analysis.normed_space.banach_steinhaus
β·
Mathlib.Analysis.NormedSpace.BanachSteinhaus
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -3,8 +3,8 @@ Copyright (c) 2021 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/
-import Analysis.NormedSpace.OperatorNorm
-import Topology.MetricSpace.Baire
+import Analysis.NormedSpace.OperatorNorm.Basic
+import Topology.Baire.Lemmas
import Topology.Algebra.Module.Basic
#align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"33c67ae661dd8988516ff7f247b0be3018cdd952"
@@ -66,7 +66,7 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Ο
Β· exact div_nonneg (Nat.cast_nonneg _) Ξ΅k_pos.le
intro y le_y y_lt
calc
- βg i yβ = βg i (y + x) - g i xβ := by rw [ContinuousLinearMap.map_add, add_sub_cancel]
+ βg i yβ = βg i (y + x) - g i xβ := by rw [ContinuousLinearMap.map_add, add_sub_cancel_right]
_ β€ βg i (y + x)β + βg i xβ := (norm_sub_le _ _)
_ β€ m + m :=
(add_le_add (real_norm_le (y + x) (by rwa [add_comm, add_mem_ball_iff_norm]) i)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -127,7 +127,7 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β β E
intro x
rcases cauchySeq_bdd (tendsto_pi_nhds.mp h x).CauchySeq with β¨C, C_pos, hCβ©
refine' β¨C + βg 0 xβ, fun n => _β©
- simp_rw [dist_eq_norm] at hC
+ simp_rw [dist_eq_norm] at hC
calc
βg n xβ β€ βg 0 xβ + βg n x - g 0 xβ := norm_le_insert' _ _
_ β€ C + βg 0 xβ := by linarith [hC n 0]
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -62,7 +62,7 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Ο
replace hz := mem_Inter.mp (interior_iInter_subset _ (hΞ΅ hz)) i
apply interior_subset hz
have Ξ΅k_pos : 0 < Ξ΅ / βkβ := div_pos Ξ΅_pos (zero_lt_one.trans hk)
- refine' β¨(m + m : β) / (Ξ΅ / βkβ), fun i => ContinuousLinearMap.op_norm_le_of_shell Ξ΅_pos _ hk _β©
+ refine' β¨(m + m : β) / (Ξ΅ / βkβ), fun i => ContinuousLinearMap.opNorm_le_of_shell Ξ΅_pos _ hk _β©
Β· exact div_nonneg (Nat.cast_nonneg _) Ξ΅k_pos.le
intro y le_y y_lt
calc
@@ -141,7 +141,7 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β β E
have lt_Ξ΅ : βg n x - f xβ < Ξ΅ := by rw [β dist_eq_norm]; exact hn n (le_refl n)
calc
βf xβ β€ βg n xβ + βg n x - f xβ := norm_le_insert _ _
- _ < βg nβ * βxβ + Ξ΅ := by linarith [lt_Ξ΅, (g n).le_op_norm x]
+ _ < βg nβ * βxβ + Ξ΅ := by linarith [lt_Ξ΅, (g n).le_opNorm x]
_ β€ C' * βxβ + Ξ΅ := by nlinarith [hC' n, norm_nonneg x]
#align continuous_linear_map_of_tendsto continuousLinearMapOfTendsto
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2021 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/
-import Mathbin.Analysis.NormedSpace.OperatorNorm
-import Mathbin.Topology.MetricSpace.Baire
-import Mathbin.Topology.Algebra.Module.Basic
+import Analysis.NormedSpace.OperatorNorm
+import Topology.MetricSpace.Baire
+import Topology.Algebra.Module.Basic
#align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"33c67ae661dd8988516ff7f247b0be3018cdd952"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2021 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-
-! This file was ported from Lean 3 source module analysis.normed_space.banach_steinhaus
-! leanprover-community/mathlib commit 33c67ae661dd8988516ff7f247b0be3018cdd952
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Analysis.NormedSpace.OperatorNorm
import Mathbin.Topology.MetricSpace.Baire
import Mathbin.Topology.Algebra.Module.Basic
+#align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"33c67ae661dd8988516ff7f247b0be3018cdd952"
+
/-!
# The Banach-Steinhaus theorem: Uniform Boundedness Principle
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -35,6 +35,7 @@ variable {E F π πβ : Type _} [SeminormedAddCommGroup E] [SeminormedAddCo
[NontriviallyNormedField π] [NontriviallyNormedField πβ] [NormedSpace π E] [NormedSpace πβ F]
{Οββ : π β+* πβ} [RingHomIsometric Οββ]
+#print banach_steinhaus /-
/-- This is the standard Banach-Steinhaus theorem, or Uniform Boundedness Principle.
