community/mathlib/commit/fa78268d4d77cb2b2fbc89f0527e2e7807763780
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll
! This file was ported from Lean 3 source module analysis.locally_convex.bounded
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 9d2f0748e6c50d7a2657c564b1ff2c695b39148d
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -18,6 +18,9 @@ import Mathbin.Topology.UniformSpace.Cauchy
/-!
# Von Neumann Boundedness
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
This file defines natural or von Neumann bounded sets and proves elementary properties.
## Main declarations
mathlib commit https://github.com/leanprover-community/mathlib/commit/9b2b58d6b14b895b2f375108e765cb47de71aebd
@@ -62,23 +62,39 @@ variable [SeminormedRing π] [SMul π E] [Zero E]
variable [TopologicalSpace E]
+#print Bornology.IsVonNBounded /-
/-- A set `s` is von Neumann bounded if every neighborhood of 0 absorbs `s`. -/
def IsVonNBounded (s : Set E) : Prop :=
β β¦Vβ¦, V β π (0 : E) β Absorbs π V s
#align bornology.is_vonN_bounded Bornology.IsVonNBounded
+-/
variable (E)
+/- warning: bornology.is_vonN_bounded_empty -> Bornology.isVonNBounded_empty is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : SMul.{u1, u2} π E] [_inst_3 : Zero.{u2} E] [_inst_4 : TopologicalSpace.{u2} E], Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 (EmptyCollection.emptyCollection.{u2} (Set.{u2} E) (Set.hasEmptyc.{u2} E))
+but is expected to have type
+ forall (π : Type.{u2}) (E : Type.{u1}) [_inst_1 : SeminormedRing.{u2} π] [_inst_2 : SMul.{u2, u1} π E] [_inst_3 : Zero.{u1} E] [_inst_4 : TopologicalSpace.{u1} E], Bornology.IsVonNBounded.{u2, u1} π E _inst_1 _inst_2 _inst_3 _inst_4 (EmptyCollection.emptyCollection.{u1} (Set.{u1} E) (Set.instEmptyCollectionSet.{u1} E))
+Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_empty Bornology.isVonNBounded_emptyβ'. -/
@[simp]
theorem isVonNBounded_empty : IsVonNBounded π (β
: Set E) := fun _ _ => absorbs_empty
#align bornology.is_vonN_bounded_empty Bornology.isVonNBounded_empty
variable {π E}
+#print Bornology.isVonNBounded_iff /-
theorem isVonNBounded_iff (s : Set E) : IsVonNBounded π s β β V β π (0 : E), Absorbs π V s :=
Iff.rfl
#align bornology.is_vonN_bounded_iff Bornology.isVonNBounded_iff
+-/
+/- warning: filter.has_basis.is_vonN_bounded_basis_iff -> Filter.HasBasis.isVonNBounded_basis_iff is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : SMul.{u1, u2} π E] [_inst_3 : Zero.{u2} E] [_inst_4 : TopologicalSpace.{u2} E] {q : ΞΉ -> Prop} {s : ΞΉ -> (Set.{u2} E)} {A : Set.{u2} E}, (Filter.HasBasis.{u2, succ u3} E ΞΉ (nhds.{u2} E _inst_4 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E _inst_3)))) q s) -> (Iff (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 A) (forall (i : ΞΉ), (q i) -> (Absorbs.{u1, u2} π E _inst_1 _inst_2 (s i) A)))
+but is expected to have type
+ forall {π : Type.{u1}} {E : Type.{u3}} {ΞΉ : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : SMul.{u1, u3} π E] [_inst_3 : Zero.{u3} E] [_inst_4 : TopologicalSpace.{u3} E] {q : ΞΉ -> Prop} {s : ΞΉ -> (Set.{u3} E)} {A : Set.{u3} E}, (Filter.HasBasis.{u3, succ u2} E ΞΉ (nhds.{u3} E _inst_4 (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E _inst_3))) q s) -> (Iff (Bornology.IsVonNBounded.{u1, u3} π E _inst_1 _inst_2 _inst_3 _inst_4 A) (forall (i : ΞΉ), (q i) -> (Absorbs.{u1, u3} π E _inst_1 _inst_2 (s i) A)))
+Case conversion may be inaccurate. Consider using '#align filter.has_basis.is_vonN_bounded_basis_iff Filter.HasBasis.isVonNBounded_basis_iffβ'. -/
theorem Filter.HasBasis.isVonNBounded_basis_iff {q : ΞΉ β Prop} {s : ΞΉ β Set E} {A : Set E}
(h : (π (0 : E)).HasBasis q s) : IsVonNBounded π A β β (i) (hi : q i), Absorbs π (s i) A :=
by
@@ -87,11 +103,19 @@ theorem Filter.HasBasis.isVonNBounded_basis_iff {q : ΞΉ β Prop} {s : ΞΉ β Se
exact (hA i hi).mono_left hV
#align filter.has_basis.is_vonN_bounded_basis_iff Filter.HasBasis.isVonNBounded_basis_iff
+#print Bornology.IsVonNBounded.subset /-
/-- Subsets of bounded sets are bounded. -/
theorem IsVonNBounded.subset {sβ sβ : Set E} (h : sβ β sβ) (hsβ : IsVonNBounded π sβ) :
IsVonNBounded π sβ := fun V hV => (hsβ hV).mono_right h
#align bornology.is_vonN_bounded.subset Bornology.IsVonNBounded.subset
+-/
+/- warning: bornology.is_vonN_bounded.union -> Bornology.IsVonNBounded.union is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : SMul.{u1, u2} π E] [_inst_3 : Zero.{u2} E] [_inst_4 : TopologicalSpace.{u2} E] {sβ : Set.{u2} E} {sβ : Set.{u2} E}, (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 sβ) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 sβ) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 (Union.union.{u2} (Set.{u2} E) (Set.hasUnion.{u2} E) sβ sβ))
+but is expected to have type
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : SMul.{u1, u2} π E] [_inst_3 : Zero.{u2} E] [_inst_4 : TopologicalSpace.{u2} E] {sβ : Set.{u2} E} {sβ : Set.{u2} E}, (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 sβ) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 sβ) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 (Union.union.{u2} (Set.{u2} E) (Set.instUnionSet.{u2} E) sβ sβ))
+Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.union Bornology.IsVonNBounded.unionβ'. -/
/-- The union of two bounded sets is bounded. -/
theorem IsVonNBounded.union {sβ sβ : Set E} (hsβ : IsVonNBounded π sβ) (hsβ : IsVonNBounded π sβ) :
IsVonNBounded π (sβ βͺ sβ) := fun V hV => (hsβ hV).union (hsβ hV)
@@ -105,6 +129,12 @@ section MultipleTopologies
variable [SeminormedRing π] [AddCommGroup E] [Module π E]
+/- warning: bornology.is_vonN_bounded.of_topological_space_le -> Bornology.IsVonNBounded.of_topologicalSpace_le is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {t : TopologicalSpace.{u2} E} {t' : TopologicalSpace.{u2} E}, (LE.le.{u2} (TopologicalSpace.{u2} E) (Preorder.toLE.{u2} (TopologicalSpace.{u2} E) (PartialOrder.toPreorder.{u2} (TopologicalSpace.{u2} E) (TopologicalSpace.partialOrder.{u2} E))) t t') -> (forall {s : Set.{u2} E}, (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) t s) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) t' s))
+but is expected to have type
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : SeminormedRing.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] {t : TopologicalSpace.{u2} E} {t' : TopologicalSpace.{u2} E}, (LE.le.{u2} (TopologicalSpace.{u2} E) (Preorder.toLE.{u2} (TopologicalSpace.{u2} E) (PartialOrder.toPreorder.{u2} (TopologicalSpace.{u2} E) (TopologicalSpace.instPartialOrderTopologicalSpace.{u2} E))) t t') -> (forall {s : Set.{u2} E}, (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) t s) -> (Bornology.IsVonNBounded.{u1, u2} π E _inst_1 (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (MonoidWithZero.toZero.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (SeminormedRing.toRing.{u1} π _inst_1)) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) t' s))
+Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.of_topological_space_le Bornology.IsVonNBounded.of_topologicalSpace_leβ'. -/
/-- If a topology `t'` is coarser than `t`, then any set `s` that is bounded with respect to
`t` is bounded with respect to `t'`. -/
theorem IsVonNBounded.of_topologicalSpace_le {t t' : TopologicalSpace E} (h : t β€ t') {s : Set E}
@@ -119,6 +149,12 @@ section Image
variable {πβ πβ : Type _} [NormedDivisionRing πβ] [NormedDivisionRing πβ] [AddCommGroup E]
[Module πβ E] [AddCommGroup F] [Module πβ F] [TopologicalSpace E] [TopologicalSpace F]
+/- warning: bornology.is_vonN_bounded.image -> Bornology.IsVonNBounded.image is a dubious translation:
+lean 3 declaration is
+ forall {E : Type.{u1}} {F : Type.{u2}} {πβ : Type.{u3}} {πβ : Type.{u4}} [_inst_1 : NormedDivisionRing.{u3} πβ] [_inst_2 : NormedDivisionRing.{u4} πβ] [_inst_3 : AddCommGroup.{u1} E] [_inst_4 : Module.{u3, u1} πβ E (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_5 : AddCommGroup.{u2} F] [_inst_6 : Module.{u4, u2} πβ F (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)] [_inst_7 : TopologicalSpace.{u1} E] [_inst_8 : TopologicalSpace.{u2} F] {Ο : RingHom.{u3, u4} πβ πβ (NonAssocRing.toNonAssocSemiring.{u3} πβ (Ring.toNonAssocRing.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u4} πβ (Ring.toNonAssocRing.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))))} [_inst_9 : RingHomSurjective.{u3, u4} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο] [_inst_10 : RingHomIsometric.{u3, u4} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) (NormedDivisionRing.toHasNorm.{u3} πβ _inst_1) (NormedDivisionRing.toHasNorm.{u4} πβ _inst_2) Ο] {s : Set.{u1} E}, (Bornology.IsVonNBounded.{u3, u1} πβ E (NormedRing.toSeminormedRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1)) (SMulZeroClass.toHasSmul.{u3, u1} πβ E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} πβ E (MulZeroClass.toHasZero.{u3} πβ (MulZeroOneClass.toMulZeroClass.{u3} πβ (MonoidWithZero.toMulZeroOneClass.{u3} πβ (Semiring.toMonoidWithZero.{u3} πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} πβ E (Semiring.toMonoidWithZero.{u3} πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} πβ E (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))) _inst_7 s) -> (forall (f : ContinuousLinearMap.{u3, u4, u1, u2} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_4 _inst_6), Bornology.IsVonNBounded.{u4, u2} πβ F (NormedRing.toSeminormedRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2)) (SMulZeroClass.toHasSmul.{u4, u2} πβ F (AddZeroClass.toHasZero.{u2} F (AddMonoid.toAddZeroClass.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)))) (SMulWithZero.toSmulZeroClass.{u4, u2} πβ F (MulZeroClass.toHasZero.{u4} πβ (MulZeroOneClass.toMulZeroClass.{u4} πβ (MonoidWithZero.toMulZeroOneClass.{u4} πβ (Semiring.toMonoidWithZero.{u4} πβ (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))))))) (AddZeroClass.toHasZero.{u2} F (AddMonoid.toAddZeroClass.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)))) (MulActionWithZero.toSMulWithZero.{u4, u2} πβ F (Semiring.toMonoidWithZero.{u4} πβ (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2)))) (AddZeroClass.toHasZero.{u2} F (AddMonoid.toAddZeroClass.{u2} F (AddCommMonoid.toAddMonoid.{u2} F (AddCommGroup.toAddCommMonoid.{u2} F _inst_5)))) (Module.toMulActionWithZero.{u4, u2} πβ F (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_6)))) (AddZeroClass.toHasZero.{u2} F (AddMonoid.toAddZeroClass.{u2} F (SubNegMonoid.toAddMonoid.{u2} F (AddGroup.toSubNegMonoid.{u2} F (AddCommGroup.toAddGroup.{u2} F _inst_5))))) _inst_8 (Set.image.{u1, u2} E F (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_4 _inst_6) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_4 _inst_6) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} πβ πβ (Ring.toSemiring.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_1))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u2} F _inst_5) _inst_4 _inst_6) f) s))
