analysis.normed_space.banach_steinhaus ⟷ Mathlib.Analysis.NormedSpace.BanachSteinhaus

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Jireh Loreaux. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jireh Loreaux
 -/
-import Analysis.NormedSpace.OperatorNorm
-import Topology.MetricSpace.Baire
+import Analysis.NormedSpace.OperatorNorm.Basic
+import Topology.Baire.Lemmas
 import Topology.Algebra.Module.Basic
 
 #align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"33c67ae661dd8988516ff7f247b0be3018cdd952"
@@ -66,7 +66,7 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[Οƒ
   Β· exact div_nonneg (Nat.cast_nonneg _) Ξ΅k_pos.le
   intro y le_y y_lt
   calc
-    β€–g i yβ€– = β€–g i (y + x) - g i xβ€– := by rw [ContinuousLinearMap.map_add, add_sub_cancel]
+    β€–g i yβ€– = β€–g i (y + x) - g i xβ€– := by rw [ContinuousLinearMap.map_add, add_sub_cancel_right]
     _ ≀ β€–g i (y + x)β€– + β€–g i xβ€– := (norm_sub_le _ _)
     _ ≀ m + m :=
       (add_le_add (real_norm_le (y + x) (by rwa [add_comm, add_mem_ball_iff_norm]) i)
Diff
@@ -127,7 +127,7 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β„• β†’ E 
       intro x
       rcases cauchySeq_bdd (tendsto_pi_nhds.mp h x).CauchySeq with ⟨C, C_pos, hC⟩
       refine' ⟨C + β€–g 0 xβ€–, fun n => _⟩
-      simp_rw [dist_eq_norm] at hC 
+      simp_rw [dist_eq_norm] at hC
       calc
         β€–g n xβ€– ≀ β€–g 0 xβ€– + β€–g n x - g 0 xβ€– := norm_le_insert' _ _
         _ ≀ C + β€–g 0 xβ€– := by linarith [hC n 0]
Diff
@@ -62,7 +62,7 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[Οƒ
     replace hz := mem_Inter.mp (interior_iInter_subset _ (hΞ΅ hz)) i
     apply interior_subset hz
   have Ξ΅k_pos : 0 < Ξ΅ / β€–kβ€– := div_pos Ξ΅_pos (zero_lt_one.trans hk)
-  refine' ⟨(m + m : β„•) / (Ξ΅ / β€–kβ€–), fun i => ContinuousLinearMap.op_norm_le_of_shell Ξ΅_pos _ hk _⟩
+  refine' ⟨(m + m : β„•) / (Ξ΅ / β€–kβ€–), fun i => ContinuousLinearMap.opNorm_le_of_shell Ξ΅_pos _ hk _⟩
   Β· exact div_nonneg (Nat.cast_nonneg _) Ξ΅k_pos.le
   intro y le_y y_lt
   calc
@@ -141,7 +141,7 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β„• β†’ E 
     have lt_Ξ΅ : β€–g n x - f xβ€– < Ξ΅ := by rw [← dist_eq_norm]; exact hn n (le_refl n)
     calc
       β€–f xβ€– ≀ β€–g n xβ€– + β€–g n x - f xβ€– := norm_le_insert _ _
-      _ < β€–g nβ€– * β€–xβ€– + Ξ΅ := by linarith [lt_Ξ΅, (g n).le_op_norm x]
+      _ < β€–g nβ€– * β€–xβ€– + Ξ΅ := by linarith [lt_Ξ΅, (g n).le_opNorm x]
       _ ≀ C' * β€–xβ€– + Ξ΅ := by nlinarith [hC' n, norm_nonneg x]
 #align continuous_linear_map_of_tendsto continuousLinearMapOfTendsto
 -/
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2021 Jireh Loreaux. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jireh Loreaux
 -/
-import Mathbin.Analysis.NormedSpace.OperatorNorm
-import Mathbin.Topology.MetricSpace.Baire
-import Mathbin.Topology.Algebra.Module.Basic
+import Analysis.NormedSpace.OperatorNorm
+import Topology.MetricSpace.Baire
+import Topology.Algebra.Module.Basic
 
 #align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"33c67ae661dd8988516ff7f247b0be3018cdd952"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Jireh Loreaux. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jireh Loreaux
-
-! This file was ported from Lean 3 source module analysis.normed_space.banach_steinhaus
-! leanprover-community/mathlib commit 33c67ae661dd8988516ff7f247b0be3018cdd952
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.NormedSpace.OperatorNorm
 import Mathbin.Topology.MetricSpace.Baire
 import Mathbin.Topology.Algebra.Module.Basic
 
+#align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"33c67ae661dd8988516ff7f247b0be3018cdd952"
+
 /-!
 # The Banach-Steinhaus theorem: Uniform Boundedness Principle
 
Diff
@@ -35,6 +35,7 @@ variable {E F π•œ π•œβ‚‚ : Type _} [SeminormedAddCommGroup E] [SeminormedAddCo
   [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F]
   {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂]
 
+#print banach_steinhaus /-
 /-- This is the standard Banach-Steinhaus theorem, or Uniform Boundedness Principle.
 If a family of continuous linear maps from a Banach space into a normed space is pointwise
 bounded, then the norms of these linear maps are uniformly bounded. -/
@@ -79,11 +80,13 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[Οƒ
         ((one_le_div <| div_pos Ξ΅_pos (zero_lt_one.trans hk)).2 le_y))
     _ = (m + m : β„•) / (Ξ΅ / β€–kβ€–) * β€–yβ€– := (mul_comm_div _ _ _).symm
 #align banach_steinhaus banach_steinhaus
+-/
 
 open scoped ENNReal
 
 open ENNReal
 
+#print banach_steinhaus_iSup_nnnorm /-
 /-- This version of Banach-Steinhaus is stated in terms of suprema of `β†‘β€–β¬β€–β‚Š : ℝβ‰₯0∞`
 for convenience. -/
 theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
@@ -103,11 +106,13 @@ theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’
   rw [← norm_toNNReal]
   exact coe_mono (Real.toNNReal_le_toNNReal <| hC' i)
 #align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnorm
+-/
 
 open scoped Topology
 
 open Filter
 
+#print continuousLinearMapOfTendsto /-
 /-- Given a *sequence* of continuous linear maps which converges pointwise and for which the
 domain is complete, the Banach-Steinhaus theorem is used to guarantee that the limit map
 is a *continuous* linear map as well. -/
@@ -142,4 +147,5 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β„• β†’ E 
       _ < β€–g nβ€– * β€–xβ€– + Ξ΅ := by linarith [lt_Ξ΅, (g n).le_op_norm x]
       _ ≀ C' * β€–xβ€– + Ξ΅ := by nlinarith [hC' n, norm_nonneg x]
 #align continuous_linear_map_of_tendsto continuousLinearMapOfTendsto
+-/
 