If a family of continuous linear maps from a Banach space into a normed space is pointwise
bounded, then the norms of these linear maps are uniformly bounded. -/
@@ -79,11 +80,13 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Ο
((one_le_div <| div_pos Ξ΅_pos (zero_lt_one.trans hk)).2 le_y))
_ = (m + m : β) / (Ξ΅ / βkβ) * βyβ := (mul_comm_div _ _ _).symm
#align banach_steinhaus banach_steinhaus
+-/
open scoped ENNReal
open ENNReal
+#print banach_steinhaus_iSup_nnnorm /-
/-- This version of Banach-Steinhaus is stated in terms of suprema of `βββ¬ββ : ββ₯0β`
for convenience. -/
theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
@@ -103,11 +106,13 @@ theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β
rw [β norm_toNNReal]
exact coe_mono (Real.toNNReal_le_toNNReal <| hC' i)
#align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnorm
+-/
open scoped Topology
open Filter
+#print continuousLinearMapOfTendsto /-
/-- Given a *sequence* of continuous linear maps which converges pointwise and for which the
domain is complete, the Banach-Steinhaus theorem is used to guarantee that the limit map
is a *continuous* linear map as well. -/
@@ -142,4 +147,5 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β β E
_ < βg nβ * βxβ + Ξ΅ := by linarith [lt_Ξ΅, (g n).le_op_norm x]
_ β€ C' * βxβ + Ξ΅ := by nlinarith [hC' n, norm_nonneg x]
#align continuous_linear_map_of_tendsto continuousLinearMapOfTendsto
+-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/7e5137f579de09a059a5ce98f364a04e221aabf0
@@ -78,7 +78,6 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Ο
(le_mul_of_one_le_right (Nat.cast_nonneg _)
((one_le_div <| div_pos Ξ΅_pos (zero_lt_one.trans hk)).2 le_y))
_ = (m + m : β) / (Ξ΅ / βkβ) * βyβ := (mul_comm_div _ _ _).symm
-
#align banach_steinhaus banach_steinhaus
open scoped ENNReal
@@ -99,7 +98,6 @@ theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β
calc
(βg i xββ : ββ₯0β) β€ β¨ j, βg j xββ := le_iSup _ i
_ = p := hpβ
-
cases' banach_steinhaus h' with C' hC'
refine' (iSup_le fun i => _).trans_lt (@coe_lt_top C'.to_nnreal)
rw [β norm_toNNReal]
@@ -131,7 +129,6 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β β E
calc
βg n xβ β€ βg 0 xβ + βg n x - g 0 xβ := norm_le_insert' _ _
_ β€ C + βg 0 xβ := by linarith [hC n 0]
-
cases' banach_steinhaus h_point_bdd with C' hC'
/- show the uniform bound from `banach_steinhaus` is a norm bound of the limit map
by allowing "an `Ξ΅` of room." -/
@@ -144,6 +141,5 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β β E
βf xβ β€ βg n xβ + βg n x - f xβ := norm_le_insert _ _
_ < βg nβ * βxβ + Ξ΅ := by linarith [lt_Ξ΅, (g n).le_op_norm x]
_ β€ C' * βxβ + Ξ΅ := by nlinarith [hC' n, norm_nonneg x]
-
#align continuous_linear_map_of_tendsto continuousLinearMapOfTendsto
mathlib commit https://github.com/leanprover-community/mathlib/commit/5f25c089cb34db4db112556f23c50d12da81b297
@@ -42,7 +42,7 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Ο
(h : β x, β C, β i, βg i xβ β€ C) : β C', β i, βg iβ β€ C' :=
by
-- sequence of subsets consisting of those `x : E` with norms `βg i xβ` bounded by `n`
- let e : β β Set E := fun n => β i : ΞΉ, { x : E | βg i xβ β€ n }
+ let e : β β Set E := fun n => β i : ΞΉ, {x : E | βg i xβ β€ n}
-- each of these sets is closed
have hc : β n : β, IsClosed (e n) := fun i =>
isClosed_iInter fun i => isClosed_le (Continuous.norm (g i).cont) continuous_const
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -127,7 +127,7 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β β E
intro x
rcases cauchySeq_bdd (tendsto_pi_nhds.mp h x).CauchySeq with β¨C, C_pos, hCβ©
refine' β¨C + βg 0 xβ, fun n => _β©
- simp_rw [dist_eq_norm] at hC
+ simp_rw [dist_eq_norm] at hC
calc
βg n xβ β€ βg 0 xβ + βg n x - g 0 xβ := norm_le_insert' _ _
_ β€ C + βg 0 xβ := by linarith [hC n 0]
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -81,7 +81,7 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Ο
#align banach_steinhaus banach_steinhaus
-open ENNReal
+open scoped ENNReal
open ENNReal
@@ -106,7 +106,7 @@ theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β
exact coe_mono (Real.toNNReal_le_toNNReal <| hC' i)
#align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnorm
-open Topology
+open scoped Topology
open Filter
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -35,9 +35,6 @@ variable {E F π πβ : Type _} [SeminormedAddCommGroup E] [SeminormedAddCo
[NontriviallyNormedField π] [NontriviallyNormedField πβ] [NormedSpace π E] [NormedSpace πβ F]
{Οββ : π β+* πβ} [RingHomIsometric Οββ]
-/- warning: banach_steinhaus -> banach_steinhaus is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align banach_steinhaus banach_steinhausβ'. -/
/-- This is the standard Banach-Steinhaus theorem, or Uniform Boundedness Principle.