+but is expected to have type
+ forall {E : Type.{u2}} {F : Type.{u1}} {πβ : Type.{u4}} {πβ : Type.{u3}} [_inst_1 : NormedDivisionRing.{u4} πβ] [_inst_2 : NormedDivisionRing.{u3} πβ] [_inst_3 : AddCommGroup.{u2} E] [_inst_4 : Module.{u4, u2} πβ E (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)] [_inst_5 : AddCommGroup.{u1} F] [_inst_6 : Module.{u3, u1} πβ F (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F _inst_5)] [_inst_7 : TopologicalSpace.{u2} E] [_inst_8 : TopologicalSpace.{u1} F] {Ο : RingHom.{u4, u3} πβ πβ (NonAssocRing.toNonAssocSemiring.{u4} πβ (Ring.toNonAssocRing.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_1)))) (NonAssocRing.toNonAssocSemiring.{u3} πβ (Ring.toNonAssocRing.{u3} πβ (NormedRing.toRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_2))))} [_inst_9 : RingHomSurjective.{u4, u3} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο] [_inst_10 : RingHomIsometric.{u4, u3} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) (NormedDivisionRing.toNorm.{u4} πβ _inst_1) (NormedDivisionRing.toNorm.{u3} πβ _inst_2) Ο] {s : Set.{u2} E}, (Bornology.IsVonNBounded.{u4, u2} πβ E (NormedRing.toSeminormedRing.{u4} πβ (NormedDivisionRing.toNormedRing.{u4} πβ _inst_1)) (SMulZeroClass.toSMul.{u4, u2} πβ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u4, u2} πβ E (MonoidWithZero.toZero.{u4} πβ (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u4, u2} πβ E (Semiring.toMonoidWithZero.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) (Module.toMulActionWithZero.{u4, u2} πβ E (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_3))))) _inst_7 s) -> (forall (f : ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6), Bornology.IsVonNBounded.{u3, u1} πβ F (NormedRing.toSeminormedRing.{u3} πβ (NormedDivisionRing.toNormedRing.{u3} πβ _inst_2)) (SMulZeroClass.toSMul.{u3, u1} πβ F (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) (SMulWithZero.toSMulZeroClass.{u3, u1} πβ F (MonoidWithZero.toZero.{u3} πβ (Semiring.toMonoidWithZero.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))))) (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) (MulActionWithZero.toSMulWithZero.{u3, u1} πβ F (Semiring.toMonoidWithZero.{u3} πβ (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2)))) (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) (Module.toMulActionWithZero.{u3, u1} πβ F (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_6)))) (NegZeroClass.toZero.{u1} F (SubNegZeroMonoid.toNegZeroClass.{u1} F (SubtractionMonoid.toSubNegZeroMonoid.{u1} F (SubtractionCommMonoid.toSubtractionMonoid.{u1} F (AddCommGroup.toDivisionAddCommMonoid.{u1} F _inst_5))))) _inst_8 (Set.image.{u2, u1} E F (FunLike.coe.{max (succ u2) (succ u1), succ u2, succ u1} (ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u2, u1} (ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6) E F _inst_7 _inst_8 (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u4, u3, u2, u1} (ContinuousLinearMap.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6) πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6 (ContinuousLinearMap.continuousSemilinearMapClass.{u4, u3, u2, u1} πβ πβ (DivisionSemiring.toSemiring.{u4} πβ (DivisionRing.toDivisionSemiring.{u4} πβ (NormedDivisionRing.toDivisionRing.{u4} πβ _inst_1))) (DivisionSemiring.toSemiring.{u3} πβ (DivisionRing.toDivisionSemiring.{u3} πβ (NormedDivisionRing.toDivisionRing.{u3} πβ _inst_2))) Ο E _inst_7 (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) F _inst_8 (AddCommGroup.toAddCommMonoid.{u1} F _inst_5) _inst_4 _inst_6))) f) s))
+Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.image Bornology.IsVonNBounded.imageβ'. -/
/-- A continuous linear image of a bounded set is bounded. -/
theorem IsVonNBounded.image {Ο : πβ β+* πβ} [RingHomSurjective Ο] [RingHomIsometric Ο] {s : Set E}
(hs : IsVonNBounded πβ s) (f : E βSL[Ο] F) : IsVonNBounded πβ (f '' s) :=
@@ -147,6 +183,12 @@ section sequence
variable {π : Type _} [NormedField π] [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
[Module π E] [TopologicalSpace E] [ContinuousSMul π E]
+/- warning: bornology.is_vonN_bounded.smul_tendsto_zero -> Bornology.IsVonNBounded.smul_tendsto_zero is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} {ΞΉ : Type.{u3}} [_inst_1 : NormedField.{u1} π] [_inst_3 : AddCommGroup.{u2} E] [_inst_4 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)] [_inst_6 : TopologicalSpace.{u2} E] {S : Set.{u2} E} {Ξ΅ : ΞΉ -> π} {x : ΞΉ -> E} {l : Filter.{u3} ΞΉ}, (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) _inst_4)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_3))))) _inst_6 S) -> (Filter.Eventually.{u3} ΞΉ (fun (n : ΞΉ) => Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) (x n) S) l) -> (Filter.Tendsto.{u3, u1} ΞΉ π Ξ΅ l (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (OfNat.mk.{u1} π 0 (Zero.zero.{u1} π (MulZeroClass.toHasZero.{u1} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))))))))))) -> (Filter.Tendsto.{u3, u2} ΞΉ E (SMul.smul.{max u3 u1, max u3 u2} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u3, u1, u2} ΞΉ (fun (αΎ° : ΞΉ) => π) (fun (αΎ° : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_3)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_3) _inst_4))))) Ξ΅ x) l (nhds.{u2} E _inst_6 (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_3))))))))))
+but is expected to have type
+ forall {π : Type.{u1}} {E : Type.{u3}} {ΞΉ : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_3 : AddCommGroup.{u3} E] [_inst_4 : Module.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3)] [_inst_6 : TopologicalSpace.{u3} E] {S : Set.{u3} E} {Ξ΅ : ΞΉ -> π} {x : ΞΉ -> E} {l : Filter.{u2} ΞΉ}, (Bornology.IsVonNBounded.{u1, u3} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) _inst_6 S) -> (Filter.Eventually.{u2} ΞΉ (fun (n : ΞΉ) => Membership.mem.{u3, u3} E (Set.{u3} E) (Set.instMembershipSet.{u3} E) (x n) S) l) -> (Filter.Tendsto.{u2, u1} ΞΉ π Ξ΅ l (nhds.{u1} π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) (OfNat.ofNat.{u1} π 0 (Zero.toOfNat0.{u1} π (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))))))) -> (Filter.Tendsto.{u2, u3} ΞΉ E (HSMul.hSMul.{max u1 u2, max u3 u2, max u3 u2} (ΞΉ -> π) (ΞΉ -> E) (ΞΉ -> E) (instHSMul.{max u1 u2, max u3 u2} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u2, u1, u3} ΞΉ (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1077 : ΞΉ) => π) (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1080 : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toSMul.{u1, u3} π E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u1, u3} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u1, u3} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3))))) (Module.toMulActionWithZero.{u1, u3} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u3} E _inst_3) _inst_4)))))) Ξ΅ x) l (nhds.{u3} E _inst_6 (OfNat.ofNat.{u3} E 0 (Zero.toOfNat0.{u3} E (NegZeroClass.toZero.{u3} E (SubNegZeroMonoid.toNegZeroClass.{u3} E (SubtractionMonoid.toSubNegZeroMonoid.{u3} E (SubtractionCommMonoid.toSubtractionMonoid.{u3} E (AddCommGroup.toDivisionAddCommMonoid.{u3} E _inst_3)))))))))
+Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded.smul_tendsto_zero Bornology.IsVonNBounded.smul_tendsto_zeroβ'. -/
theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ β E} {l : Filter ΞΉ}
(hS : IsVonNBounded π S) (hxS : βαΆ n in l, x n β S) (hΞ΅ : Tendsto Ξ΅ l (π 0)) :
Tendsto (Ξ΅ β’ x) l (π 0) := by
@@ -161,6 +203,12 @@ theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ
exact hrS _ hnr.le hnS
#align bornology.is_vonN_bounded.smul_tendsto_zero Bornology.IsVonNBounded.smul_tendsto_zero
+/- warning: bornology.is_vonN_bounded_of_smul_tendsto_zero -> Bornology.isVonNBounded_of_smul_tendsto_zero is a dubious translation:
+lean 3 declaration is