Diff
@@ -78,7 +78,6 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[Οƒ
       (le_mul_of_one_le_right (Nat.cast_nonneg _)
         ((one_le_div <| div_pos Ξ΅_pos (zero_lt_one.trans hk)).2 le_y))
     _ = (m + m : β„•) / (Ξ΅ / β€–kβ€–) * β€–yβ€– := (mul_comm_div _ _ _).symm
-    
 #align banach_steinhaus banach_steinhaus
 
 open scoped ENNReal
@@ -99,7 +98,6 @@ theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’
       calc
         (β€–g i xβ€–β‚Š : ℝβ‰₯0∞) ≀ ⨆ j, β€–g j xβ€–β‚Š := le_iSup _ i
         _ = p := hp₁
-        
   cases' banach_steinhaus h' with C' hC'
   refine' (iSup_le fun i => _).trans_lt (@coe_lt_top C'.to_nnreal)
   rw [← norm_toNNReal]
@@ -131,7 +129,6 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β„• β†’ E 
       calc
         β€–g n xβ€– ≀ β€–g 0 xβ€– + β€–g n x - g 0 xβ€– := norm_le_insert' _ _
         _ ≀ C + β€–g 0 xβ€– := by linarith [hC n 0]
-        
     cases' banach_steinhaus h_point_bdd with C' hC'
     /- show the uniform bound from `banach_steinhaus` is a norm bound of the limit map
              by allowing "an `Ξ΅` of room." -/
@@ -144,6 +141,5 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β„• β†’ E 
       β€–f xβ€– ≀ β€–g n xβ€– + β€–g n x - f xβ€– := norm_le_insert _ _
       _ < β€–g nβ€– * β€–xβ€– + Ξ΅ := by linarith [lt_Ξ΅, (g n).le_op_norm x]
       _ ≀ C' * β€–xβ€– + Ξ΅ := by nlinarith [hC' n, norm_nonneg x]
-      
 #align continuous_linear_map_of_tendsto continuousLinearMapOfTendsto
 
Diff
@@ -42,7 +42,7 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[Οƒ
     (h : βˆ€ x, βˆƒ C, βˆ€ i, β€–g i xβ€– ≀ C) : βˆƒ C', βˆ€ i, β€–g iβ€– ≀ C' :=
   by
   -- sequence of subsets consisting of those `x : E` with norms `β€–g i xβ€–` bounded by `n`
-  let e : β„• β†’ Set E := fun n => β‹‚ i : ΞΉ, { x : E | β€–g i xβ€– ≀ n }
+  let e : β„• β†’ Set E := fun n => β‹‚ i : ΞΉ, {x : E | β€–g i xβ€– ≀ n}
   -- each of these sets is closed
   have hc : βˆ€ n : β„•, IsClosed (e n) := fun i =>
     isClosed_iInter fun i => isClosed_le (Continuous.norm (g i).cont) continuous_const
Diff
@@ -127,7 +127,7 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β„• β†’ E 
       intro x
       rcases cauchySeq_bdd (tendsto_pi_nhds.mp h x).CauchySeq with ⟨C, C_pos, hC⟩
       refine' ⟨C + β€–g 0 xβ€–, fun n => _⟩
-      simp_rw [dist_eq_norm] at hC
+      simp_rw [dist_eq_norm] at hC 
       calc
         β€–g n xβ€– ≀ β€–g 0 xβ€– + β€–g n x - g 0 xβ€– := norm_le_insert' _ _
         _ ≀ C + β€–g 0 xβ€– := by linarith [hC n 0]
Diff
@@ -81,7 +81,7 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[Οƒ
     
 #align banach_steinhaus banach_steinhaus
 
-open ENNReal
+open scoped ENNReal
 
 open ENNReal
 
@@ -106,7 +106,7 @@ theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’
   exact coe_mono (Real.toNNReal_le_toNNReal <| hC' i)
 #align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnorm
 
-open Topology
+open scoped Topology
 
 open Filter
 
Diff
@@ -35,9 +35,6 @@ variable {E F π•œ π•œβ‚‚ : Type _} [SeminormedAddCommGroup E] [SeminormedAddCo
   [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F]
   {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂]
 
-/- warning: banach_steinhaus -> banach_steinhaus is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align banach_steinhaus banach_steinhausβ‚“'. -/
 /-- This is the standard Banach-Steinhaus theorem, or Uniform Boundedness Principle.
 If a family of continuous linear maps from a Banach space into a normed space is pointwise
 bounded, then the norms of these linear maps are uniformly bounded. -/
@@ -88,9 +85,6 @@ open ENNReal
 
 open ENNReal
 
-/- warning: banach_steinhaus_supr_nnnorm -> banach_steinhaus_iSup_nnnorm is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnormβ‚“'. -/
 /-- This version of Banach-Steinhaus is stated in terms of suprema of `β†‘β€–β¬β€–β‚Š : ℝβ‰₯0∞`
 for convenience. -/
 theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
@@ -116,9 +110,6 @@ open Topology
 
 open Filter
 
-/- warning: continuous_linear_map_of_tendsto -> continuousLinearMapOfTendsto is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map_of_tendsto continuousLinearMapOfTendstoβ‚“'. -/
 /-- Given a *sequence* of continuous linear maps which converges pointwise and for which the
 domain is complete, the Banach-Steinhaus theorem is used to guarantee that the limit map
 is a *continuous* linear map as well. -/
Diff
@@ -148,9 +148,7 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β„• β†’ E 
       AddMonoidHomClass.continuous_of_bound (linearMapOfTendsto _ _ h) C' fun x =>
         le_of_forall_pos_lt_add fun Ξ΅ Ξ΅_pos => _
     cases' metric.tendsto_at_top.mp (tendsto_pi_nhds.mp h x) Ξ΅ Ξ΅_pos with n hn
-    have lt_Ξ΅ : β€–g n x - f xβ€– < Ξ΅ := by
-      rw [← dist_eq_norm]
-      exact hn n (le_refl n)
+    have lt_Ξ΅ : β€–g n x - f xβ€– < Ξ΅ := by rw [← dist_eq_norm]; exact hn n (le_refl n)
     calc
       β€–f xβ€– ≀ β€–g n xβ€– + β€–g n x - f xβ€– := norm_le_insert _ _
       _ < β€–g nβ€– * β€–xβ€– + Ξ΅ := by linarith [lt_Ξ΅, (g n).le_op_norm x]
Diff
@@ -36,10 +36,7 @@ variable {E F π•œ π•œβ‚‚ : Type _} [SeminormedAddCommGroup E] [SeminormedAddCo
   {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂]
 