If a family of continuous linear maps from a Banach space into a normed space is pointwise
bounded, then the norms of these linear maps are uniformly bounded. -/
@@ -88,9 +85,6 @@ open ENNReal
open ENNReal
-/- warning: banach_steinhaus_supr_nnnorm -> banach_steinhaus_iSup_nnnorm is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnormβ'. -/
/-- This version of Banach-Steinhaus is stated in terms of suprema of `βββ¬ββ : ββ₯0β`
for convenience. -/
theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
@@ -116,9 +110,6 @@ open Topology
open Filter
-/- warning: continuous_linear_map_of_tendsto -> continuousLinearMapOfTendsto is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map_of_tendsto continuousLinearMapOfTendstoβ'. -/
/-- Given a *sequence* of continuous linear maps which converges pointwise and for which the
domain is complete, the Banach-Steinhaus theorem is used to guarantee that the limit map
is a *continuous* linear map as well. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -148,9 +148,7 @@ def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β β E
AddMonoidHomClass.continuous_of_bound (linearMapOfTendsto _ _ h) C' fun x =>
le_of_forall_pos_lt_add fun Ξ΅ Ξ΅_pos => _
cases' metric.tendsto_at_top.mp (tendsto_pi_nhds.mp h x) Ξ΅ Ξ΅_pos with n hn
- have lt_Ξ΅ : βg n x - f xβ < Ξ΅ := by
- rw [β dist_eq_norm]
- exact hn n (le_refl n)
+ have lt_Ξ΅ : βg n x - f xβ < Ξ΅ := by rw [β dist_eq_norm]; exact hn n (le_refl n)
calc
βf xβ β€ βg n xβ + βg n x - f xβ := norm_le_insert _ _
_ < βg nβ * βxβ + Ξ΅ := by linarith [lt_Ξ΅, (g n).le_op_norm x]
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -36,10 +36,7 @@ variable {E F π πβ : Type _} [SeminormedAddCommGroup E] [SeminormedAddCo
{Οββ : π β+* πβ} [RingHomIsometric Οββ]
/- warning: banach_steinhaus -> banach_steinhaus is a dubious translation:
-lean 3 declaration is
- forall {E : Type.{u1}} {F : Type.{u2}} {π : Type.{u3}} {πβ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π] [_inst_4 : NontriviallyNormedField.{u4} πβ] [_inst_5 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2] {Οββ : RingHom.{u3, u4} π πβ (NonAssocRing.toNonAssocSemiring.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)))))) (NonAssocRing.toNonAssocSemiring.{u4} πβ (Ring.toNonAssocRing.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) (NormedField.toHasNorm.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)) (NormedField.toHasNorm.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4)) Οββ] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6))}, (forall (x : E), Exists.{1} Real (fun (C : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.hasLe (Norm.norm.{u2} F (SeminormedAddCommGroup.toHasNorm.{u2} F _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (g i) x)) C)) -> (Exists.{1} Real (fun (C' : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.hasLe (Norm.norm.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.hasOpNorm.{u3, u4, u1, u2} π πβ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ) (g i)) C'))
-but is expected to have type
- forall {E : Type.{u4}} {F : Type.{u1}} {π : Type.{u3}} {πβ : Type.{u2}} [_inst_1 : SeminormedAddCommGroup.{u4} E] [_inst_2 : SeminormedAddCommGroup.{u1} F] [_inst_3 : NontriviallyNormedField.{u3} π] [_inst_4 : NontriviallyNormedField.{u2} πβ] [_inst_5 : NormedSpace.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1] [_inst_6 : NormedSpace.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2] {Οββ : RingHom.{u3, u2} π πβ (Semiring.toNonAssocSemiring.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)))))) (Semiring.toNonAssocSemiring.{u2} πβ (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) (NormedField.toNorm.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)) (NormedField.toNorm.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4)) Οββ] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6))}, (forall (x : E), Exists.{1} Real (fun (C : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.instLEReal (Norm.norm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (SeminormedAddCommGroup.toNorm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) _inst_2) (FunLike.coe.{max (succ u4) (succ u1), succ u4, succ u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u4 u1, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) E F (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u1, u3, u2, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)))) (g i) x)) C)) -> (Exists.{1} Real (fun (C' : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.instLEReal (Norm.norm.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.hasOpNorm.{u3, u2, u4, u1} π πβ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ) (g i)) C'))
+<too large>
Case conversion may be inaccurate. Consider using '#align banach_steinhaus banach_steinhausβ'. -/
/-- This is the standard Banach-Steinhaus theorem, or Uniform Boundedness Principle.
If a family of continuous linear maps from a Banach space into a normed space is pointwise
@@ -92,10 +89,7 @@ open ENNReal
open ENNReal
/- warning: banach_steinhaus_supr_nnnorm -> banach_steinhaus_iSup_nnnorm is a dubious translation:
-lean 3 declaration is
- forall {E : Type.{u1}} {F : Type.{u2}} {π : Type.{u3}} {πβ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π] [_inst_4 : NontriviallyNormedField.{u4} πβ] [_inst_5 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2] {Οββ : RingHom.{u3, u4} π πβ (NonAssocRing.toNonAssocSemiring.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)))))) (NonAssocRing.toNonAssocSemiring.{u4} πβ (Ring.toNonAssocRing.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) (NormedField.toHasNorm.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)) (NormedField.toHasNorm.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4)) Οββ] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6))}, (forall (x : E), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ΞΉ (fun (i : ΞΉ) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCβ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{u2} F (SeminormedAddGroup.toNNNorm.{u2} F (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} F _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (g i) x)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ΞΉ (fun (i : ΞΉ) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCβ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (SeminormedAddGroup.toNNNorm.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.toSeminormedAddCommGroup.{u3, u4, u1, u2} π πβ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7))) (g i)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
-but is expected to have type
- forall {E : Type.{u4}} {F : Type.{u1}} {π : Type.{u3}} {πβ : Type.{u2}} [_inst_1 : SeminormedAddCommGroup.{u4} E] [_inst_2 : SeminormedAddCommGroup.{u1} F] [_inst_3 : NontriviallyNormedField.{u3} π] [_inst_4 : NontriviallyNormedField.{u2} πβ] [_inst_5 : NormedSpace.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1] [_inst_6 : NormedSpace.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2] {Οββ : RingHom.{u3, u2} π πβ (Semiring.toNonAssocSemiring.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)))))) (Semiring.toNonAssocSemiring.{u2} πβ (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) (NormedField.toNorm.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)) (NormedField.toNorm.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4)) Οββ] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6))}, (forall (x : E), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ΞΉ (fun (i : ΞΉ) => ENNReal.some (NNNorm.nnnorm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (SeminormedAddGroup.toNNNorm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) _inst_2)) (FunLike.coe.{max (succ u4) (succ u1), succ u4, succ u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u4 u1, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) E F (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u1, u3, u2, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)))) (g i) x)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ΞΉ (fun (i : ΞΉ) => ENNReal.some (NNNorm.nnnorm.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) (SeminormedAddGroup.toNNNorm.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.toSeminormedAddCommGroup.{u3, u2, u4, u1} π πβ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7))) (g i)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+<too large>