+ forall {E : Type.{u1}} {ΞΉ : Type.{u2}} {π : Type.{u3}} [_inst_2 : NontriviallyNormedField.{u3} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u3, u1} π E (SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u2} ΞΉ} [_inst_8 : Filter.NeBot.{u2} ΞΉ l], (Filter.Eventually.{u2} ΞΉ (fun (n : ΞΉ) => Ne.{succ u3} π (Ξ΅ n) (OfNat.ofNat.{u3} π 0 (OfNat.mk.{u3} π 0 (Zero.zero.{u3} π (MulZeroClass.toHasZero.{u3} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} π (NonAssocRing.toNonUnitalNonAssocRing.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))))))) l) -> (forall {S : Set.{u1} E}, (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.Mem.{u1, u1} E (Set.{u1} E) (Set.hasMem.{u1} E) (x n) S) -> (Filter.Tendsto.{u2, u1} ΞΉ E (SMul.smul.{max u2 u3, max u2 u1} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u2, u3, u1} ΞΉ (fun (αΎ° : ΞΉ) => π) (fun (αΎ° : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (OfNat.mk.{u1} E 0 (Zero.zero.{u1} E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))))))))) -> (Bornology.IsVonNBounded.{u3, u1} π E (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))) (SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))) _inst_6 S))
+but is expected to have type
+ forall {E : Type.{u1}} {ΞΉ : Type.{u3}} {π : Type.{u2}} [_inst_2 : NontriviallyNormedField.{u2} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u3} ΞΉ} [_inst_8 : Filter.NeBot.{u3} ΞΉ l], (Filter.Eventually.{u3} ΞΉ (fun (n : ΞΉ) => Ne.{succ u2} π (Ξ΅ n) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))))) l) -> (forall {S : Set.{u1} E}, (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (x n) S) -> (Filter.Tendsto.{u3, u1} ΞΉ E (HSMul.hSMul.{max u3 u2, max u1 u3, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (ΞΉ -> E) (instHSMul.{max u3 u2, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u3, u2, u1} ΞΉ (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1368 : ΞΉ) => π) (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1404 : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3)))))))))) -> (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_6 S))
+Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_of_smul_tendsto_zero Bornology.isVonNBounded_of_smul_tendsto_zeroβ'. -/
theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l.ne_bot]
(hΞ΅ : βαΆ n in l, Ξ΅ n β 0) {S : Set E}
(H : β x : ΞΉ β E, (β n, x n β S) β Tendsto (Ξ΅ β’ x) l (π 0)) : IsVonNBounded π S :=
@@ -184,6 +232,12 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
(H (coe β x) fun n => (x n).2).Eventually (eventually_mem_set.mpr hV)]using fun n => id
#align bornology.is_vonN_bounded_of_smul_tendsto_zero Bornology.isVonNBounded_of_smul_tendsto_zero
+/- warning: bornology.is_vonN_bounded_iff_smul_tendsto_zero -> Bornology.isVonNBounded_iff_smul_tendsto_zero is a dubious translation:
+lean 3 declaration is
+ forall {E : Type.{u1}} {ΞΉ : Type.{u2}} {π : Type.{u3}} [_inst_2 : NontriviallyNormedField.{u3} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u3, u1} π E (SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u2} ΞΉ} [_inst_8 : Filter.NeBot.{u2} ΞΉ l], (Filter.Tendsto.{u2, u3} ΞΉ π Ξ΅ l (nhdsWithin.{u3} π (UniformSpace.toTopologicalSpace.{u3} π (PseudoMetricSpace.toUniformSpace.{u3} π (SeminormedRing.toPseudoMetricSpace.{u3} π (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))) (OfNat.ofNat.{u3} π 0 (OfNat.mk.{u3} π 0 (Zero.zero.{u3} π (MulZeroClass.toHasZero.{u3} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} π (NonAssocRing.toNonUnitalNonAssocRing.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))))))))) (HasCompl.compl.{u3} (Set.{u3} π) (BooleanAlgebra.toHasCompl.{u3} (Set.{u3} π) (Set.booleanAlgebra.{u3} π)) (Singleton.singleton.{u3, u3} π (Set.{u3} π) (Set.hasSingleton.{u3} π) (OfNat.ofNat.{u3} π 0 (OfNat.mk.{u3} π 0 (Zero.zero.{u3} π (MulZeroClass.toHasZero.{u3} π (NonUnitalNonAssocSemiring.toMulZeroClass.{u3} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u3} π (NonAssocRing.toNonUnitalNonAssocRing.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))))))))))))) -> (forall {S : Set.{u1} E}, Iff (Bornology.IsVonNBounded.{u3, u1} π E (SeminormedCommRing.toSemiNormedRing.{u3} π (NormedCommRing.toSeminormedCommRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))) (SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))) _inst_6 S) (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.Mem.{u1, u1} E (Set.{u1} E) (Set.hasMem.{u1} E) (x n) S) -> (Filter.Tendsto.{u2, u1} ΞΉ E (SMul.smul.{max u2 u3, max u2 u1} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u2, u3, u1} ΞΉ (fun (αΎ° : ΞΉ) => π) (fun (αΎ° : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toHasSmul.{u3, u1} π E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (SMulWithZero.toSmulZeroClass.{u3, u1} π E (MulZeroClass.toHasZero.{u3} π (MulZeroOneClass.toMulZeroClass.{u3} π (MonoidWithZero.toMulZeroOneClass.{u3} π (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (MulActionWithZero.toSMulWithZero.{u3, u1} π E (Semiring.toMonoidWithZero.{u3} π (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2)))))) (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (AddCommMonoid.toAddMonoid.{u1} E (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)))) (Module.toMulActionWithZero.{u3, u1} π E (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (OfNat.mk.{u1} E 0 (Zero.zero.{u1} E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (AddCommGroup.toAddGroup.{u1} E _inst_3))))))))))))
+but is expected to have type
+ forall {E : Type.{u1}} {ΞΉ : Type.{u3}} {π : Type.{u2}} [_inst_2 : NontriviallyNormedField.{u2} π] [_inst_3 : AddCommGroup.{u1} E] [_inst_5 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3)] [_inst_6 : TopologicalSpace.{u1} E] [_inst_7 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))) _inst_6] {Ξ΅ : ΞΉ -> π} {l : Filter.{u3} ΞΉ} [_inst_8 : Filter.NeBot.{u3} ΞΉ l], (Filter.Tendsto.{u3, u2} ΞΉ π Ξ΅ l (nhdsWithin.{u2} π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))))) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))))) (HasCompl.compl.{u2} (Set.{u2} π) (BooleanAlgebra.toHasCompl.{u2} (Set.{u2} π) (Set.instBooleanAlgebraSet.{u2} π)) (Singleton.singleton.{u2, u2} π (Set.{u2} π) (Set.instSingletonSet.{u2} π) (OfNat.ofNat.{u2} π 0 (Zero.toOfNat0.{u2} π (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))))))))) -> (forall {S : Set.{u1} E}, Iff (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) _inst_6 S) (forall (x : ΞΉ -> E), (forall (n : ΞΉ), Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) (x n) S) -> (Filter.Tendsto.{u3, u1} ΞΉ E (HSMul.hSMul.{max u3 u2, max u1 u3, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (ΞΉ -> E) (instHSMul.{max u3 u2, max u1 u3} (ΞΉ -> π) (ΞΉ -> E) (Pi.smul'.{u3, u2, u1} ΞΉ (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.1755 : ΞΉ) => π) (fun (a._@.Mathlib.Analysis.LocallyConvex.Bounded._hyg.3303 : ΞΉ) => E) (fun (i : ΞΉ) => SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_2))))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_3) _inst_5)))))) Ξ΅ x) l (nhds.{u1} E _inst_6 (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_3)))))))))))
+Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_iff_smul_tendsto_zero Bornology.isVonNBounded_iff_smul_tendsto_zeroβ'. -/
/-- Given any sequence `Ξ΅` of scalars which tends to `π[β ] 0`, we have that a set `S` is bounded
if and only if for any sequence `x : β β S`, `Ξ΅ β’ x` tends to 0. This actually works for any
indexing type `ΞΉ`, but in the special case `ΞΉ = β` we get the important fact that convergent
@@ -203,11 +257,23 @@ variable [NormedField π] [AddCommGroup E] [Module π E]
variable [TopologicalSpace E] [ContinuousSMul π E]
+/- warning: bornology.is_vonN_bounded_singleton -> Bornology.isVonNBounded_singleton is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4] (x : E), Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_4 (Singleton.singleton.{u2, u2} E (Set.{u2} E) (Set.hasSingleton.{u2} E) x)
+but is expected to have type
+ forall {π : Type.{u2}} {E : Type.{u1}} [_inst_1 : NormedField.{u2} π] [_inst_2 : AddCommGroup.{u1} E] [_inst_3 : Module.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2)] [_inst_4 : TopologicalSpace.{u1} E] [_inst_5 : ContinuousSMul.{u2, u1} π E (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1)))))) _inst_4] (x : E), Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π _inst_1))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E _inst_2))))) _inst_4 (Singleton.singleton.{u1, u1} E (Set.{u1} E) (Set.instSingletonSet.{u1} E) x)
+Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_singleton Bornology.isVonNBounded_singletonβ'. -/
/-- Singletons are bounded. -/
theorem isVonNBounded_singleton (x : E) : IsVonNBounded π ({x} : Set E) := fun V hV =>
(absorbent_nhds_zero hV).Absorbs
#align bornology.is_vonN_bounded_singleton Bornology.isVonNBounded_singleton
+/- warning: bornology.is_vonN_bounded_covers -> Bornology.isVonNBounded_covers is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4], Eq.{succ u2} (Set.{u2} E) (Set.unionβ.{u2} E (setOf.{u2} (Set.{u2} E) (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_4))) (Set.univ.{u2} E)
+but is expected to have type
+ forall {π : Type.{u1}} {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4], Eq.{succ u2} (Set.{u2} E) (Set.unionβ.{u2} E (setOf.{u2} (Set.{u2} E) (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) _inst_4))) (Set.univ.{u2} E)
+Case conversion may be inaccurate. Consider using '#align bornology.is_vonN_bounded_covers Bornology.isVonNBounded_coversβ'. -/
/-- The union of all bounded set is the whole space. -/
theorem isVonNBounded_covers : ββ setOf (IsVonNBounded π) = (Set.univ : Set E) :=
Set.eq_univ_iff_forall.mpr fun x =>
@@ -216,6 +282,7 @@ theorem isVonNBounded_covers : ββ setOf (IsVonNBounded π) = (Set.univ : S
variable (π E)
+#print Bornology.vonNBornology /-
-- See note [reducible non-instances]
/-- The von Neumann bornology defined by the von Neumann bounded sets.