 /- warning: banach_steinhaus -> banach_steinhaus is a dubious translation:
-lean 3 declaration is
-  forall {E : Type.{u1}} {F : Type.{u2}} {π•œ : Type.{u3}} {π•œβ‚‚ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π•œ] [_inst_4 : NontriviallyNormedField.{u4} π•œβ‚‚] [_inst_5 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2] {σ₁₂ : RingHom.{u3, u4} π•œ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u3} π•œ (Ring.toNonAssocRing.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)))))) (NonAssocRing.toNonAssocSemiring.{u4} π•œβ‚‚ (Ring.toNonAssocRing.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) (NormedField.toHasNorm.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)) (NormedField.toHasNorm.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4)) σ₁₂] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6))}, (forall (x : E), Exists.{1} Real (fun (C : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.hasLe (Norm.norm.{u2} F (SeminormedAddCommGroup.toHasNorm.{u2} F _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (g i) x)) C)) -> (Exists.{1} Real (fun (C' : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.hasLe (Norm.norm.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.hasOpNorm.{u3, u4, u1, u2} π•œ π•œβ‚‚ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 σ₁₂) (g i)) C'))
-but is expected to have type
-  forall {E : Type.{u4}} {F : Type.{u1}} {π•œ : Type.{u3}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : SeminormedAddCommGroup.{u4} E] [_inst_2 : SeminormedAddCommGroup.{u1} F] [_inst_3 : NontriviallyNormedField.{u3} π•œ] [_inst_4 : NontriviallyNormedField.{u2} π•œβ‚‚] [_inst_5 : NormedSpace.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1] [_inst_6 : NormedSpace.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2] {σ₁₂ : RingHom.{u3, u2} π•œ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)))))) (Semiring.toNonAssocSemiring.{u2} π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) (NormedField.toNorm.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)) (NormedField.toNorm.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4)) σ₁₂] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6))}, (forall (x : E), Exists.{1} Real (fun (C : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.instLEReal (Norm.norm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (SeminormedAddCommGroup.toNorm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) _inst_2) (FunLike.coe.{max (succ u4) (succ u1), succ u4, succ u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u4 u1, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) E F (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u1, u3, u2, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)))) (g i) x)) C)) -> (Exists.{1} Real (fun (C' : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.instLEReal (Norm.norm.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.hasOpNorm.{u3, u2, u4, u1} π•œ π•œβ‚‚ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 σ₁₂) (g i)) C'))
+<too large>
 Case conversion may be inaccurate. Consider using '#align banach_steinhaus banach_steinhausβ‚“'. -/
 /-- This is the standard Banach-Steinhaus theorem, or Uniform Boundedness Principle.
 If a family of continuous linear maps from a Banach space into a normed space is pointwise
@@ -92,10 +89,7 @@ open ENNReal
 open ENNReal
 
 /- warning: banach_steinhaus_supr_nnnorm -> banach_steinhaus_iSup_nnnorm is a dubious translation:
-lean 3 declaration is
-  forall {E : Type.{u1}} {F : Type.{u2}} {π•œ : Type.{u3}} {π•œβ‚‚ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π•œ] [_inst_4 : NontriviallyNormedField.{u4} π•œβ‚‚] [_inst_5 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2] {σ₁₂ : RingHom.{u3, u4} π•œ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u3} π•œ (Ring.toNonAssocRing.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)))))) (NonAssocRing.toNonAssocSemiring.{u4} π•œβ‚‚ (Ring.toNonAssocRing.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) (NormedField.toHasNorm.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)) (NormedField.toHasNorm.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4)) σ₁₂] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6))}, (forall (x : E), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ΞΉ (fun (i : ΞΉ) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCβ‚“.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{u2} F (SeminormedAddGroup.toNNNorm.{u2} F (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} F _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (g i) x)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ΞΉ (fun (i : ΞΉ) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCβ‚“.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (SeminormedAddGroup.toNNNorm.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.toSeminormedAddCommGroup.{u3, u4, u1, u2} π•œ π•œβ‚‚ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 σ₁₂ _inst_7))) (g i)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
-  forall {E : Type.{u4}} {F : Type.{u1}} {π•œ : Type.{u3}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : SeminormedAddCommGroup.{u4} E] [_inst_2 : SeminormedAddCommGroup.{u1} F] [_inst_3 : NontriviallyNormedField.{u3} π•œ] [_inst_4 : NontriviallyNormedField.{u2} π•œβ‚‚] [_inst_5 : NormedSpace.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1] [_inst_6 : NormedSpace.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2] {σ₁₂ : RingHom.{u3, u2} π•œ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)))))) (Semiring.toNonAssocSemiring.{u2} π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) (NormedField.toNorm.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)) (NormedField.toNorm.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4)) σ₁₂] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6))}, (forall (x : E), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ΞΉ (fun (i : ΞΉ) => ENNReal.some (NNNorm.nnnorm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (SeminormedAddGroup.toNNNorm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) _inst_2)) (FunLike.coe.{max (succ u4) (succ u1), succ u4, succ u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u4 u1, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) E F (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u1, u3, u2, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)))) (g i) x)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ΞΉ (fun (i : ΞΉ) => ENNReal.some (NNNorm.nnnorm.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (SeminormedAddGroup.toNNNorm.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.toSeminormedAddCommGroup.{u3, u2, u4, u1} π•œ π•œβ‚‚ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 σ₁₂ _inst_7))) (g i)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnormβ‚“'. -/
 /-- This version of Banach-Steinhaus is stated in terms of suprema of `β†‘β€–β¬β€–β‚Š : ℝβ‰₯0∞`
 for convenience. -/
@@ -123,10 +117,7 @@ open Topology
 open Filter
 
 /- warning: continuous_linear_map_of_tendsto -> continuousLinearMapOfTendsto is a dubious translation:
-lean 3 declaration is
-  forall {E : Type.{u1}} {F : Type.{u2}} {π•œ : Type.{u3}} {π•œβ‚‚ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π•œ] [_inst_4 : NontriviallyNormedField.{u4} π•œβ‚‚] [_inst_5 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2] {σ₁₂ : RingHom.{u3, u4} π•œ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u3} π•œ (Ring.toNonAssocRing.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)))))) (NonAssocRing.toNonAssocSemiring.{u4} π•œβ‚‚ (Ring.toNonAssocRing.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) (NormedField.toHasNorm.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)) (NormedField.toHasNorm.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4)) σ₁₂] [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] [_inst_9 : T2Space.{u2} F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2)))] (g : Nat -> (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6))) {f : E -> F}, (Filter.Tendsto.{0, max u1 u2} Nat (E -> F) (fun (n : Nat) (x : E) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (g n) x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{max u1 u2} (E -> F) (Pi.topologicalSpace.{u1, u2} E (fun (x : E) => F) (fun (a : E) => UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2)))) f)) -> (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6))
-but is expected to have type
-  forall {E : Type.{u1}} {F : Type.{u2}} {π•œ : Type.{u3}} {π•œβ‚‚ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π•œ] [_inst_4 : NontriviallyNormedField.{u4} π•œβ‚‚] [_inst_5 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2] {σ₁₂ : RingHom.{u3, u4} π•œ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)))))) (Semiring.toNonAssocSemiring.{u4} π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) (NormedField.toNorm.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)) (NormedField.toNorm.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4)) σ₁₂] [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] [_inst_9 : T2Space.{u2} F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2)))] (g : Nat -> (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6))) {f : E -> F}, (Filter.Tendsto.{0, max u1 u2} Nat (forall (x : E), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (fun (n : Nat) (x : E) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) E F (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u1 u2, u3, u4, u1, u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u4, u1, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)))) (g n) x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{max u1 u2} (forall (x : E), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Pi.topologicalSpace.{u1, u2} E (fun (x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (fun (a : E) => UniformSpace.toTopologicalSpace.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) (PseudoMetricSpace.toUniformSpace.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) _inst_2)))) f)) -> (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map_of_tendsto continuousLinearMapOfTendstoβ‚“'. -/
 /-- Given a *sequence* of continuous linear maps which converges pointwise and for which the
 domain is complete, the Banach-Steinhaus theorem is used to guarantee that the limit map
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jireh Loreaux
 
 ! This file was ported from Lean 3 source module analysis.normed_space.banach_steinhaus
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 33c67ae661dd8988516ff7f247b0be3018cdd952
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Topology.Algebra.Module.Basic
 /-!
 # The Banach-Steinhaus theorem: Uniform Boundedness Principle
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 Herein we prove the Banach-Steinhaus theorem: any collection of bounded linear maps
 from a Banach space into a normed space which is pointwise bounded is uniformly bounded.
 