Case conversion may be inaccurate. Consider using '#align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnormβ'. -/
/-- This version of Banach-Steinhaus is stated in terms of suprema of `βββ¬ββ : ββ₯0β`
for convenience. -/
@@ -123,10 +117,7 @@ open Topology
open Filter
/- warning: continuous_linear_map_of_tendsto -> continuousLinearMapOfTendsto is a dubious translation:
-lean 3 declaration is
- forall {E : Type.{u1}} {F : Type.{u2}} {π : Type.{u3}} {πβ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π] [_inst_4 : NontriviallyNormedField.{u4} πβ] [_inst_5 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2] {Οββ : RingHom.{u3, u4} π πβ (NonAssocRing.toNonAssocSemiring.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)))))) (NonAssocRing.toNonAssocSemiring.{u4} πβ (Ring.toNonAssocRing.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) (NormedField.toHasNorm.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)) (NormedField.toHasNorm.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4)) Οββ] [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] [_inst_9 : T2Space.{u2} F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2)))] (g : Nat -> (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6))) {f : E -> F}, (Filter.Tendsto.{0, max u1 u2} Nat (E -> F) (fun (n : Nat) (x : E) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (g n) x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{max u1 u2} (E -> F) (Pi.topologicalSpace.{u1, u2} E (fun (x : E) => F) (fun (a : E) => UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2)))) f)) -> (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6))
-but is expected to have type
- forall {E : Type.{u1}} {F : Type.{u2}} {π : Type.{u3}} {πβ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π] [_inst_4 : NontriviallyNormedField.{u4} πβ] [_inst_5 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2] {Οββ : RingHom.{u3, u4} π πβ (Semiring.toNonAssocSemiring.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)))))) (Semiring.toNonAssocSemiring.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) (NormedField.toNorm.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)) (NormedField.toNorm.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4)) Οββ] [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] [_inst_9 : T2Space.{u2} F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2)))] (g : Nat -> (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6))) {f : E -> F}, (Filter.Tendsto.{0, max u1 u2} Nat (forall (x : E), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (fun (n : Nat) (x : E) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) E F (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u1 u2, u3, u4, u1, u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u4, u1, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)))) (g n) x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{max u1 u2} (forall (x : E), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Pi.topologicalSpace.{u1, u2} E (fun (x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (fun (a : E) => UniformSpace.toTopologicalSpace.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) (PseudoMetricSpace.toUniformSpace.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) _inst_2)))) f)) -> (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6))
+<too large>
Case conversion may be inaccurate. Consider using '#align continuous_linear_map_of_tendsto continuousLinearMapOfTendstoβ'. -/
/-- Given a *sequence* of continuous linear maps which converges pointwise and for which the
domain is complete, the Banach-Steinhaus theorem is used to guarantee that the limit map
mathlib commit https://github.com/leanprover-community/mathlib/commit/33c67ae661dd8988516ff7f247b0be3018cdd952
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
! This file was ported from Lean 3 source module analysis.normed_space.banach_steinhaus
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 33c67ae661dd8988516ff7f247b0be3018cdd952
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -15,6 +15,9 @@ import Mathbin.Topology.Algebra.Module.Basic
/-!
# The Banach-Steinhaus theorem: Uniform Boundedness Principle
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
Herein we prove the Banach-Steinhaus theorem: any collection of bounded linear maps
from a Banach space into a normed space which is pointwise bounded is uniformly bounded.
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -32,6 +32,12 @@ variable {E F π πβ : Type _} [SeminormedAddCommGroup E] [SeminormedAddCo
[NontriviallyNormedField π] [NontriviallyNormedField πβ] [NormedSpace π E] [NormedSpace πβ F]
{Οββ : π β+* πβ} [RingHomIsometric Οββ]
+/- warning: banach_steinhaus -> banach_steinhaus is a dubious translation:
+lean 3 declaration is
+ forall {E : Type.{u1}} {F : Type.{u2}} {π : Type.{u3}} {πβ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π] [_inst_4 : NontriviallyNormedField.{u4} πβ] [_inst_5 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2] {Οββ : RingHom.{u3, u4} π πβ (NonAssocRing.toNonAssocSemiring.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)))))) (NonAssocRing.toNonAssocSemiring.{u4} πβ (Ring.toNonAssocRing.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) (NormedField.toHasNorm.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)) (NormedField.toHasNorm.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4)) Οββ] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6))}, (forall (x : E), Exists.{1} Real (fun (C : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.hasLe (Norm.norm.{u2} F (SeminormedAddCommGroup.toHasNorm.{u2} F _inst_2) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (g i) x)) C)) -> (Exists.{1} Real (fun (C' : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.hasLe (Norm.norm.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.hasOpNorm.{u3, u4, u1, u2} π πβ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ) (g i)) C'))
+but is expected to have type
+ forall {E : Type.{u4}} {F : Type.{u1}} {π : Type.{u3}} {πβ : Type.{u2}} [_inst_1 : SeminormedAddCommGroup.{u4} E] [_inst_2 : SeminormedAddCommGroup.{u1} F] [_inst_3 : NontriviallyNormedField.{u3} π] [_inst_4 : NontriviallyNormedField.{u2} πβ] [_inst_5 : NormedSpace.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1] [_inst_6 : NormedSpace.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2] {Οββ : RingHom.{u3, u2} π πβ (Semiring.toNonAssocSemiring.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)))))) (Semiring.toNonAssocSemiring.{u2} πβ (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) (NormedField.toNorm.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)) (NormedField.toNorm.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4)) Οββ] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6))}, (forall (x : E), Exists.{1} Real (fun (C : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.instLEReal (Norm.norm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (SeminormedAddCommGroup.toNorm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) _inst_2) (FunLike.coe.{max (succ u4) (succ u1), succ u4, succ u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u4 u1, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) E F (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u1, u3, u2, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)))) (g i) x)) C)) -> (Exists.{1} Real (fun (C' : Real) => forall (i : ΞΉ), LE.le.{0} Real Real.instLEReal (Norm.norm.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.hasOpNorm.{u3, u2, u4, u1} π πβ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ) (g i)) C'))
+Case conversion may be inaccurate. Consider using '#align banach_steinhaus banach_steinhausβ'. -/
/-- This is the standard Banach-Steinhaus theorem, or Uniform Boundedness Principle.