@@ -226,9 +293,16 @@ def vonNBornology : Bornology E :=
Bornology.ofBounded (setOf (IsVonNBounded π)) (isVonNBounded_empty π E)
(fun _ hs _ ht => hs.Subset ht) (fun _ hs _ => hs.union) isVonNBounded_singleton
#align bornology.vonN_bornology Bornology.vonNBornology
+-/
variable {E}
+/- warning: bornology.is_bounded_iff_is_vonN_bounded -> Bornology.isBounded_iff_isVonNBounded is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4] {s : Set.{u2} E}, Iff (Bornology.IsBounded.{u2} E (Bornology.vonNBornology.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5) s) (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) _inst_4 s)
+but is expected to have type
+ forall (π : Type.{u1}) {E : Type.{u2}} [_inst_1 : NormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : TopologicalSpace.{u2} E] [_inst_5 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1)))))) _inst_4] {s : Set.{u2} E}, Iff (Bornology.IsBounded.{u2} E (Bornology.vonNBornology.{u1, u2} π E _inst_1 _inst_2 _inst_3 _inst_4 _inst_5) s) (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π _inst_1))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) _inst_4 s)
+Case conversion may be inaccurate. Consider using '#align bornology.is_bounded_iff_is_vonN_bounded Bornology.isBounded_iff_isVonNBoundedβ'. -/
@[simp]
theorem isBounded_iff_isVonNBounded {s : Set E} :
@IsBounded _ (vonNBornology π E) s β IsVonNBounded π s :=
@@ -245,6 +319,12 @@ variable (π) [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
variable [UniformSpace E] [UniformAddGroup E] [ContinuousSMul π E]
+/- warning: totally_bounded.is_vonN_bounded -> TotallyBounded.isVonNBounded is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : UniformSpace.{u2} E] [_inst_5 : UniformAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E _inst_4)] {s : Set.{u2} E}, (TotallyBounded.{u2} E _inst_4 s) -> (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (AddCommGroup.toAddGroup.{u2} E _inst_2))))) (UniformSpace.toTopologicalSpace.{u2} E _inst_4) s)
+but is expected to have type
+ forall (π : Type.{u1}) {E : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : AddCommGroup.{u2} E] [_inst_3 : Module.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2)] [_inst_4 : UniformSpace.{u2} E] [_inst_5 : UniformAddGroup.{u2} E _inst_4 (AddCommGroup.toAddGroup.{u2} E _inst_2)] [_inst_6 : ContinuousSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))) (UniformSpace.toTopologicalSpace.{u2} E _inst_4)] {s : Set.{u2} E}, (TotallyBounded.{u2} E _inst_4 s) -> (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E _inst_2) _inst_3)))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E _inst_2))))) (UniformSpace.toTopologicalSpace.{u2} E _inst_4) s)
+Case conversion may be inaccurate. Consider using '#align totally_bounded.is_vonN_bounded TotallyBounded.isVonNBoundedβ'. -/
/- ./././Mathport/Syntax/Translate/Expr.lean:177:8: unsupported: ambiguous notation -/
theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
Bornology.IsVonNBounded π s :=
@@ -278,17 +358,35 @@ variable (π E) [NontriviallyNormedField π] [SeminormedAddCommGroup E] [Nor
namespace NormedSpace
+/- warning: normed_space.is_vonN_bounded_ball -> NormedSpace.isVonNBounded_ball is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (r : Real), Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (Metric.ball.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))) r)
+but is expected to have type
+ forall (π : Type.{u2}) (E : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u2} π] [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2] (r : Real), Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (Metric.ball.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)
+Case conversion may be inaccurate. Consider using '#align normed_space.is_vonN_bounded_ball NormedSpace.isVonNBounded_ballβ'. -/
theorem isVonNBounded_ball (r : β) : Bornology.IsVonNBounded π (Metric.ball (0 : E) r) :=
by
rw [metric.nhds_basis_ball.is_vonN_bounded_basis_iff, β ball_normSeminorm π E]
exact fun Ξ΅ hΞ΅ => (normSeminorm π E).ball_zero_absorbs_ball_zero hΞ΅
#align normed_space.is_vonN_bounded_ball NormedSpace.isVonNBounded_ball
+/- warning: normed_space.is_vonN_bounded_closed_ball -> NormedSpace.isVonNBounded_closedBall is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (r : Real), Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))) r)
+but is expected to have type
+ forall (π : Type.{u2}) (E : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u2} π] [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2] (r : Real), Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)
+Case conversion may be inaccurate. Consider using '#align normed_space.is_vonN_bounded_closed_ball NormedSpace.isVonNBounded_closedBallβ'. -/
theorem isVonNBounded_closedBall (r : β) :
Bornology.IsVonNBounded π (Metric.closedBall (0 : E) r) :=
(isVonNBounded_ball π E (r + 1)).Subset (Metric.closedBall_subset_ball <| by linarith)
#align normed_space.is_vonN_bounded_closed_ball NormedSpace.isVonNBounded_closedBall
+/- warning: normed_space.is_vonN_bounded_iff -> NormedSpace.isVonNBounded_iff is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (s : Set.{u2} E), Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) s) (Bornology.IsBounded.{u2} E (PseudoMetricSpace.toBornology.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)) s)
+but is expected to have type
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (s : Set.{u2} E), Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) s) (Bornology.IsBounded.{u2} E (PseudoMetricSpace.toBornology.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)) s)
+Case conversion may be inaccurate. Consider using '#align normed_space.is_vonN_bounded_iff NormedSpace.isVonNBounded_iffβ'. -/
theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Bornology.IsBounded s :=
by
rw [β Metric.bounded_iff_isBounded, Metric.bounded_iff_subset_ball (0 : E)]
@@ -303,16 +401,29 @@ theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Borno
Β· exact fun β¨C, hCβ© => (is_vonN_bounded_closed_ball π E C).Subset hC
#align normed_space.is_vonN_bounded_iff NormedSpace.isVonNBounded_iff
+/- warning: normed_space.is_vonN_bounded_iff' -> NormedSpace.isVonNBounded_iff' is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (s : Set.{u2} E), Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) s) (Exists.{1} Real (fun (r : Real) => forall (x : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) x s) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u2} E (SeminormedAddCommGroup.toHasNorm.{u2} E _inst_2) x) r)))
+but is expected to have type
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (s : Set.{u2} E), Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSeminormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) s) (Exists.{1} Real (fun (r : Real) => forall (x : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) x s) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} E (SeminormedAddCommGroup.toNorm.{u2} E _inst_2) x) r)))
+Case conversion may be inaccurate. Consider using '#align normed_space.is_vonN_bounded_iff' NormedSpace.isVonNBounded_iff'β'. -/
theorem isVonNBounded_iff' (s : Set E) :
Bornology.IsVonNBounded π s β β r : β, β (x : E) (hx : x β s), βxβ β€ r := by
rw [NormedSpace.isVonNBounded_iff, β Metric.bounded_iff_isBounded, bounded_iff_forall_norm_le]
#align normed_space.is_vonN_bounded_iff' NormedSpace.isVonNBounded_iff'
+/- warning: normed_space.image_is_vonN_bounded_iff -> NormedSpace.image_isVonNBounded_iff is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) {E' : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] (f : E' -> E) (s : Set.{u3} E'), Iff (Bornology.IsVonNBounded.{u1, u2} π E (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))) (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (Set.image.{u3, u2} E' E f s)) (Exists.{1} Real (fun (r : Real) => forall (x : E'), (Membership.Mem.{u3, u3} E' (Set.{u3} E') (Set.hasMem.{u3} E') x s) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u2} E (SeminormedAddCommGroup.toHasNorm.{u2} E _inst_2) (f x)) r)))
+but is expected to have type
+ forall (π : Type.{u2}) (E : Type.{u1}) {E' : Type.{u3}} [_inst_1 : NontriviallyNormedField.{u2} π] [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2] (f : E' -> E) (s : Set.{u3} E'), Iff (Bornology.IsVonNBounded.{u2, u1} π E (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))) (SMulZeroClass.toSMul.{u2, u1} π E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u2, u1} π E (CommMonoidWithZero.toZero.{u2} π (CommGroupWithZero.toCommMonoidWithZero.{u2} π (Semifield.toCommGroupWithZero.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u2, u1} π E (Semiring.toMonoidWithZero.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1)))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (Module.toMulActionWithZero.{u2, u1} π E (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (NontriviallyNormedField.toNormedField.{u2} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π E (NontriviallyNormedField.toNormedField.{u2} π _inst_1) _inst_2 _inst_3))))) (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (Set.image.{u3, u1} E' E f s)) (Exists.{1} Real (fun (r : Real) => forall (x : E'), (Membership.mem.{u3, u3} E' (Set.{u3} E') (Set.instMembershipSet.{u3} E') x s) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u1} E (SeminormedAddCommGroup.toNorm.{u1} E _inst_2) (f x)) r)))
+Case conversion may be inaccurate. Consider using '#align normed_space.image_is_vonN_bounded_iff NormedSpace.image_isVonNBounded_iffβ'. -/
theorem image_isVonNBounded_iff (f : E' β E) (s : Set E') :
Bornology.IsVonNBounded π (f '' s) β β r : β, β (x : E') (hx : x β s), βf xβ β€ r := by
simp_rw [is_vonN_bounded_iff', Set.ball_image_iff]
#align normed_space.image_is_vonN_bounded_iff NormedSpace.image_isVonNBounded_iff
+#print NormedSpace.vonNBornology_eq /-
/-- In a normed space, the von Neumann bornology (`bornology.vonN_bornology`) is equal to the
metric bornology. -/
theorem vonNBornology_eq : Bornology.vonNBornology π E = PseudoMetricSpace.toBornology :=
@@ -322,9 +433,16 @@ theorem vonNBornology_eq : Bornology.vonNBornology π E = PseudoMetricSpace.to
rw [Bornology.isBounded_iff_isVonNBounded]
exact is_vonN_bounded_iff π E s
#align normed_space.vonN_bornology_eq NormedSpace.vonNBornology_eq
+-/
variable (π)
+/- warning: normed_space.is_bounded_iff_subset_smul_ball -> NormedSpace.isBounded_iff_subset_smul_ball is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] {s : Set.{u2} E}, Iff (Bornology.IsBounded.{u2} E (PseudoMetricSpace.toBornology.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)) s) (Exists.{succ u1} π (fun (a : π) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s (SMul.smul.{u1, u2} π (Set.{u2} E) (Set.smulSet.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3)))))) a (Metric.ball.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))))))
+but is expected to have type
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] {s : Set.{u2} E}, Iff (Bornology.IsBounded.{u2} E (PseudoMetricSpace.toBornology.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)) s) (Exists.{succ u1} π (fun (a : π) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s (HSMul.hSMul.{u1, u2, u2} π (Set.{u2} E) (Set.{u2} E) (instHSMul.{u1, u2} π (Set.{u2} E) (Set.smulSet.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))))) a (Metric.ball.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))))))
+Case conversion may be inaccurate. Consider using '#align normed_space.is_bounded_iff_subset_smul_ball NormedSpace.isBounded_iff_subset_smul_ballβ'. -/
theorem isBounded_iff_subset_smul_ball {s : Set E} :
Bornology.IsBounded s β β a : π, s β a β’ Metric.ball 0 1 :=
by
@@ -338,6 +456,12 @@ theorem isBounded_iff_subset_smul_ball {s : Set E} :
exact ((is_vonN_bounded_ball π E 1).image (a β’ 1 : E βL[π] E)).Subset ha
#align normed_space.is_bounded_iff_subset_smul_ball NormedSpace.isBounded_iff_subset_smul_ball
+/- warning: normed_space.is_bounded_iff_subset_smul_closed_ball -> NormedSpace.isBounded_iff_subset_smul_closedBall is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] {s : Set.{u2} E}, Iff (Bornology.IsBounded.{u2} E (PseudoMetricSpace.toBornology.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)) s) (Exists.{succ u1} π (fun (a : π) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.hasSubset.{u2} E) s (SMul.smul.{u1, u2} π (Set.{u2} E) (Set.smulSet.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3)))))) a (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))))))
+but is expected to have type
+ forall (π : Type.{u1}) (E : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u1} π] [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2] {s : Set.{u2} E}, Iff (Bornology.IsBounded.{u2} E (PseudoMetricSpace.toBornology.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2)) s) (Exists.{succ u1} π (fun (a : π) => HasSubset.Subset.{u2} (Set.{u2} E) (Set.instHasSubsetSet.{u2} E) s (HSMul.hSMul.{u1, u2, u2} π (Set.{u2} E) (Set.{u2} E) (instHSMul.{u1, u2} π (Set.{u2} E) (Set.smulSet.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1)))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (NontriviallyNormedField.toNormedField.{u1} π _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (NontriviallyNormedField.toNormedField.{u1} π _inst_1) _inst_2 _inst_3))))))) a (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))))) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))))))
+Case conversion may be inaccurate. Consider using '#align normed_space.is_bounded_iff_subset_smul_closed_ball NormedSpace.isBounded_iff_subset_smul_closedBallβ'. -/
theorem isBounded_iff_subset_smul_closedBall {s : Set E} :
Bornology.IsBounded s β β a : π, s β a β’ Metric.closedBall 0 1 :=
by
mathlib commit https://github.com/leanprover-community/mathlib/commit/2af0836443b4cfb5feda0df0051acdb398304931
@@ -52,13 +52,13 @@ open Topology Pointwise
namespace Bornology
-section SemiNormedRing
+section SeminormedRing
section Zero
variable (π)
-variable [SemiNormedRing π] [SMul π E] [Zero E]
+variable [SeminormedRing π] [SMul π E] [Zero E]
variable [TopologicalSpace E]
@@ -99,11 +99,11 @@ theorem IsVonNBounded.union {sβ sβ : Set E} (hsβ : IsVonNBounded π sβ
end Zero
-end SemiNormedRing
+end SeminormedRing
section MultipleTopologies
-variable [SemiNormedRing π] [AddCommGroup E] [Module π E]
+variable [SeminormedRing π] [AddCommGroup E] [Module π E]
/-- If a topology `t'` is coarser than `t`, then any set `s` that is bounded with respect to
`t` is bounded with respect to `t'`. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
deprecated
attributeWhy these changes?