Diff
@@ -32,6 +32,12 @@ variable {E F π•œ π•œβ‚‚ : Type _} [SeminormedAddCommGroup E] [SeminormedAddCo
   [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F]
   {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂]
 
+/- warning: banach_steinhaus -> banach_steinhaus is a dubious translation:
+lean 3 declaration is
+  forall {E : Type.{u1}} {F : Type.{u2}} {π•œ : Type.{u3}} {π•œβ‚‚ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π•œ] [_inst_4 : NontriviallyNormedField.{u4} π•œβ‚‚] [_inst_5 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2] {σ₁₂ : RingHom.{u3, u4} π•œ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u3} π•œ (Ring.toNonAssocRing.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)))))) (NonAssocRing.toNonAssocSemiring.{u4} π•œβ‚‚ (Ring.toNonAssocRing.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) (NormedField.toHasNorm.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)) (NormedField.toHasNorm.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4)) σ₁₂] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6))}, (forall (x : E), Exists.{1} Real (fun (C : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.hasLe (Norm.norm.{u2} F (SeminormedAddCommGroup.toHasNorm.{u2} F _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (g i) x)) C)) -> (Exists.{1} Real (fun (C' : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.hasLe (Norm.norm.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.hasOpNorm.{u3, u4, u1, u2} π•œ π•œβ‚‚ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 σ₁₂) (g i)) C'))
+but is expected to have type
+  forall {E : Type.{u4}} {F : Type.{u1}} {π•œ : Type.{u3}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : SeminormedAddCommGroup.{u4} E] [_inst_2 : SeminormedAddCommGroup.{u1} F] [_inst_3 : NontriviallyNormedField.{u3} π•œ] [_inst_4 : NontriviallyNormedField.{u2} π•œβ‚‚] [_inst_5 : NormedSpace.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1] [_inst_6 : NormedSpace.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2] {σ₁₂ : RingHom.{u3, u2} π•œ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)))))) (Semiring.toNonAssocSemiring.{u2} π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) (NormedField.toNorm.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)) (NormedField.toNorm.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4)) σ₁₂] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6))}, (forall (x : E), Exists.{1} Real (fun (C : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.instLEReal (Norm.norm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (SeminormedAddCommGroup.toNorm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) _inst_2) (FunLike.coe.{max (succ u4) (succ u1), succ u4, succ u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u4 u1, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) E F (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u1, u3, u2, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)))) (g i) x)) C)) -> (Exists.{1} Real (fun (C' : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.instLEReal (Norm.norm.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.hasOpNorm.{u3, u2, u4, u1} π•œ π•œβ‚‚ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 σ₁₂) (g i)) C'))
+Case conversion may be inaccurate. Consider using '#align banach_steinhaus banach_steinhausβ‚“'. -/
 /-- This is the standard Banach-Steinhaus theorem, or Uniform Boundedness Principle.
 If a family of continuous linear maps from a Banach space into a normed space is pointwise
 bounded, then the norms of these linear maps are uniformly bounded. -/
@@ -82,6 +88,12 @@ open ENNReal
 
 open ENNReal
 
+/- warning: banach_steinhaus_supr_nnnorm -> banach_steinhaus_iSup_nnnorm is a dubious translation:
+lean 3 declaration is
+  forall {E : Type.{u1}} {F : Type.{u2}} {π•œ : Type.{u3}} {π•œβ‚‚ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π•œ] [_inst_4 : NontriviallyNormedField.{u4} π•œβ‚‚] [_inst_5 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2] {σ₁₂ : RingHom.{u3, u4} π•œ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u3} π•œ (Ring.toNonAssocRing.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)))))) (NonAssocRing.toNonAssocSemiring.{u4} π•œβ‚‚ (Ring.toNonAssocRing.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) (NormedField.toHasNorm.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)) (NormedField.toHasNorm.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4)) σ₁₂] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6))}, (forall (x : E), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ΞΉ (fun (i : ΞΉ) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCβ‚“.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{u2} F (SeminormedAddGroup.toNNNorm.{u2} F (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} F _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (g i) x)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ΞΉ (fun (i : ΞΉ) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCβ‚“.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (SeminormedAddGroup.toNNNorm.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.toSeminormedAddCommGroup.{u3, u4, u1, u2} π•œ π•œβ‚‚ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 σ₁₂ _inst_7))) (g i)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+  forall {E : Type.{u4}} {F : Type.{u1}} {π•œ : Type.{u3}} {π•œβ‚‚ : Type.{u2}} [_inst_1 : SeminormedAddCommGroup.{u4} E] [_inst_2 : SeminormedAddCommGroup.{u1} F] [_inst_3 : NontriviallyNormedField.{u3} π•œ] [_inst_4 : NontriviallyNormedField.{u2} π•œβ‚‚] [_inst_5 : NormedSpace.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1] [_inst_6 : NormedSpace.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2] {σ₁₂ : RingHom.{u3, u2} π•œ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)))))) (Semiring.toNonAssocSemiring.{u2} π•œβ‚‚ (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) (NormedField.toNorm.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)) (NormedField.toNorm.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4)) σ₁₂] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6))}, (forall (x : E), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ΞΉ (fun (i : ΞΉ) => ENNReal.some (NNNorm.nnnorm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (SeminormedAddGroup.toNNNorm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) _inst_2)) (FunLike.coe.{max (succ u4) (succ u1), succ u4, succ u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u4 u1, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) E F (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u1, u3, u2, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)))) (g i) x)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ΞΉ (fun (i : ΞΉ) => ENNReal.some (NNNorm.nnnorm.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (SeminormedAddGroup.toNNNorm.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u2} π•œβ‚‚ (Semifield.toDivisionSemiring.{u2} π•œβ‚‚ (Field.toSemifield.{u2} π•œβ‚‚ (NormedField.toField.{u2} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u2} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.toSeminormedAddCommGroup.{u3, u2, u4, u1} π•œ π•œβ‚‚ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 σ₁₂ _inst_7))) (g i)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnormβ‚“'. -/
 /-- This version of Banach-Steinhaus is stated in terms of suprema of `β†‘β€–β¬β€–β‚Š : ℝβ‰₯0∞`
 for convenience. -/
 theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
@@ -107,6 +119,12 @@ open Topology
 