If a family of continuous linear maps from a Banach space into a normed space is pointwise
bounded, then the norms of these linear maps are uniformly bounded. -/
@@ -82,6 +88,12 @@ open ENNReal
open ENNReal
+/- warning: banach_steinhaus_supr_nnnorm -> banach_steinhaus_iSup_nnnorm is a dubious translation:
+lean 3 declaration is
+ forall {E : Type.{u1}} {F : Type.{u2}} {π : Type.{u3}} {πβ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π] [_inst_4 : NontriviallyNormedField.{u4} πβ] [_inst_5 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2] {Οββ : RingHom.{u3, u4} π πβ (NonAssocRing.toNonAssocSemiring.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)))))) (NonAssocRing.toNonAssocSemiring.{u4} πβ (Ring.toNonAssocRing.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) (NormedField.toHasNorm.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)) (NormedField.toHasNorm.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4)) Οββ] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6))}, (forall (x : E), LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ΞΉ (fun (i : ΞΉ) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCβ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{u2} F (SeminormedAddGroup.toNNNorm.{u2} F (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} F _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (g i) x)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder)))) -> (LT.lt.{0} ENNReal (Preorder.toHasLt.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (CompleteSemilatticeInf.toPartialOrder.{0} ENNReal (CompleteLattice.toCompleteSemilatticeInf.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toHasSup.{0} ENNReal (CompleteLattice.toConditionallyCompleteLattice.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))) ΞΉ (fun (i : ΞΉ) => (fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) NNReal ENNReal (HasLiftT.mk.{1, 1} NNReal ENNReal (CoeTCβ.coe.{1, 1} NNReal ENNReal (coeBase.{1, 1} NNReal ENNReal ENNReal.hasCoe))) (NNNorm.nnnorm.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (SeminormedAddGroup.toNNNorm.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u1 u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.toSeminormedAddCommGroup.{u3, u4, u1, u2} π πβ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7))) (g i)))) (Top.top.{0} ENNReal (CompleteLattice.toHasTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.completeLinearOrder))))
+but is expected to have type
+ forall {E : Type.{u4}} {F : Type.{u1}} {π : Type.{u3}} {πβ : Type.{u2}} [_inst_1 : SeminormedAddCommGroup.{u4} E] [_inst_2 : SeminormedAddCommGroup.{u1} F] [_inst_3 : NontriviallyNormedField.{u3} π] [_inst_4 : NontriviallyNormedField.{u2} πβ] [_inst_5 : NormedSpace.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1] [_inst_6 : NormedSpace.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2] {Οββ : RingHom.{u3, u2} π πβ (Semiring.toNonAssocSemiring.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)))))) (Semiring.toNonAssocSemiring.{u2} πβ (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) (NormedField.toNorm.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)) (NormedField.toNorm.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4)) Οββ] {ΞΉ : Type.{u5}} [_inst_8 : CompleteSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))] {g : ΞΉ -> (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6))}, (forall (x : E), LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ΞΉ (fun (i : ΞΉ) => ENNReal.some (NNNorm.nnnorm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (SeminormedAddGroup.toNNNorm.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (SeminormedAddCommGroup.toSeminormedAddGroup.{u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) _inst_2)) (FunLike.coe.{max (succ u4) (succ u1), succ u4, succ u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u4 u1, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) E F (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u4 u1, u3, u2, u4, u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)))) (g i) x)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) -> (LT.lt.{0} ENNReal (Preorder.toLT.{0} ENNReal (PartialOrder.toPreorder.{0} ENNReal (OmegaCompletePartialOrder.toPartialOrder.{0} ENNReal (CompleteLattice.instOmegaCompletePartialOrder.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))) (iSup.{0, succ u5} ENNReal (ConditionallyCompleteLattice.toSupSet.{0} ENNReal (ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice.{0} ENNReal (ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder.{0} ENNReal (CompleteLinearOrder.toConditionallyCompleteLinearOrderBot.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal)))) ΞΉ (fun (i : ΞΉ) => ENNReal.some (NNNorm.nnnorm.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) (SeminormedAddGroup.toNNNorm.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u4 u1} (ContinuousLinearMap.{u3, u2, u4, u1} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u2} πβ (Semifield.toDivisionSemiring.{u2} πβ (Field.toSemifield.{u2} πβ (NormedField.toField.{u2} πβ (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u4} E (PseudoMetricSpace.toUniformSpace.{u4} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u4} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u4} E (SeminormedAddCommGroup.toAddCommGroup.{u4} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u1} F (PseudoMetricSpace.toUniformSpace.{u1} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} F (SeminormedAddCommGroup.toAddCommGroup.{u1} F _inst_2)) (NormedSpace.toModule.{u3, u4} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u2, u1} πβ F (NontriviallyNormedField.toNormedField.{u2} πβ _inst_4) _inst_2 _inst_6)) (ContinuousLinearMap.toSeminormedAddCommGroup.{u3, u2, u4, u1} π πβ E F _inst_1 _inst_2 _inst_3 _inst_4 _inst_5 _inst_6 Οββ _inst_7))) (g i)))) (Top.top.{0} ENNReal (CompleteLattice.toTop.{0} ENNReal (CompleteLinearOrder.toCompleteLattice.{0} ENNReal ENNReal.instCompleteLinearOrderENNReal))))