@@ -84,7 +84,7 @@ theorem _root_.Filter.HasBasis.isVonNBounded_iff {q : ΞΉ β Prop} {s : ΞΉ β S
exact (hA i hi).mono_left hV
#align filter.has_basis.is_vonN_bounded_basis_iff Filter.HasBasis.isVonNBounded_iff
-@[deprecated] -- since 12 January 2024
+@[deprecated] -- since 2024-01-12
alias _root_.Filter.HasBasis.isVonNBounded_basis_iff := Filter.HasBasis.isVonNBounded_iff
/-- Subsets of bounded sets are bounded. -/
@@ -342,7 +342,7 @@ theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
tendsto_add
rw [add_zero] at h
have h' := (nhds_basis_balanced π E).prod (nhds_basis_balanced π E)
- simp_rw [β nhds_prod_eq, id.def] at h'
+ simp_rw [β nhds_prod_eq, id] at h'
rcases h.basis_left h' U hU with β¨x, hx, h''β©
rcases hs x.snd hx.2.1 with β¨t, ht, hsβ©
refine Absorbs.mono_right ?_ hs
This is a generalization of Mathlib/Algebra/Module/LinearMap/Pointwise.lean
from LinearMapClass
to MulActionHomClass
.
The preexisting lemmas are generalized.
image_smul_setββ
: under a Ο
-equivariant map,
one has h '' (c β’ s) = (Ο c) β’ h '' s
.
preimage_smul_setββ'
is a general version of the equality h β»ΒΉ' (Ο c β’ s) = c β’ hβ»ΒΉ' s
. It requires that c
acts surjectively and Ο c
acts injectively.
It is provided with specific versions:
preimage_smul_setββ_of_units
requires that c
and Ο c
are units
MonoidHom.preimage_smul_setββ
requires that Ο
is a MonoidHom
and c
is a unit
MonoidHomClass.preimage_smul_setββ
requires that Ο
belongs to a MonoidHomClass
and that c
is a unit
Group.preimage_smul_setββ
requires that the types of c
and Ο c
are groups
image_smul_set
, preimage_smul_set
and Group.preimage_smul_set
are
the variants when Ο
is the identity.
@@ -3,7 +3,7 @@ Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll
-/
-import Mathlib.Algebra.Module.LinearMap.Pointwise
+import Mathlib.GroupTheory.GroupAction.Pointwise
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.LocallyConvex.BalancedCoreHull
import Mathlib.Analysis.Seminorm
Purely automatic replacement. If this is in any way controversial; I'm happy to just close this PR.
@@ -310,7 +310,7 @@ variable (π E)
/-- The von Neumann bornology defined by the von Neumann bounded sets.
Note that this is not registered as an instance, in order to avoid diamonds with the
-metric bornology.-/
+metric bornology. -/
@[reducible]
def vonNBornology : Bornology E :=
Bornology.ofBounded (setOf (IsVonNBounded π)) (isVonNBounded_empty π E)
Empty lines were removed by executing the following Python script twice
import os
import re
# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
for filename in files:
if filename.endswith('.lean'):
file_path = os.path.join(dir_path, filename)
# Open the file and read its contents
with open(file_path, 'r') as file:
content = file.read()
# Use a regular expression to replace sequences of "variable" lines separated by empty lines
# with sequences without empty lines
modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)
# Write the modified content back to the file
with open(file_path, 'w') as file:
file.write(modified_content)
@@ -57,9 +57,7 @@ section SeminormedRing
section Zero
variable (π)
-
variable [SeminormedRing π] [SMul π E] [Zero E]
-
variable [TopologicalSpace E]
/-- A set `s` is von Neumann bounded if every neighborhood of 0 absorbs `s`. -/
@@ -232,7 +230,6 @@ end sequence
section NormedField
variable [NormedField π] [AddCommGroup E] [Module π E]
-
variable [TopologicalSpace E] [ContinuousSMul π E]
/-- Singletons are bounded. -/
@@ -335,7 +332,6 @@ end Bornology
section UniformAddGroup
variable (π) [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
-
variable [UniformSpace E] [UniformAddGroup E] [ContinuousSMul π E]
theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
ball
and bex
from lemma names (#10816)
ball
for "bounded forall" and bex
for "bounded exists" are from experience very confusing abbreviations. This PR renames them to forall_mem
and exists_mem
in the few Set
lemma names that mention them.
Also deprecate ball_image_of_ball
, mem_image_elim
, mem_image_elim_on
since those lemmas are duplicates of the renamed lemmas (apart from argument order and implicitness, which I am also fixing by making the binder in the RHS of forall_mem_image
semi-implicit), have obscure names and are completely unused.
@@ -396,7 +396,7 @@ theorem isVonNBounded_iff' (s : Set E) :
theorem image_isVonNBounded_iff (f : E' β E) (s : Set E') :
Bornology.IsVonNBounded π (f '' s) β β r : β, β x β s, βf xβ β€ r := by
- simp_rw [isVonNBounded_iff', Set.ball_image_iff]
+ simp_rw [isVonNBounded_iff', Set.forall_mem_image]
#align normed_space.image_is_vonN_bounded_iff NormedSpace.image_isVonNBounded_iff
/-- In a normed space, the von Neumann bornology (`Bornology.vonNBornology`) is equal to the
isVonNBounded_iff_tendsto_smallSets_nhds
(#10776)
absorbs_iff_eventually_nhds_zero
,
isVonNBounded_iff_tendsto_smallSets_nhds
,
and isVonNBounded_pi_iff
;NormedField
to NormedDivisionRing
;@@ -45,9 +45,8 @@ von Neumann-bounded sets.