 open Filter
 
+/- warning: continuous_linear_map_of_tendsto -> continuousLinearMapOfTendsto is a dubious translation:
+lean 3 declaration is
+  forall {E : Type.{u1}} {F : Type.{u2}} {π•œ : Type.{u3}} {π•œβ‚‚ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π•œ] [_inst_4 : NontriviallyNormedField.{u4} π•œβ‚‚] [_inst_5 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2] {σ₁₂ : RingHom.{u3, u4} π•œ π•œβ‚‚ (NonAssocRing.toNonAssocSemiring.{u3} π•œ (Ring.toNonAssocRing.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)))))) (NonAssocRing.toNonAssocSemiring.{u4} π•œβ‚‚ (Ring.toNonAssocRing.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) (NormedField.toHasNorm.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)) (NormedField.toHasNorm.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4)) σ₁₂] [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] [_inst_9 : T2Space.{u2} F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2)))] (g : Nat -> (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6))) {f : E -> F}, (Filter.Tendsto.{0, max u1 u2} Nat (E -> F) (fun (n : Nat) (x : E) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) (g n) x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{max u1 u2} (E -> F) (Pi.topologicalSpace.{u1, u2} E (fun (x : E) => F) (fun (a : E) => UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2)))) f)) -> (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (Ring.toSemiring.{u3} π•œ (NormedRing.toRing.{u3} π•œ (NormedCommRing.toNormedRing.{u3} π•œ (NormedField.toNormedCommRing.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (Ring.toSemiring.{u4} π•œβ‚‚ (NormedRing.toRing.{u4} π•œβ‚‚ (NormedCommRing.toNormedRing.{u4} π•œβ‚‚ (NormedField.toNormedCommRing.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6))
+but is expected to have type
+  forall {E : Type.{u1}} {F : Type.{u2}} {π•œ : Type.{u3}} {π•œβ‚‚ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π•œ] [_inst_4 : NontriviallyNormedField.{u4} π•œβ‚‚] [_inst_5 : NormedSpace.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2] {σ₁₂ : RingHom.{u3, u4} π•œ π•œβ‚‚ (Semiring.toNonAssocSemiring.{u3} π•œ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)))))) (Semiring.toNonAssocSemiring.{u4} π•œβ‚‚ (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) (NormedField.toNorm.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3)) (NormedField.toNorm.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4)) σ₁₂] [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] [_inst_9 : T2Space.{u2} F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2)))] (g : Nat -> (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6))) {f : E -> F}, (Filter.Tendsto.{0, max u1 u2} Nat (forall (x : E), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (fun (n : Nat) (x : E) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) E F (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u1 u2, u3, u4, u1, u2} (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)) π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u4, u1, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6)))) (g n) x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{max u1 u2} (forall (x : E), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Pi.topologicalSpace.{u1, u2} E (fun (x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (fun (a : E) => UniformSpace.toTopologicalSpace.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) (PseudoMetricSpace.toUniformSpace.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) _inst_2)))) f)) -> (ContinuousLinearMap.{u3, u4, u1, u2} π•œ π•œβ‚‚ (DivisionSemiring.toSemiring.{u3} π•œ (Semifield.toDivisionSemiring.{u3} π•œ (Field.toSemifield.{u3} π•œ (NormedField.toField.{u3} π•œ (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3))))) (DivisionSemiring.toSemiring.{u4} π•œβ‚‚ (Semifield.toDivisionSemiring.{u4} π•œβ‚‚ (Field.toSemifield.{u4} π•œβ‚‚ (NormedField.toField.{u4} π•œβ‚‚ (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4))))) σ₁₂ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π•œ E (NontriviallyNormedField.toNormedField.{u3} π•œ _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} π•œβ‚‚ F (NontriviallyNormedField.toNormedField.{u4} π•œβ‚‚ _inst_4) _inst_2 _inst_6))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map_of_tendsto continuousLinearMapOfTendstoβ‚“'. -/
 /-- Given a *sequence* of continuous linear maps which converges pointwise and for which the
 domain is complete, the Banach-Steinhaus theorem is used to guarantee that the limit map
 is a *continuous* linear map as well. -/
Diff
@@ -42,7 +42,7 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[Οƒ
   let e : β„• β†’ Set E := fun n => β‹‚ i : ΞΉ, { x : E | β€–g i xβ€– ≀ n }
   -- each of these sets is closed
   have hc : βˆ€ n : β„•, IsClosed (e n) := fun i =>
-    isClosed_interα΅’ fun i => isClosed_le (Continuous.norm (g i).cont) continuous_const
+    isClosed_iInter fun i => isClosed_le (Continuous.norm (g i).cont) continuous_const
   -- the union is the entire space; this is where we use `h`
   have hU : (⋃ n : β„•, e n) = univ :=
     by
@@ -51,14 +51,14 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[Οƒ
     obtain ⟨m, hm⟩ := exists_nat_ge C
     exact ⟨e m, mem_range_self m, mem_Inter.mpr fun i => le_trans (hC i) hm⟩
   -- apply the Baire category theorem to conclude that for some `m : β„•`, `e m` contains some `x`
-  rcases nonempty_interior_of_unionᡒ_of_closed hc hU with ⟨m, x, hx⟩
+  rcases nonempty_interior_of_iUnion_of_closed hc hU with ⟨m, x, hx⟩
   rcases metric.is_open_iff.mp isOpen_interior x hx with ⟨Ρ, Ρ_pos, hΡ⟩
   obtain ⟨k, hk⟩ := NormedField.exists_one_lt_norm π•œ
   -- show all elements in the ball have norm bounded by `m` after applying any `g i`
   have real_norm_le : βˆ€ z : E, z ∈ Metric.ball x Ξ΅ β†’ βˆ€ i : ΞΉ, β€–g i zβ€– ≀ m :=
     by
     intro z hz i
-    replace hz := mem_Inter.mp (interior_interα΅’_subset _ (hΞ΅ hz)) i
+    replace hz := mem_Inter.mp (interior_iInter_subset _ (hΞ΅ hz)) i
     apply interior_subset hz
   have Ξ΅k_pos : 0 < Ξ΅ / β€–kβ€– := div_pos Ξ΅_pos (zero_lt_one.trans hk)
   refine' ⟨(m + m : β„•) / (Ξ΅ / β€–kβ€–), fun i => ContinuousLinearMap.op_norm_le_of_shell Ξ΅_pos _ hk _⟩
@@ -84,7 +84,7 @@ open ENNReal
 
 /-- This version of Banach-Steinhaus is stated in terms of suprema of `β†‘β€–β¬β€–β‚Š : ℝβ‰₯0∞`
 for convenience. -/
-theorem banach_steinhaus_supα΅’_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
+theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
     (h : βˆ€ x, (⨆ i, ↑‖g i xβ€–β‚Š) < ∞) : (⨆ i, ↑‖g iβ€–β‚Š) < ∞ :=
   by
   have h' : βˆ€ x : E, βˆƒ C : ℝ, βˆ€ i : ΞΉ, β€–g i xβ€– ≀ C :=
@@ -94,14 +94,14 @@ theorem banach_steinhaus_supα΅’_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ 
     refine' ⟨p, fun i => _⟩
     exact_mod_cast
       calc
-        (β€–g i xβ€–β‚Š : ℝβ‰₯0∞) ≀ ⨆ j, β€–g j xβ€–β‚Š := le_supα΅’ _ i
+        (β€–g i xβ€–β‚Š : ℝβ‰₯0∞) ≀ ⨆ j, β€–g j xβ€–β‚Š := le_iSup _ i
         _ = p := hp₁
         
   cases' banach_steinhaus h' with C' hC'
-  refine' (supα΅’_le fun i => _).trans_lt (@coe_lt_top C'.to_nnreal)
+  refine' (iSup_le fun i => _).trans_lt (@coe_lt_top C'.to_nnreal)
   rw [← norm_toNNReal]
   exact coe_mono (Real.toNNReal_le_toNNReal <| hC' i)
-#align banach_steinhaus_supr_nnnorm banach_steinhaus_supα΅’_nnnorm
+#align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnorm
 