+Case conversion may be inaccurate. Consider using '#align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnormβ'. -/
/-- This version of Banach-Steinhaus is stated in terms of suprema of `βββ¬ββ : ββ₯0β`
for convenience. -/
theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
@@ -107,6 +119,12 @@ open Topology
open Filter
+/- warning: continuous_linear_map_of_tendsto -> continuousLinearMapOfTendsto is a dubious translation:
+lean 3 declaration is
+ forall {E : Type.{u1}} {F : Type.{u2}} {π : Type.{u3}} {πβ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π] [_inst_4 : NontriviallyNormedField.{u4} πβ] [_inst_5 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2] {Οββ : RingHom.{u3, u4} π πβ (NonAssocRing.toNonAssocSemiring.{u3} π (Ring.toNonAssocRing.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)))))) (NonAssocRing.toNonAssocSemiring.{u4} πβ (Ring.toNonAssocRing.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) (NormedField.toHasNorm.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)) (NormedField.toHasNorm.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4)) Οββ] [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] [_inst_9 : T2Space.{u2} F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2)))] (g : Nat -> (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6))) {f : E -> F}, (Filter.Tendsto.{0, max u1 u2} Nat (E -> F) (fun (n : Nat) (x : E) => coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (fun (_x : ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) => E -> F) (ContinuousLinearMap.toFun.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) (g n) x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring)))) (nhds.{max u1 u2} (E -> F) (Pi.topologicalSpace.{u1, u2} E (fun (x : E) => F) (fun (a : E) => UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2)))) f)) -> (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (Ring.toSemiring.{u3} π (NormedRing.toRing.{u3} π (NormedCommRing.toNormedRing.{u3} π (NormedField.toNormedCommRing.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (Ring.toSemiring.{u4} πβ (NormedRing.toRing.{u4} πβ (NormedCommRing.toNormedRing.{u4} πβ (NormedField.toNormedCommRing.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6))
+but is expected to have type
+ forall {E : Type.{u1}} {F : Type.{u2}} {π : Type.{u3}} {πβ : Type.{u4}} [_inst_1 : SeminormedAddCommGroup.{u1} E] [_inst_2 : SeminormedAddCommGroup.{u2} F] [_inst_3 : NontriviallyNormedField.{u3} π] [_inst_4 : NontriviallyNormedField.{u4} πβ] [_inst_5 : NormedSpace.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1] [_inst_6 : NormedSpace.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2] {Οββ : RingHom.{u3, u4} π πβ (Semiring.toNonAssocSemiring.{u3} π (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)))))) (Semiring.toNonAssocSemiring.{u4} πβ (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))))} [_inst_7 : RingHomIsometric.{u3, u4} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) (NormedField.toNorm.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3)) (NormedField.toNorm.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4)) Οββ] [_inst_8 : CompleteSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))] [_inst_9 : T2Space.{u2} F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2)))] (g : Nat -> (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6))) {f : E -> F}, (Filter.Tendsto.{0, max u1 u2} Nat (forall (x : E), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (fun (n : Nat) (x : E) => FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u1, u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) E F (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u1 u2, u3, u4, u1, u2} (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)) π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6) (ContinuousLinearMap.continuousSemilinearMapClass.{u3, u4, u1, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6)))) (g n) x) (Filter.atTop.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring))) (nhds.{max u1 u2} (forall (x : E), (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (Pi.topologicalSpace.{u1, u2} E (fun (x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) x) (fun (a : E) => UniformSpace.toTopologicalSpace.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) (PseudoMetricSpace.toUniformSpace.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => F) a) _inst_2)))) f)) -> (ContinuousLinearMap.{u3, u4, u1, u2} π πβ (DivisionSemiring.toSemiring.{u3} π (Semifield.toDivisionSemiring.{u3} π (Field.toSemifield.{u3} π (NormedField.toField.{u3} π (NontriviallyNormedField.toNormedField.{u3} π _inst_3))))) (DivisionSemiring.toSemiring.{u4} πβ (Semifield.toDivisionSemiring.{u4} πβ (Field.toSemifield.{u4} πβ (NormedField.toField.{u4} πβ (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4))))) Οββ E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_1))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_1)) F (UniformSpace.toTopologicalSpace.{u2} F (PseudoMetricSpace.toUniformSpace.{u2} F (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} F _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} F (SeminormedAddCommGroup.toAddCommGroup.{u2} F _inst_2)) (NormedSpace.toModule.{u3, u1} π E (NontriviallyNormedField.toNormedField.{u3} π _inst_3) _inst_1 _inst_5) (NormedSpace.toModule.{u4, u2} πβ F (NontriviallyNormedField.toNormedField.{u4} πβ _inst_4) _inst_2 _inst_6))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map_of_tendsto continuousLinearMapOfTendstoβ'. -/