variable {π π' E E' F ΞΉ : Type*}
-open Set Filter
-
-open Topology Pointwise
+open Set Filter Function
+open scoped Topology Pointwise
set_option linter.uppercaseLean3 false
@@ -151,6 +150,22 @@ theorem IsVonNBounded.of_topologicalSpace_le {t t' : TopologicalSpace E} (h : t
end MultipleTopologies
+lemma isVonNBounded_iff_tendsto_smallSets_nhds {π E : Type*} [NormedDivisionRing π]
+ [AddCommGroup E] [Module π E] [TopologicalSpace E] {S : Set E} :
+ IsVonNBounded π S β Tendsto (Β· β’ S : π β Set E) (π 0) (π 0).smallSets := by
+ rw [tendsto_smallSets_iff]
+ refine forallβ_congr fun V hV β¦ ?_
+ simp only [absorbs_iff_eventually_nhds_zero (mem_of_mem_nhds hV), mapsTo', image_smul]
+
+alias β¨IsVonNBounded.tendsto_smallSets_nhds, _β© := isVonNBounded_iff_tendsto_smallSets_nhds
+
+lemma isVonNBounded_pi_iff {π ΞΉ : Type*} {E : ΞΉ β Type*} [NormedDivisionRing π]
+ [β i, AddCommGroup (E i)] [β i, Module π (E i)] [β i, TopologicalSpace (E i)]
+ {S : Set (β i, E i)} : IsVonNBounded π S β β i, IsVonNBounded π (eval i '' S) := by
+ simp only [isVonNBounded_iff_tendsto_smallSets_nhds, nhds_pi, Filter.pi, smallSets_iInf,
+ smallSets_comap, tendsto_iInf, tendsto_lift', comp_apply, mem_powerset_iff, β image_subset_iff,
+ β image_smul, image_image, tendsto_smallSets_iff]; rfl
+
section Image
variable {πβ πβ : Type*} [NormedDivisionRing πβ] [NormedDivisionRing πβ] [AddCommGroup E]
@@ -159,21 +174,12 @@ variable {πβ πβ : Type*} [NormedDivisionRing πβ] [NormedDivisionR
/-- A continuous linear image of a bounded set is bounded. -/
theorem IsVonNBounded.image {Ο : πβ β+* πβ} [RingHomSurjective Ο] [RingHomIsometric Ο] {s : Set E}
(hs : IsVonNBounded πβ s) (f : E βSL[Ο] F) : IsVonNBounded πβ (f '' s) := by
- let Ο' := RingEquiv.ofBijective Ο β¨Ο.injective, Ο.surjectiveβ©
have Ο_iso : Isometry Ο := AddMonoidHomClass.isometry_of_norm Ο fun x => RingHomIsometric.is_iso
- have Ο'_symm_iso : Isometry Ο'.symm := Ο_iso.right_inv Ο'.right_inv
- have f_tendsto_zero := f.continuous.tendsto 0
- rw [map_zero] at f_tendsto_zero
- intro V hV
- rcases (hs (f_tendsto_zero hV)).exists_pos with β¨r, hrpos, hrβ©
- refine' .of_norm β¨r, fun a ha => _β©
- rw [β Ο'.apply_symm_apply a]
- have hanz : a β 0 := norm_pos_iff.mp (hrpos.trans_le ha)
- have : Ο'.symm a β 0 := (map_ne_zero Ο'.symm.toRingHom).mpr hanz
- change _ β Ο _ β’ _
- rw [Set.image_subset_iff, preimage_smul_setββ _ _ _ f this.isUnit]
- refine' hr (Ο'.symm a) _
- rwa [Ο'_symm_iso.norm_map_of_map_zero (map_zero _)]
+ have : map Ο (π 0) = π 0 := by
+ rw [Ο_iso.embedding.map_nhds_eq, Ο.surjective.range_eq, nhdsWithin_univ, map_zero]
+ have hfβ : Tendsto f (π 0) (π 0) := f.continuous.tendsto' 0 0 (map_zero f)
+ simp only [isVonNBounded_iff_tendsto_smallSets_nhds, β this, tendsto_map'_iff] at hs β’
+ simpa only [comp_def, image_smul_setββ _ _ Ο f] using hfβ.image_smallSets.comp hs
#align bornology.is_vonN_bounded.image Bornology.IsVonNBounded.image
end Image
@@ -185,16 +191,8 @@ variable {π : Type*} [NormedField π] [NontriviallyNormedField π] [AddCo
theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ β E} {l : Filter ΞΉ}
(hS : IsVonNBounded π S) (hxS : βαΆ n in l, x n β S) (hΞ΅ : Tendsto Ξ΅ l (π 0)) :
- Tendsto (Ξ΅ β’ x) l (π 0) := by
- rw [tendsto_def] at *
- intro V hV
- rcases (hS hV).exists_pos with β¨r, r_pos, hrSβ©
- filter_upwards [hxS, hΞ΅ _ (Metric.ball_mem_nhds 0 <| inv_pos.mpr r_pos)] with n hnS hnr
- by_cases hΞ΅ : Ξ΅ n = 0
- Β· simp [hΞ΅, mem_of_mem_nhds hV]
- Β· rw [mem_preimage, mem_ball_zero_iff, lt_inv (norm_pos_iff.mpr hΞ΅) r_pos, β norm_inv] at hnr
- rw [mem_preimage, Pi.smul_apply', β Set.mem_inv_smul_set_iffβ hΞ΅]
- exact hrS _ hnr.le hnS
+ Tendsto (Ξ΅ β’ x) l (π 0) :=
+ (hS.tendsto_smallSets_nhds.comp hΞ΅).of_smallSets <| hxS.mono fun _ β¦ smul_mem_smul_set
#align bornology.is_vonN_bounded.smul_tendsto_zero Bornology.IsVonNBounded.smul_tendsto_zero
theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l.NeBot]
@@ -102,6 +102,40 @@ theorem IsVonNBounded.union {sβ sβ : Set E} (hsβ : IsVonNBounded π sβ
end Zero
+section ContinuousAdd
+
+variable [SeminormedRing π] [AddZeroClass E] [TopologicalSpace E] [ContinuousAdd E]
+ [DistribSMul π E] {s t : Set E}
+
+protected theorem IsVonNBounded.add (hs : IsVonNBounded π s) (ht : IsVonNBounded π t) :
+ IsVonNBounded π (s + t) := fun U hU β¦ by
+ rcases exists_open_nhds_zero_add_subset hU with β¨V, hVo, hV, hVUβ©
+ exact ((hs <| hVo.mem_nhds hV).add (ht <| hVo.mem_nhds hV)).mono_left hVU
+
+end ContinuousAdd
+
+section TopologicalAddGroup
+
+variable [SeminormedRing π] [AddGroup E] [TopologicalSpace E] [TopologicalAddGroup E]
+ [DistribMulAction π E] {s t : Set E}
+
+protected theorem IsVonNBounded.neg (hs : IsVonNBounded π s) : IsVonNBounded π (-s) := fun U hU β¦ by
+ rw [β neg_neg U]
+ exact (hs <| neg_mem_nhds_zero _ hU).neg_neg
+
+@[simp]
+theorem isVonNBounded_neg : IsVonNBounded π (-s) β IsVonNBounded π s :=
+ β¨fun h β¦ neg_neg s βΈ h.neg, fun h β¦ h.negβ©
+
+alias β¨IsVonNBounded.of_neg, _β© := isVonNBounded_neg
+
+protected theorem IsVonNBounded.sub (hs : IsVonNBounded π s) (ht : IsVonNBounded π t) :
+ IsVonNBounded π (s - t) := by
+ rw [sub_eq_add_neg]
+ exact hs.add ht.neg
+
+end TopologicalAddGroup
+
end SeminormedRing
section MultipleTopologies
@@ -208,6 +242,67 @@ theorem isVonNBounded_singleton (x : E) : IsVonNBounded π ({x} : Set E) := fu
(absorbent_nhds_zero hV).absorbs
#align bornology.is_vonN_bounded_singleton Bornology.isVonNBounded_singleton
+section ContinuousAdd
+
+variable [ContinuousAdd E] {s t : Set E}
+
+protected theorem IsVonNBounded.vadd (hs : IsVonNBounded π s) (x : E) :
+ IsVonNBounded π (x +α΅₯ s) := by
+ rw [β singleton_vadd]
+ -- TODO: dot notation timeouts in the next line
+ exact IsVonNBounded.add (isVonNBounded_singleton x) hs
+
+@[simp]
+theorem isVonNBounded_vadd (x : E) : IsVonNBounded π (x +α΅₯ s) β IsVonNBounded π s :=
+ β¨fun h β¦ by simpa using h.vadd (-x), fun h β¦ h.vadd xβ©
+
+theorem IsVonNBounded.of_add_right (hst : IsVonNBounded π (s + t)) (hs : s.Nonempty) :
+ IsVonNBounded π t :=
+ let β¨x, hxβ© := hs
+ (isVonNBounded_vadd x).mp <| hst.subset <| image_subset_image2_right hx
+
+theorem IsVonNBounded.of_add_left (hst : IsVonNBounded π (s + t)) (ht : t.Nonempty) :
+ IsVonNBounded π s :=
+ ((add_comm s t).subst hst).of_add_right ht
+
+theorem isVonNBounded_add_of_nonempty (hs : s.Nonempty) (ht : t.Nonempty) :
+ IsVonNBounded π (s + t) β IsVonNBounded π s β§ IsVonNBounded π t :=
+ β¨fun h β¦ β¨h.of_add_left ht, h.of_add_right hsβ©, and_imp.2 IsVonNBounded.addβ©
+
+theorem isVonNBounded_add :
+ IsVonNBounded π (s + t) β s = β
β¨ t = β
β¨ IsVonNBounded π s β§ IsVonNBounded π t := by
+ rcases s.eq_empty_or_nonempty with rfl | hs; Β· simp
+ rcases t.eq_empty_or_nonempty with rfl | ht; Β· simp
+ simp [hs.ne_empty, ht.ne_empty, isVonNBounded_add_of_nonempty hs ht]
+
+@[simp]
+theorem isVonNBounded_add_self : IsVonNBounded π (s + s) β IsVonNBounded π s := by
+ rcases s.eq_empty_or_nonempty with rfl | hs <;> simp [isVonNBounded_add_of_nonempty, *]
+
+theorem IsVonNBounded.of_sub_left (hst : IsVonNBounded π (s - t)) (ht : t.Nonempty) :
+ IsVonNBounded π s :=
+ ((sub_eq_add_neg s t).subst hst).of_add_left ht.neg
+
+end ContinuousAdd
+
+section TopologicalAddGroup
+
+variable [TopologicalAddGroup E] {s t : Set E}
+
+theorem IsVonNBounded.of_sub_right (hst : IsVonNBounded π (s - t)) (hs : s.Nonempty) :
+ IsVonNBounded π t :=
+ (((sub_eq_add_neg s t).subst hst).of_add_right hs).of_neg
+
+theorem isVonNBounded_sub_of_nonempty (hs : s.Nonempty) (ht : t.Nonempty) :
+ IsVonNBounded π (s - t) β IsVonNBounded π s β§ IsVonNBounded π t := by
+ simp [sub_eq_add_neg, isVonNBounded_add_of_nonempty, hs, ht]
+
+theorem isVonNBounded_sub :
+ IsVonNBounded π (s - t) β s = β
β¨ t = β
β¨ IsVonNBounded π s β§ IsVonNBounded π t := by
+ simp [sub_eq_add_neg, isVonNBounded_add]
+
+end TopologicalAddGroup
+
/-- The union of all bounded set is the whole space. -/
theorem isVonNBounded_covers : ββ setOf (IsVonNBounded π) = (Set.univ : Set E) :=
Set.eq_univ_iff_forall.mpr fun x =>
NormedSpace.Real
(#10206)
This way we don't switch between general normed spaces and real normed spaces back and forth throughout the file.
@@ -10,6 +10,7 @@ import Mathlib.Analysis.Seminorm
import Mathlib.Topology.Bornology.Basic
import Mathlib.Topology.Algebra.UniformGroup
import Mathlib.Topology.UniformSpace.Cauchy
+import Mathlib.Topology.Algebra.Module.Basic
#align_import analysis.locally_convex.bounded from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
@@ -3,6 +3,7 @@ Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll
-/
+import Mathlib.Algebra.Module.LinearMap.Pointwise
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.LocallyConvex.BalancedCoreHull
import Mathlib.Analysis.Seminorm
Absorbs
(#9676)
Redefine Absorbs
and Absorbent
in terms of the cobounded
filter.