 open Topology
 
Diff
@@ -66,14 +66,14 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[Οƒ
   intro y le_y y_lt
   calc
     β€–g i yβ€– = β€–g i (y + x) - g i xβ€– := by rw [ContinuousLinearMap.map_add, add_sub_cancel]
-    _ ≀ β€–g i (y + x)β€– + β€–g i xβ€– := norm_sub_le _ _
+    _ ≀ β€–g i (y + x)β€– + β€–g i xβ€– := (norm_sub_le _ _)
     _ ≀ m + m :=
-      add_le_add (real_norm_le (y + x) (by rwa [add_comm, add_mem_ball_iff_norm]) i)
-        (real_norm_le x (Metric.mem_ball_self Ξ΅_pos) i)
+      (add_le_add (real_norm_le (y + x) (by rwa [add_comm, add_mem_ball_iff_norm]) i)
+        (real_norm_le x (Metric.mem_ball_self Ξ΅_pos) i))
     _ = (m + m : β„•) := (m.cast_add m).symm
     _ ≀ (m + m : β„•) * (β€–yβ€– / (Ξ΅ / β€–kβ€–)) :=
-      le_mul_of_one_le_right (Nat.cast_nonneg _)
-        ((one_le_div <| div_pos Ξ΅_pos (zero_lt_one.trans hk)).2 le_y)
+      (le_mul_of_one_le_right (Nat.cast_nonneg _)
+        ((one_le_div <| div_pos Ξ΅_pos (zero_lt_one.trans hk)).2 le_y))
     _ = (m + m : β„•) / (Ξ΅ / β€–kβ€–) * β€–yβ€– := (mul_comm_div _ _ _).symm
     
 #align banach_steinhaus banach_steinhaus
Diff
@@ -78,9 +78,9 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[Οƒ
     
 #align banach_steinhaus banach_steinhaus
 
-open Ennreal
+open ENNReal
 
-open Ennreal
+open ENNReal
 
 /-- This version of Banach-Steinhaus is stated in terms of suprema of `β†‘β€–β¬β€–β‚Š : ℝβ‰₯0∞`
 for convenience. -/

Changes in mathlib4

mathlib3
mathlib4
chore: Remove ball and bex from lemma names (#10816)

ball for "bounded forall" and bex for "bounded exists" are from experience very confusing abbreviations. This PR renames them to forall_mem and exists_mem in the few Set lemma names that mention them.

Also deprecate ball_image_of_ball, mem_image_elim, mem_image_elim_on since those lemmas are duplicates of the renamed lemmas (apart from argument order and implicitness, which I am also fixing by making the binder in the RHS of forall_mem_image semi-implicit), have obscure names and are completely unused.

Diff
@@ -35,7 +35,7 @@ theorem banach_steinhaus {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[Οƒ
     (h : βˆ€ x, βˆƒ C, βˆ€ i, β€–g i xβ€– ≀ C) : βˆƒ C', βˆ€ i, β€–g iβ€– ≀ C' := by
   rw [show (βˆƒ C, βˆ€ i, β€–g iβ€– ≀ C) ↔ _ from (NormedSpace.equicontinuous_TFAE g).out 5 2]
   refine (norm_withSeminorms π•œβ‚‚ F).banach_steinhaus (fun _ x ↦ ?_)
-  simpa [bddAbove_def, forall_range_iff] using h x
+  simpa [bddAbove_def, forall_mem_range] using h x
 #align banach_steinhaus banach_steinhaus
 
 open ENNReal
chore: split MetricSpace/Baire (#10648)
  • move definition to Topology/Defs/Basic;
  • move lemmas to Topology/Baire/Lemmas;
  • move instances to Topology/Baire/CompleteMetrizable and Topology/Baire/LocallyCompactRegular;
  • assume [UniformSpace X] [IsCountablyGenerated (𝓀 X)] instead of [PseudoMetricSpace X] in the 1st theorem.

This way Lemmas file does not depend on analysis.

Diff
@@ -5,6 +5,7 @@ Authors: Jireh Loreaux
 -/
 import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace
 import Mathlib.Analysis.LocallyConvex.Barrelled
+import Mathlib.Topology.Baire.CompleteMetrizable
 
 #align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 
chore(Analysis/NormedSpace): split up OperatorNorm.lean (#10990)

Split the 2300-line behemoth OperatorNorm.lean into 8 smaller files, of which the largest is 600 lines.

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Jireh Loreaux. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jireh Loreaux
 -/
-import Mathlib.Analysis.NormedSpace.OperatorNorm
+import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace
 import Mathlib.Analysis.LocallyConvex.Barrelled
 
 #align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
feat: More complete lattice WithTop lemmas (#6947)

and corresponding lemmas for β„•βˆž.

Also fix implicitness of iff lemmas.

Diff
@@ -47,8 +47,7 @@ theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β†’
     (h : βˆ€ x, (⨆ i, ↑‖g i xβ€–β‚Š) < ∞) : (⨆ i, ↑‖g iβ€–β‚Š) < ∞ := by
   rw [show ((⨆ i, ↑‖g iβ€–β‚Š) < ∞) ↔ _ from (NormedSpace.equicontinuous_TFAE g).out 8 2]
   refine (norm_withSeminorms π•œβ‚‚ F).banach_steinhaus (fun _ x ↦ ?_)
-  simpa [← NNReal.bddAbove_coe, ← Set.range_comp] using
-    (WithTop.iSup_coe_lt_top (fun i ↦ β€–g i xβ€–β‚Š)).mp (h x)
+  simpa [← NNReal.bddAbove_coe, ← Set.range_comp] using ENNReal.iSup_coe_lt_top.1 (h x)
 #align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnorm
 
 open Topology
feat(Analysis.LocallyConvex.Barrelled): generalize Banach-Steinhaus theorem (#5676)
Diff
@@ -4,25 +4,21 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jireh Loreaux
 -/
 import Mathlib.Analysis.NormedSpace.OperatorNorm
-import Mathlib.Topology.MetricSpace.Baire
-import Mathlib.Topology.Algebra.Module.Basic
+import Mathlib.Analysis.LocallyConvex.Barrelled
 
 #align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 
 /-!
 # The Banach-Steinhaus theorem: Uniform Boundedness Principle
 
-Herein we prove the Banach-Steinhaus theorem: any collection of bounded linear maps
-from a Banach space into a normed space which is pointwise bounded is uniformly bounded.
+Herein we prove the Banach-Steinhaus theorem for normed spaces: any collection of bounded linear
+maps from a Banach space into a normed space which is pointwise bounded is uniformly bounded.
 