/-- Given a *sequence* of continuous linear maps which converges pointwise and for which the
domain is complete, the Banach-Steinhaus theorem is used to guarantee that the limit map
is a *continuous* linear map as well. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/e3fb84046afd187b710170887195d50bada934ee
@@ -42,7 +42,7 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Ο
let e : β β Set E := fun n => β i : ΞΉ, { x : E | βg i xβ β€ n }
-- each of these sets is closed
have hc : β n : β, IsClosed (e n) := fun i =>
- isClosed_interα΅’ fun i => isClosed_le (Continuous.norm (g i).cont) continuous_const
+ isClosed_iInter fun i => isClosed_le (Continuous.norm (g i).cont) continuous_const
-- the union is the entire space; this is where we use `h`
have hU : (β n : β, e n) = univ :=
by
@@ -51,14 +51,14 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Ο
obtain β¨m, hmβ© := exists_nat_ge C
exact β¨e m, mem_range_self m, mem_Inter.mpr fun i => le_trans (hC i) hmβ©
-- apply the Baire category theorem to conclude that for some `m : β`, `e m` contains some `x`
- rcases nonempty_interior_of_unionα΅’_of_closed hc hU with β¨m, x, hxβ©
+ rcases nonempty_interior_of_iUnion_of_closed hc hU with β¨m, x, hxβ©
rcases metric.is_open_iff.mp isOpen_interior x hx with β¨Ξ΅, Ξ΅_pos, hΞ΅β©
obtain β¨k, hkβ© := NormedField.exists_one_lt_norm π
-- show all elements in the ball have norm bounded by `m` after applying any `g i`
have real_norm_le : β z : E, z β Metric.ball x Ξ΅ β β i : ΞΉ, βg i zβ β€ m :=
by
intro z hz i
- replace hz := mem_Inter.mp (interior_interα΅’_subset _ (hΞ΅ hz)) i
+ replace hz := mem_Inter.mp (interior_iInter_subset _ (hΞ΅ hz)) i
apply interior_subset hz
have Ξ΅k_pos : 0 < Ξ΅ / βkβ := div_pos Ξ΅_pos (zero_lt_one.trans hk)
refine' β¨(m + m : β) / (Ξ΅ / βkβ), fun i => ContinuousLinearMap.op_norm_le_of_shell Ξ΅_pos _ hk _β©
@@ -84,7 +84,7 @@ open ENNReal
/-- This version of Banach-Steinhaus is stated in terms of suprema of `βββ¬ββ : ββ₯0β`
for convenience. -/
-theorem banach_steinhaus_supα΅’_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
+theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
(h : β x, (β¨ i, ββg i xββ) < β) : (β¨ i, ββg iββ) < β :=
by
have h' : β x : E, β C : β, β i : ΞΉ, βg i xβ β€ C :=
@@ -94,14 +94,14 @@ theorem banach_steinhaus_supα΅’_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ
refine' β¨p, fun i => _β©
exact_mod_cast
calc
- (βg i xββ : ββ₯0β) β€ β¨ j, βg j xββ := le_supα΅’ _ i
+ (βg i xββ : ββ₯0β) β€ β¨ j, βg j xββ := le_iSup _ i
_ = p := hpβ
cases' banach_steinhaus h' with C' hC'
- refine' (supα΅’_le fun i => _).trans_lt (@coe_lt_top C'.to_nnreal)
+ refine' (iSup_le fun i => _).trans_lt (@coe_lt_top C'.to_nnreal)
rw [β norm_toNNReal]
exact coe_mono (Real.toNNReal_le_toNNReal <| hC' i)
-#align banach_steinhaus_supr_nnnorm banach_steinhaus_supα΅’_nnnorm
+#align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnorm
open Topology
mathlib commit https://github.com/leanprover-community/mathlib/commit/4c586d291f189eecb9d00581aeb3dd998ac34442
@@ -66,14 +66,14 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Ο
intro y le_y y_lt
calc
βg i yβ = βg i (y + x) - g i xβ := by rw [ContinuousLinearMap.map_add, add_sub_cancel]
- _ β€ βg i (y + x)β + βg i xβ := norm_sub_le _ _
+ _ β€ βg i (y + x)β + βg i xβ := (norm_sub_le _ _)
_ β€ m + m :=
- add_le_add (real_norm_le (y + x) (by rwa [add_comm, add_mem_ball_iff_norm]) i)
- (real_norm_le x (Metric.mem_ball_self Ξ΅_pos) i)
+ (add_le_add (real_norm_le (y + x) (by rwa [add_comm, add_mem_ball_iff_norm]) i)
+ (real_norm_le x (Metric.mem_ball_self Ξ΅_pos) i))
_ = (m + m : β) := (m.cast_add m).symm
_ β€ (m + m : β) * (βyβ / (Ξ΅ / βkβ)) :=
- le_mul_of_one_le_right (Nat.cast_nonneg _)
- ((one_le_div <| div_pos Ξ΅_pos (zero_lt_one.trans hk)).2 le_y)
+ (le_mul_of_one_le_right (Nat.cast_nonneg _)
+ ((one_le_div <| div_pos Ξ΅_pos (zero_lt_one.trans hk)).2 le_y))
_ = (m + m : β) / (Ξ΅ / βkβ) * βyβ := (mul_comm_div _ _ _).symm
#align banach_steinhaus banach_steinhaus
mathlib commit https://github.com/leanprover-community/mathlib/commit/eb0cb4511aaef0da2462207b67358a0e1fe1e2ee
@@ -78,9 +78,9 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Ο
#align banach_steinhaus banach_steinhaus
-open Ennreal
+open ENNReal
-open Ennreal
+open ENNReal
/-- This version of Banach-Steinhaus is stated in terms of suprema of `βββ¬ββ : ββ₯0β`
for convenience. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
ball
and bex
from lemma names (#10816)
ball
for "bounded forall" and bex
for "bounded exists" are from experience very confusing abbreviations. This PR renames them to forall_mem
and exists_mem
in the few Set
lemma names that mention them.
Also deprecate ball_image_of_ball
, mem_image_elim
, mem_image_elim_on
since those lemmas are duplicates of the renamed lemmas (apart from argument order and implicitness, which I am also fixing by making the binder in the RHS of forall_mem_image
semi-implicit), have obscure names and are completely unused.