@@ -69,7 +69,7 @@ def IsVonNBounded (s : Set E) : Prop :=
variable (E)
@[simp]
-theorem isVonNBounded_empty : IsVonNBounded π (β
: Set E) := fun _ _ => absorbs_empty
+theorem isVonNBounded_empty : IsVonNBounded π (β
: Set E) := fun _ _ => Absorbs.empty
#align bornology.is_vonN_bounded_empty Bornology.isVonNBounded_empty
variable {π E}
@@ -129,8 +129,8 @@ theorem IsVonNBounded.image {Ο : πβ β+* πβ} [RingHomSurjective Ο]
have f_tendsto_zero := f.continuous.tendsto 0
rw [map_zero] at f_tendsto_zero
intro V hV
- rcases hs (f_tendsto_zero hV) with β¨r, hrpos, hrβ©
- refine' β¨r, hrpos, fun a ha => _β©
+ rcases (hs (f_tendsto_zero hV)).exists_pos with β¨r, hrpos, hrβ©
+ refine' .of_norm β¨r, fun a ha => _β©
rw [β Ο'.apply_symm_apply a]
have hanz : a β 0 := norm_pos_iff.mp (hrpos.trans_le ha)
have : Ο'.symm a β 0 := (map_ne_zero Ο'.symm.toRingHom).mpr hanz
@@ -152,7 +152,7 @@ theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ
Tendsto (Ξ΅ β’ x) l (π 0) := by
rw [tendsto_def] at *
intro V hV
- rcases hS hV with β¨r, r_pos, hrSβ©
+ rcases (hS hV).exists_pos with β¨r, r_pos, hrSβ©
filter_upwards [hxS, hΞ΅ _ (Metric.ball_mem_nhds 0 <| inv_pos.mpr r_pos)] with n hnS hnr
by_cases hΞ΅ : Ξ΅ n = 0
Β· simp [hΞ΅, mem_of_mem_nhds hV]
@@ -169,9 +169,9 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
rcases H' with β¨V, β¨hV, hVbβ©, hVSβ©
have : βαΆ n in l, β x : S, Ξ΅ n β’ (x : E) β V := by
filter_upwards [hΞ΅] with n hn
- rw [Absorbs] at hVS
+ rw [absorbs_iff_norm] at hVS
push_neg at hVS
- rcases hVS _ (norm_pos_iff.mpr <| inv_ne_zero hn) with β¨a, haΞ΅, haSβ©
+ rcases hVS β(Ξ΅ n)β»ΒΉβ with β¨a, haΞ΅, haSβ©
rcases Set.not_subset.mp haS with β¨x, hxS, hxβ©
refine' β¨β¨x, hxSβ©, fun hnx => _β©
rw [β Set.mem_inv_smul_set_iffβ hn] at hnx
@@ -254,13 +254,13 @@ theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
simp_rw [β nhds_prod_eq, id.def] at h'
rcases h.basis_left h' U hU with β¨x, hx, h''β©
rcases hs x.snd hx.2.1 with β¨t, ht, hsβ©
- refine' Absorbs.mono_right _ hs
- rw [ht.absorbs_iUnion]
+ refine Absorbs.mono_right ?_ hs
+ rw [ht.absorbs_biUnion]
have hx_fstsnd : x.fst + x.snd β U := add_subset_iff.mpr fun z1 hz1 z2 hz2 β¦
h'' <| mk_mem_prod hz1 hz2
- refine' fun y _ => Absorbs.mono_left _ hx_fstsnd
- rw [β Set.singleton_vadd, vadd_eq_add]
- exact (absorbent_nhds_zero hx.1.1).absorbs.add hx.2.2.absorbs_self
+ refine fun y _ => Absorbs.mono_left ?_ hx_fstsnd
+ -- TODO: with dot notation, Lean timeouts on the next line. Why?
+ exact Absorbent.vadd_absorbs (absorbent_nhds_zero hx.1.1) hx.2.2.absorbs_self
#align totally_bounded.is_vonN_bounded TotallyBounded.isVonNBounded
end UniformAddGroup
@@ -285,7 +285,7 @@ theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Borno
rw [Metric.isBounded_iff_subset_closedBall (0 : E)]
constructor
Β· intro h
- rcases h (Metric.ball_mem_nhds 0 zero_lt_one) with β¨Ο, hΟ, hΟballβ©
+ rcases (h (Metric.ball_mem_nhds 0 zero_lt_one)).exists_pos with β¨Ο, hΟ, hΟballβ©
rcases NormedField.exists_lt_norm π Ο with β¨a, haβ©
specialize hΟball a ha.le
rw [β ball_normSeminorm π E, Seminorm.smul_ball_zero (norm_pos_iff.1 <| hΟ.trans ha),
@@ -318,7 +318,7 @@ theorem isBounded_iff_subset_smul_ball {s : Set E} :
rw [β isVonNBounded_iff π]
constructor
Β· intro h
- rcases h (Metric.ball_mem_nhds 0 zero_lt_one) with β¨Ο, _, hΟballβ©
+ rcases (h (Metric.ball_mem_nhds 0 zero_lt_one)).exists_pos with β¨Ο, _, hΟballβ©
rcases NormedField.exists_lt_norm π Ο with β¨a, haβ©
exact β¨a, hΟball a ha.leβ©
Β· rintro β¨a, haβ©
Rename Filter.HasBasis.isVonNBounded_basis_iff
to Filter.HasBasis.isVonNBounded_iff
.
It already has basis
in the namespace.
@@ -78,12 +78,15 @@ theorem isVonNBounded_iff (s : Set E) : IsVonNBounded π s β β V β π
Iff.rfl
#align bornology.is_vonN_bounded_iff Bornology.isVonNBounded_iff
-theorem _root_.Filter.HasBasis.isVonNBounded_basis_iff {q : ΞΉ β Prop} {s : ΞΉ β Set E} {A : Set E}
+theorem _root_.Filter.HasBasis.isVonNBounded_iff {q : ΞΉ β Prop} {s : ΞΉ β Set E} {A : Set E}
(h : (π (0 : E)).HasBasis q s) : IsVonNBounded π A β β i, q i β Absorbs π (s i) A := by
refine' β¨fun hA i hi => hA (h.mem_of_mem hi), fun hA V hV => _β©
rcases h.mem_iff.mp hV with β¨i, hi, hVβ©
exact (hA i hi).mono_left hV
-#align filter.has_basis.is_vonN_bounded_basis_iff Filter.HasBasis.isVonNBounded_basis_iff
+#align filter.has_basis.is_vonN_bounded_basis_iff Filter.HasBasis.isVonNBounded_iff
+
+@[deprecated] -- since 12 January 2024
+alias _root_.Filter.HasBasis.isVonNBounded_basis_iff := Filter.HasBasis.isVonNBounded_iff
/-- Subsets of bounded sets are bounded. -/
theorem IsVonNBounded.subset {sβ sβ : Set E} (h : sβ β sβ) (hsβ : IsVonNBounded π sβ) :
@@ -161,7 +164,7 @@ theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ
theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l.NeBot]
(hΞ΅ : βαΆ n in l, Ξ΅ n β 0) {S : Set E}
(H : β x : ΞΉ β E, (β n, x n β S) β Tendsto (Ξ΅ β’ x) l (π 0)) : IsVonNBounded π S := by
- rw [(nhds_basis_balanced π E).isVonNBounded_basis_iff]
+ rw [(nhds_basis_balanced π E).isVonNBounded_iff]
by_contra! H'
rcases H' with β¨V, β¨hV, hVbβ©, hVSβ©
have : βαΆ n in l, β x : S, Ξ΅ n β’ (x : E) β V := by
@@ -269,7 +272,7 @@ variable (π E) [NontriviallyNormedField π] [SeminormedAddCommGroup E] [Nor
namespace NormedSpace
theorem isVonNBounded_ball (r : β) : Bornology.IsVonNBounded π (Metric.ball (0 : E) r) := by
- rw [Metric.nhds_basis_ball.isVonNBounded_basis_iff, β ball_normSeminorm π E]
+ rw [Metric.nhds_basis_ball.isVonNBounded_iff, β ball_normSeminorm π E]
exact fun Ξ΅ hΞ΅ => (normSeminorm π E).ball_zero_absorbs_ball_zero hΞ΅
#align normed_space.is_vonN_bounded_ball NormedSpace.isVonNBounded_ball
Set.image2_subset_iff
(#9206)
Use Set.image2_subset_iff
, Set.mul_subset_iff
, and
Set.add_subset_iff
instead of rintro
s.
Also protect some *.image2
lemmas.
@@ -253,11 +253,8 @@ theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
rcases hs x.snd hx.2.1 with β¨t, ht, hsβ©
refine' Absorbs.mono_right _ hs
rw [ht.absorbs_iUnion]
- have hx_fstsnd : x.fst + x.snd β U := by
- intro z hz
- rcases Set.mem_add.mp hz with β¨z1, z2, hz1, hz2, hzβ©
- have hz' : (z1, z2) β x.fst ΓΛ’ x.snd := β¨hz1, hz2β©
- simpa only [hz] using h'' hz'
+ have hx_fstsnd : x.fst + x.snd β U := add_subset_iff.mpr fun z1 hz1 z2 hz2 β¦
+ h'' <| mk_mem_prod hz1 hz2
refine' fun y _ => Absorbs.mono_left _ hx_fstsnd
rw [β Set.singleton_vadd, vadd_eq_add]
exact (absorbent_nhds_zero hx.1.1).absorbs.add hx.2.2.absorbs_self
β x β s, _
instead of β (x) (_ : x β s), _
(#9184)
Search for [ββ].*(_
and manually replace some occurrences with more readable versions.
In case of β
, the new expressions are defeq to the old ones.
In case of β
, they differ by exists_prop
.
In some rare cases, golf proofs that needed fixing.
@@ -79,7 +79,7 @@ theorem isVonNBounded_iff (s : Set E) : IsVonNBounded π s β β V β π
#align bornology.is_vonN_bounded_iff Bornology.isVonNBounded_iff
theorem _root_.Filter.HasBasis.isVonNBounded_basis_iff {q : ΞΉ β Prop} {s : ΞΉ β Set E} {A : Set E}
- (h : (π (0 : E)).HasBasis q s) : IsVonNBounded π A β β (i) (_ : q i), Absorbs π (s i) A := by
+ (h : (π (0 : E)).HasBasis q s) : IsVonNBounded π A β β i, q i β Absorbs π (s i) A := by
refine' β¨fun hA i hi => hA (h.mem_of_mem hi), fun hA V hV => _β©
rcases h.mem_iff.mp hV with β¨i, hi, hVβ©
exact (hA i hi).mono_left hV
@@ -295,12 +295,12 @@ theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Borno
#align normed_space.is_vonN_bounded_iff NormedSpace.isVonNBounded_iff
theorem isVonNBounded_iff' (s : Set E) :
- Bornology.IsVonNBounded π s β β r : β, β (x : E) (_ : x β s), βxβ β€ r := by
+ Bornology.IsVonNBounded π s β β r : β, β x β s, βxβ β€ r := by
rw [NormedSpace.isVonNBounded_iff, isBounded_iff_forall_norm_le]
#align normed_space.is_vonN_bounded_iff' NormedSpace.isVonNBounded_iff'
theorem image_isVonNBounded_iff (f : E' β E) (s : Set E') :
- Bornology.IsVonNBounded π (f '' s) β β r : β, β (x : E') (_ : x β s), βf xβ β€ r := by
+ Bornology.IsVonNBounded π (f '' s) β β r : β, β x β s, βf xβ β€ r := by
simp_rw [isVonNBounded_iff', Set.ball_image_iff]
#align normed_space.image_is_vonN_bounded_iff NormedSpace.image_isVonNBounded_iff
@@ -162,7 +162,7 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
(hΞ΅ : βαΆ n in l, Ξ΅ n β 0) {S : Set E}
(H : β x : ΞΉ β E, (β n, x n β S) β Tendsto (Ξ΅ β’ x) l (π 0)) : IsVonNBounded π S := by
rw [(nhds_basis_balanced π E).isVonNBounded_basis_iff]
- by_contra' H'
+ by_contra! H'
rcases H' with β¨V, β¨hV, hVbβ©, hVSβ©
have : βαΆ n in l, β x : S, Ξ΅ n β’ (x : E) β V := by
filter_upwards [hΞ΅] with n hn
filter_upwards
(#7719)
mathport was forgetting a space in filter_upwards [...]with
instead of filter_upwards [...] with
.