-## TODO
-
-For now, we only prove the standard version by appeal to the Baire category theorem.
-Much more general versions exist (in particular, for maps from barrelled spaces to locally
-convex spaces), but these are not yet in `mathlib`.
+Note that we prove the more general version about barrelled spaces in
+`Analysis.LocallyConvex.Barrelled`, and the usual version below is indeed deduced from the
+more general setup.
 -/
 
-
 open Set
 
 variable {E F π•œ π•œβ‚‚ : Type*} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F]
@@ -31,44 +27,14 @@ variable {E F π•œ π•œβ‚‚ : Type*} [SeminormedAddCommGroup E] [SeminormedAddCom
 
 /-- This is the standard Banach-Steinhaus theorem, or Uniform Boundedness Principle.
 If a family of continuous linear maps from a Banach space into a normed space is pointwise
-bounded, then the norms of these linear maps are uniformly bounded. -/
+bounded, then the norms of these linear maps are uniformly bounded.
+
+See also `WithSeminorms.banach_steinhaus` for the general statement in barrelled spaces. -/
 theorem banach_steinhaus {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
     (h : βˆ€ x, βˆƒ C, βˆ€ i, β€–g i xβ€– ≀ C) : βˆƒ C', βˆ€ i, β€–g iβ€– ≀ C' := by
-  -- sequence of subsets consisting of those `x : E` with norms `β€–g i xβ€–` bounded by `n`
-  let e : β„• β†’ Set E := fun n => β‹‚ i : ΞΉ, { x : E | β€–g i xβ€– ≀ n }
-  -- each of these sets is closed
-  have hc : βˆ€ n : β„•, IsClosed (e n) := fun i =>
-    isClosed_iInter fun i => isClosed_le (Continuous.norm (g i).cont) continuous_const
-  -- the union is the entire space; this is where we use `h`
-  have hU : ⋃ n : β„•, e n = univ := by
-    refine' eq_univ_of_forall fun x => _
-    cases' h x with C hC
-    obtain ⟨m, hm⟩ := exists_nat_ge C
-    exact ⟨e m, mem_range_self m, mem_iInter.mpr fun i => le_trans (hC i) hm⟩
-  -- apply the Baire category theorem to conclude that for some `m : β„•`, `e m` contains some `x`
-  rcases nonempty_interior_of_iUnion_of_closed hc hU with ⟨m, x, hx⟩
-  rcases Metric.isOpen_iff.mp isOpen_interior x hx with ⟨Ρ, Ρ_pos, hΡ⟩
-  obtain ⟨k, hk⟩ := NormedField.exists_one_lt_norm π•œ
-  -- show all elements in the ball have norm bounded by `m` after applying any `g i`
-  have real_norm_le : βˆ€ z : E, z ∈ Metric.ball x Ξ΅ β†’ βˆ€ i : ΞΉ, β€–g i zβ€– ≀ m := by
-    intro z hz i
-    replace hz := mem_iInter.mp (interior_iInter_subset _ (hΞ΅ hz)) i
-    apply interior_subset hz
-  have Ξ΅k_pos : 0 < Ξ΅ / β€–kβ€– := div_pos Ξ΅_pos (zero_lt_one.trans hk)
-  refine' ⟨(m + m : β„•) / (Ξ΅ / β€–kβ€–), fun i => ContinuousLinearMap.op_norm_le_of_shell Ξ΅_pos _ hk _⟩
-  Β· exact div_nonneg (Nat.cast_nonneg _) Ξ΅k_pos.le
-  intro y le_y y_lt
-  calc
-    β€–g i yβ€– = β€–g i (y + x) - g i xβ€– := by rw [ContinuousLinearMap.map_add, add_sub_cancel]
-    _ ≀ β€–g i (y + x)β€– + β€–g i xβ€– := (norm_sub_le _ _)
-    _ ≀ m + m :=
-      (add_le_add (real_norm_le (y + x) (by rwa [add_comm, add_mem_ball_iff_norm]) i)
-        (real_norm_le x (Metric.mem_ball_self Ξ΅_pos) i))
-    _ = (m + m : β„•) := (m.cast_add m).symm
-    _ ≀ (m + m : β„•) * (β€–yβ€– / (Ξ΅ / β€–kβ€–)) :=
-      (le_mul_of_one_le_right (Nat.cast_nonneg _)
-        ((one_le_div <| div_pos Ξ΅_pos (zero_lt_one.trans hk)).2 le_y))
-    _ = (m + m : β„•) / (Ξ΅ / β€–kβ€–) * β€–yβ€– := (mul_comm_div _ _ _).symm
+  rw [show (βˆƒ C, βˆ€ i, β€–g iβ€– ≀ C) ↔ _ from (NormedSpace.equicontinuous_TFAE g).out 5 2]
+  refine (norm_withSeminorms π•œβ‚‚ F).banach_steinhaus (fun _ x ↦ ?_)
+  simpa [bddAbove_def, forall_range_iff] using h x
 #align banach_steinhaus banach_steinhaus
 
 open ENNReal
@@ -78,19 +44,11 @@ open ENNReal
 /-- This version of Banach-Steinhaus is stated in terms of suprema of `β†‘β€–Β·β€–β‚Š : ℝβ‰₯0∞`
 for convenience. -/
 theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
-    (h : βˆ€ x, ⨆ i, ↑‖g i xβ€–β‚Š < ∞) : ⨆ i, ↑‖g iβ€–β‚Š < ∞ := by
-  have h' : βˆ€ x : E, βˆƒ C : ℝ, βˆ€ i : ΞΉ, β€–g i xβ€– ≀ C := by
-    intro x
-    rcases lt_iff_exists_coe.mp (h x) with ⟨p, hp₁, _⟩
-    refine' ⟨p, fun i => _⟩
-    exact_mod_cast
-      calc
-        (β€–g i xβ€–β‚Š : ℝβ‰₯0∞) ≀ ⨆ j, ↑‖g j xβ€–β‚Š := le_iSup (fun j => (β€–g j xβ€–β‚Š : ℝβ‰₯0∞)) i
-        _ = p := hp₁
-  cases' banach_steinhaus h' with C' hC'
-  refine' (iSup_le fun i => _).trans_lt (@coe_lt_top C'.toNNReal)
-  rw [← norm_toNNReal]
-  exact coe_mono (Real.toNNReal_le_toNNReal <| hC' i)
+    (h : βˆ€ x, (⨆ i, ↑‖g i xβ€–β‚Š) < ∞) : (⨆ i, ↑‖g iβ€–β‚Š) < ∞ := by
+  rw [show ((⨆ i, ↑‖g iβ€–β‚Š) < ∞) ↔ _ from (NormedSpace.equicontinuous_TFAE g).out 8 2]
+  refine (norm_withSeminorms π•œβ‚‚ F).banach_steinhaus (fun _ x ↦ ?_)
+  simpa [← NNReal.bddAbove_coe, ← Set.range_comp] using
+    (WithTop.iSup_coe_lt_top (fun i ↦ β€–g i xβ€–β‚Š)).mp (h x)
 #align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnorm
 