@@ -165,7 +165,7 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
by_contra' H'
rcases H' with β¨V, β¨hV, hVbβ©, hVSβ©
have : βαΆ n in l, β x : S, Ξ΅ n β’ (x : E) β V := by
- filter_upwards [hΞ΅]with n hn
+ filter_upwards [hΞ΅] with n hn
rw [Absorbs] at hVS
push_neg at hVS
rcases hVS _ (norm_pos_iff.mpr <| inv_ne_zero hn) with β¨a, haΞ΅, haSβ©
Metric.Bounded
(#7240)
Use Bornology.IsBounded
instead.
@@ -282,7 +282,7 @@ theorem isVonNBounded_closedBall (r : β) :
#align normed_space.is_vonN_bounded_closed_ball NormedSpace.isVonNBounded_closedBall
theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Bornology.IsBounded s := by
- rw [β Metric.bounded_iff_isBounded, Metric.bounded_iff_subset_ball (0 : E)]
+ rw [Metric.isBounded_iff_subset_closedBall (0 : E)]
constructor
Β· intro h
rcases h (Metric.ball_mem_nhds 0 zero_lt_one) with β¨Ο, hΟ, hΟballβ©
@@ -296,7 +296,7 @@ theorem isVonNBounded_iff (s : Set E) : Bornology.IsVonNBounded π s β Borno
theorem isVonNBounded_iff' (s : Set E) :
Bornology.IsVonNBounded π s β β r : β, β (x : E) (_ : x β s), βxβ β€ r := by
- rw [NormedSpace.isVonNBounded_iff, β Metric.bounded_iff_isBounded, bounded_iff_forall_norm_le]
+ rw [NormedSpace.isVonNBounded_iff, isBounded_iff_forall_norm_le]
#align normed_space.is_vonN_bounded_iff' NormedSpace.isVonNBounded_iff'
theorem image_isVonNBounded_iff (f : E' β E) (s : Set E') :
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -41,7 +41,7 @@ von Neumann-bounded sets.
-/
-variable {π π' E E' F ΞΉ : Type _}
+variable {π π' E E' F ΞΉ : Type*}
open Set Filter
@@ -114,7 +114,7 @@ end MultipleTopologies
section Image
-variable {πβ πβ : Type _} [NormedDivisionRing πβ] [NormedDivisionRing πβ] [AddCommGroup E]
+variable {πβ πβ : Type*} [NormedDivisionRing πβ] [NormedDivisionRing πβ] [AddCommGroup E]
[Module πβ E] [AddCommGroup F] [Module πβ F] [TopologicalSpace E] [TopologicalSpace F]
/-- A continuous linear image of a bounded set is bounded. -/
@@ -141,7 +141,7 @@ end Image
section sequence
-variable {π : Type _} [NormedField π] [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
+variable {π : Type*} [NormedField π] [NontriviallyNormedField π] [AddCommGroup E] [Module π E]
[Module π E] [TopologicalSpace E] [ContinuousSMul π E]
theorem IsVonNBounded.smul_tendsto_zero {S : Set E} {Ξ΅ : ΞΉ β π} {x : ΞΉ β E} {l : Filter ΞΉ}
@@ -2,11 +2,6 @@
Copyright (c) 2022 Moritz Doll. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Moritz Doll
-
-! This file was ported from Lean 3 source module analysis.locally_convex.bounded
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.LocallyConvex.Basic
import Mathlib.Analysis.LocallyConvex.BalancedCoreHull
@@ -15,6 +10,8 @@ import Mathlib.Topology.Bornology.Basic
import Mathlib.Topology.Algebra.UniformGroup
import Mathlib.Topology.UniformSpace.Cauchy
+#align_import analysis.locally_convex.bounded from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
/-!
# Von Neumann Boundedness
at
and goals (#5387)
Changes are of the form
some_tactic at hβ’
-> some_tactic at h β’
some_tactic at h
-> some_tactic at h
@@ -170,7 +170,7 @@ theorem isVonNBounded_of_smul_tendsto_zero {Ξ΅ : ΞΉ β π} {l : Filter ΞΉ} [l
have : βαΆ n in l, β x : S, Ξ΅ n β’ (x : E) β V := by
filter_upwards [hΞ΅]with n hn
rw [Absorbs] at hVS
- push_neg at hVS
+ push_neg at hVS
rcases hVS _ (norm_pos_iff.mpr <| inv_ne_zero hn) with β¨a, haΞ΅, haSβ©
rcases Set.not_subset.mp haS with β¨x, hxS, hxβ©
refine' β¨β¨x, hxSβ©, fun hnx => _β©
Now that leanprover/lean4#2210 has been merged, this PR:
set_option synthInstance.etaExperiment true
commands (and some etaExperiment%
term elaborators)set_option maxHeartbeats
commandsCo-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Matthew Ballard <matt@mrb.email>
@@ -120,7 +120,6 @@ section Image
variable {πβ πβ : Type _} [NormedDivisionRing πβ] [NormedDivisionRing πβ] [AddCommGroup E]
[Module πβ E] [AddCommGroup F] [Module πβ F] [TopologicalSpace E] [TopologicalSpace F]
-set_option synthInstance.etaExperiment true in -- Porting note: gets around lean4#2074
/-- A continuous linear image of a bounded set is bounded. -/
theorem IsVonNBounded.image {Ο : πβ β+* πβ} [RingHomSurjective Ο] [RingHomIsometric Ο] {s : Set E}
(hs : IsVonNBounded πβ s) (f : E βSL[Ο] F) : IsVonNBounded πβ (f '' s) := by
@@ -317,7 +316,6 @@ theorem vonNBornology_eq : Bornology.vonNBornology π E = PseudoMetricSpace.to
exact isVonNBounded_iff π E s
#align normed_space.vonN_bornology_eq NormedSpace.vonNBornology_eq
-set_option synthInstance.etaExperiment true in -- Porting note: gets around lean4#2074
theorem isBounded_iff_subset_smul_ball {s : Set E} :
Bornology.IsBounded s β β a : π, s β a β’ Metric.ball (0 : E) 1 := by
rw [β isVonNBounded_iff π]
@@ -330,7 +328,6 @@ theorem isBounded_iff_subset_smul_ball {s : Set E} :
exact ((isVonNBounded_ball π E 1).image (a β’ (1 : E βL[π] E))).subset ha
#align normed_space.is_bounded_iff_subset_smul_ball NormedSpace.isBounded_iff_subset_smul_ball
-set_option synthInstance.etaExperiment true in -- Porting note: gets around lean4#2074
theorem isBounded_iff_subset_smul_closedBall {s : Set E} :
Bornology.IsBounded s β β a : π, s β a β’ Metric.closedBall (0 : E) 1 := by
constructor
sSup
/iSup
(#3938)
As discussed on Zulip
supβ
β sSup
infβ
β sInf
supα΅’
β iSup
infα΅’
β iInf
bsupβ
β bsSup
binfβ
β bsInf
bsupα΅’
β biSup
binfα΅’
β biInf
csupβ
β csSup
cinfβ
β csInf
csupα΅’
β ciSup
cinfα΅’
β ciInf
unionβ
β sUnion
interβ
β sInter
unionα΅’
β iUnion
interα΅’
β iInter
bunionβ
β bsUnion
binterβ
β bsInter
bunionα΅’
β biUnion
binterα΅’
β biInter
Co-authored-by: Parcly Taxel <reddeloostw@gmail.com>
@@ -210,7 +210,7 @@ theorem isVonNBounded_singleton (x : E) : IsVonNBounded π ({x} : Set E) := fu
/-- The union of all bounded set is the whole space. -/
theorem isVonNBounded_covers : ββ setOf (IsVonNBounded π) = (Set.univ : Set E) :=
Set.eq_univ_iff_forall.mpr fun x =>
- Set.mem_unionβ.mpr β¨{x}, isVonNBounded_singleton _, Set.mem_singleton _β©
+ Set.mem_sUnion.mpr β¨{x}, isVonNBounded_singleton _, Set.mem_singleton _β©
#align bornology.is_vonN_bounded_covers Bornology.isVonNBounded_covers
variable (π E)
@@ -246,7 +246,7 @@ variable [UniformSpace E] [UniformAddGroup E] [ContinuousSMul π E]
theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
Bornology.IsVonNBounded π s := by
- rw [totallyBounded_iff_subset_finite_unionα΅’_nhds_zero] at hs
+ rw [totallyBounded_iff_subset_finite_iUnion_nhds_zero] at hs
intro U hU
have h : Filter.Tendsto (fun x : E Γ E => x.fst + x.snd) (π (0, 0)) (π ((0 : E) + (0 : E))) :=
tendsto_add
@@ -256,7 +256,7 @@ theorem TotallyBounded.isVonNBounded {s : Set E} (hs : TotallyBounded s) :
rcases h.basis_left h' U hU with β¨x, hx, h''β©
rcases hs x.snd hx.2.1 with β¨t, ht, hsβ©
refine' Absorbs.mono_right _ hs
- rw [ht.absorbs_unionα΅’]
+ rw [ht.absorbs_iUnion]
have hx_fstsnd : x.fst + x.snd β U := by
intro z hz
rcases Set.mem_add.mp hz with β¨z1, z2, hz1, hz2, hzβ©
@@ -28,9 +28,9 @@ absorbs `s`.
## Main results
-* `Bornology.isVonNBounded.of_topological_space_le`: A coarser topology admits more
+* `Bornology.IsVonNBounded.of_topologicalSpace_le`: A coarser topology admits more
von Neumann-bounded sets.
-* `Bornology.isVonNBounded.image`: A continuous linear image of a bounded set is bounded.
+* `Bornology.IsVonNBounded.image`: A continuous linear image of a bounded set is bounded.
* `Bornology.isVonNBounded_iff_smul_tendsto_zero`: Given any sequence `Ξ΅` of scalars which tends
to `π[β ] 0`, we have that a set `S` is bounded if and only if for any sequence `x : β β S`,
`Ξ΅ β’ x` tends to 0. This shows that bounded sets are completely determined by sequences, which is
The unported dependencies are
algebra.order.module
init.core
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file