 open Topology
@@ -100,33 +58,9 @@ open Filter
 /-- Given a *sequence* of continuous linear maps which converges pointwise and for which the
 domain is complete, the Banach-Steinhaus theorem is used to guarantee that the limit map
 is a *continuous* linear map as well. -/
-def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β„• β†’ E β†’SL[σ₁₂] F) {f : E β†’ F}
-    (h : Tendsto (fun n x => g n x) atTop (𝓝 f)) : E β†’SL[σ₁₂] F where
-  toFun := f
-  map_add' := (linearMapOfTendsto _ _ h).map_add'
-  map_smul' := (linearMapOfTendsto _ _ h).map_smul'
-  cont := by
-    -- show that the maps are pointwise bounded and apply `banach_steinhaus`
-    have h_point_bdd : βˆ€ x : E, βˆƒ C : ℝ, βˆ€ n : β„•, β€–g n xβ€– ≀ C := by
-      intro x
-      rcases cauchySeq_bdd (tendsto_pi_nhds.mp h x).cauchySeq with ⟨C, -, hC⟩
-      refine' ⟨C + β€–g 0 xβ€–, fun n => _⟩
-      simp_rw [dist_eq_norm] at hC
-      calc
-        β€–g n xβ€– ≀ β€–g 0 xβ€– + β€–g n x - g 0 xβ€– := norm_le_insert' _ _
-        _ ≀ C + β€–g 0 xβ€– := by linarith [hC n 0]
-    cases' banach_steinhaus h_point_bdd with C' hC'
-    /- show the uniform bound from `banach_steinhaus` is a norm bound of the limit map
-             by allowing "an `Ξ΅` of room." -/
-    refine'
-      AddMonoidHomClass.continuous_of_bound (linearMapOfTendsto _ _ h) C' fun x =>
-        le_of_forall_pos_lt_add fun Ξ΅ Ξ΅_pos => _
-    cases' Metric.tendsto_atTop.mp (tendsto_pi_nhds.mp h x) Ξ΅ Ξ΅_pos with n hn
-    have lt_Ξ΅ : β€–g n x - f xβ€– < Ξ΅ := by
-      rw [← dist_eq_norm]
-      exact hn n (le_refl n)
-    calc
-      β€–f xβ€– ≀ β€–g n xβ€– + β€–g n x - f xβ€– := norm_le_insert _ _
-      _ < β€–g nβ€– * β€–xβ€– + Ξ΅ := by linarith [lt_Ξ΅, (g n).le_op_norm x]
-      _ ≀ C' * β€–xβ€– + Ξ΅ := by nlinarith [hC' n, norm_nonneg x]
+abbrev continuousLinearMapOfTendsto {Ξ± : Type*} [CompleteSpace E] [T2Space F] {l : Filter Ξ±}
+    [l.IsCountablyGenerated] [l.NeBot] (g : Ξ± β†’ E β†’SL[σ₁₂] F) {f : E β†’ F}
+    (h : Tendsto (fun n x ↦ g n x) l (𝓝 f)) :
+    E β†’SL[σ₁₂] F :=
+  (norm_withSeminorms π•œβ‚‚ F).continuousLinearMapOfTendsto g h
 #align continuous_linear_map_of_tendsto continuousLinearMapOfTendsto
docs: replace ⬝ BLACK VERY SMALL SQUARE with · MIDDLE DOT (#6522)

MIDDLE DOT is now valid Lean syntax for function arguments, which is what these docstrings are referring to.

Diff
@@ -75,7 +75,7 @@ open ENNReal
 
 open ENNReal
 
-/-- This version of Banach-Steinhaus is stated in terms of suprema of `β†‘β€–β¬β€–β‚Š : ℝβ‰₯0∞`
+/-- This version of Banach-Steinhaus is stated in terms of suprema of `β†‘β€–Β·β€–β‚Š : ℝβ‰₯0∞`
 for convenience. -/
 theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
     (h : βˆ€ x, ⨆ i, ↑‖g i xβ€–β‚Š < ∞) : ⨆ i, ↑‖g iβ€–β‚Š < ∞ := by
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -25,14 +25,14 @@ convex spaces), but these are not yet in `mathlib`.
 
 open Set
 
-variable {E F π•œ π•œβ‚‚ : Type _} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F]
+variable {E F π•œ π•œβ‚‚ : Type*} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F]
   [NontriviallyNormedField π•œ] [NontriviallyNormedField π•œβ‚‚] [NormedSpace π•œ E] [NormedSpace π•œβ‚‚ F]
   {σ₁₂ : π•œ β†’+* π•œβ‚‚} [RingHomIsometric σ₁₂]
 
 /-- This is the standard Banach-Steinhaus theorem, or Uniform Boundedness Principle.
 If a family of continuous linear maps from a Banach space into a normed space is pointwise
 bounded, then the norms of these linear maps are uniformly bounded. -/
-theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
+theorem banach_steinhaus {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
     (h : βˆ€ x, βˆƒ C, βˆ€ i, β€–g i xβ€– ≀ C) : βˆƒ C', βˆ€ i, β€–g iβ€– ≀ C' := by
   -- sequence of subsets consisting of those `x : E` with norms `β€–g i xβ€–` bounded by `n`
   let e : β„• β†’ Set E := fun n => β‹‚ i : ΞΉ, { x : E | β€–g i xβ€– ≀ n }
@@ -77,7 +77,7 @@ open ENNReal
 
 /-- This version of Banach-Steinhaus is stated in terms of suprema of `β†‘β€–β¬β€–β‚Š : ℝβ‰₯0∞`
 for convenience. -/
-theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
+theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
     (h : βˆ€ x, ⨆ i, ↑‖g i xβ€–β‚Š < ∞) : ⨆ i, ↑‖g iβ€–β‚Š < ∞ := by
   have h' : βˆ€ x : E, βˆƒ C : ℝ, βˆ€ i : ΞΉ, β€–g i xβ€– ≀ C := by
     intro x
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Jireh Loreaux. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Jireh Loreaux
-
-! This file was ported from Lean 3 source module analysis.normed_space.banach_steinhaus
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Analysis.NormedSpace.OperatorNorm
 import Mathlib.Topology.MetricSpace.Baire
 import Mathlib.Topology.Algebra.Module.Basic
 
+#align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # The Banach-Steinhaus theorem: Uniform Boundedness Principle
 
fix: precedences of ⨆⋃⋂⨅ (#5614)
Diff
@@ -43,7 +43,7 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[Οƒ
   have hc : βˆ€ n : β„•, IsClosed (e n) := fun i =>
     isClosed_iInter fun i => isClosed_le (Continuous.norm (g i).cont) continuous_const
   -- the union is the entire space; this is where we use `h`
-  have hU : (⋃ n : β„•, e n) = univ := by
+  have hU : ⋃ n : β„•, e n = univ := by
     refine' eq_univ_of_forall fun x => _
     cases' h x with C hC
     obtain ⟨m, hm⟩ := exists_nat_ge C
@@ -81,7 +81,7 @@ open ENNReal
 /-- This version of Banach-Steinhaus is stated in terms of suprema of `β†‘β€–β¬β€–β‚Š : ℝβ‰₯0∞`
 for convenience. -/
 theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β†’ E β†’SL[σ₁₂] F}
-    (h : βˆ€ x, (⨆ i, ↑‖g i xβ€–β‚Š) < ∞) : (⨆ i, ↑‖g iβ€–β‚Š) < ∞ := by
+    (h : βˆ€ x, ⨆ i, ↑‖g i xβ€–β‚Š < ∞) : ⨆ i, ↑‖g iβ€–β‚Š < ∞ := by
   have h' : βˆ€ x : E, βˆƒ C : ℝ, βˆ€ i : ΞΉ, β€–g i xβ€– ≀ C := by
     intro x
     rcases lt_iff_exists_coe.mp (h x) with ⟨p, hp₁, _⟩
feat: port Analysis.NormedSpace.BanachSteinhaus (#4111)

Dependencies 10 + 650

651 files ported (98.5%)
287436 lines ported (98.2%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file