@@ -35,7 +35,7 @@ theorem banach_steinhaus {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β E βSL[Ο
(h : β x, β C, β i, βg i xβ β€ C) : β C', β i, βg iβ β€ C' := by
rw [show (β C, β i, βg iβ β€ C) β _ from (NormedSpace.equicontinuous_TFAE g).out 5 2]
refine (norm_withSeminorms πβ F).banach_steinhaus (fun _ x β¦ ?_)
- simpa [bddAbove_def, forall_range_iff] using h x
+ simpa [bddAbove_def, forall_mem_range] using h x
#align banach_steinhaus banach_steinhaus
open ENNReal
MetricSpace/Baire
(#10648)
Topology/Defs/Basic
;Topology/Baire/Lemmas
;Topology/Baire/CompleteMetrizable
and Topology/Baire/LocallyCompactRegular
;[UniformSpace X] [IsCountablyGenerated (π€ X)]
instead of [PseudoMetricSpace X]
in the 1st theorem.This way Lemmas
file does not depend on analysis.
@@ -5,6 +5,7 @@ Authors: Jireh Loreaux
-/
import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace
import Mathlib.Analysis.LocallyConvex.Barrelled
+import Mathlib.Topology.Baire.CompleteMetrizable
#align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
Split the 2300-line behemoth OperatorNorm.lean
into 8 smaller files, of which the largest is 600 lines.
@@ -3,7 +3,7 @@ Copyright (c) 2021 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/
-import Mathlib.Analysis.NormedSpace.OperatorNorm
+import Mathlib.Analysis.NormedSpace.OperatorNorm.NormedSpace
import Mathlib.Analysis.LocallyConvex.Barrelled
#align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
WithTop
lemmas (#6947)
and corresponding lemmas for ββ
.
Also fix implicitness of iff
lemmas.
@@ -47,8 +47,7 @@ theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β
(h : β x, (β¨ i, ββg i xββ) < β) : (β¨ i, ββg iββ) < β := by
rw [show ((β¨ i, ββg iββ) < β) β _ from (NormedSpace.equicontinuous_TFAE g).out 8 2]
refine (norm_withSeminorms πβ F).banach_steinhaus (fun _ x β¦ ?_)
- simpa [β NNReal.bddAbove_coe, β Set.range_comp] using
- (WithTop.iSup_coe_lt_top (fun i β¦ βg i xββ)).mp (h x)
+ simpa [β NNReal.bddAbove_coe, β Set.range_comp] using ENNReal.iSup_coe_lt_top.1 (h x)
#align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnorm
open Topology
@@ -4,25 +4,21 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/
import Mathlib.Analysis.NormedSpace.OperatorNorm
-import Mathlib.Topology.MetricSpace.Baire
-import Mathlib.Topology.Algebra.Module.Basic
+import Mathlib.Analysis.LocallyConvex.Barrelled
#align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
/-!
# The Banach-Steinhaus theorem: Uniform Boundedness Principle
-Herein we prove the Banach-Steinhaus theorem: any collection of bounded linear maps
-from a Banach space into a normed space which is pointwise bounded is uniformly bounded.
+Herein we prove the Banach-Steinhaus theorem for normed spaces: any collection of bounded linear
+maps from a Banach space into a normed space which is pointwise bounded is uniformly bounded.
-## TODO
-
-For now, we only prove the standard version by appeal to the Baire category theorem.
-Much more general versions exist (in particular, for maps from barrelled spaces to locally
-convex spaces), but these are not yet in `mathlib`.
+Note that we prove the more general version about barrelled spaces in
+`Analysis.LocallyConvex.Barrelled`, and the usual version below is indeed deduced from the
+more general setup.
-/
-
open Set
variable {E F π πβ : Type*} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F]
@@ -31,44 +27,14 @@ variable {E F π πβ : Type*} [SeminormedAddCommGroup E] [SeminormedAddCom
/-- This is the standard Banach-Steinhaus theorem, or Uniform Boundedness Principle.
If a family of continuous linear maps from a Banach space into a normed space is pointwise
-bounded, then the norms of these linear maps are uniformly bounded. -/
+bounded, then the norms of these linear maps are uniformly bounded.
+
+See also `WithSeminorms.banach_steinhaus` for the general statement in barrelled spaces. -/
theorem banach_steinhaus {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
(h : β x, β C, β i, βg i xβ β€ C) : β C', β i, βg iβ β€ C' := by
- -- sequence of subsets consisting of those `x : E` with norms `βg i xβ` bounded by `n`
- let e : β β Set E := fun n => β i : ΞΉ, { x : E | βg i xβ β€ n }
- -- each of these sets is closed
- have hc : β n : β, IsClosed (e n) := fun i =>
- isClosed_iInter fun i => isClosed_le (Continuous.norm (g i).cont) continuous_const
- -- the union is the entire space; this is where we use `h`
- have hU : β n : β, e n = univ := by
- refine' eq_univ_of_forall fun x => _
- cases' h x with C hC
- obtain β¨m, hmβ© := exists_nat_ge C
- exact β¨e m, mem_range_self m, mem_iInter.mpr fun i => le_trans (hC i) hmβ©
- -- apply the Baire category theorem to conclude that for some `m : β`, `e m` contains some `x`
- rcases nonempty_interior_of_iUnion_of_closed hc hU with β¨m, x, hxβ©
- rcases Metric.isOpen_iff.mp isOpen_interior x hx with β¨Ξ΅, Ξ΅_pos, hΞ΅β©
- obtain β¨k, hkβ© := NormedField.exists_one_lt_norm π
- -- show all elements in the ball have norm bounded by `m` after applying any `g i`
- have real_norm_le : β z : E, z β Metric.ball x Ξ΅ β β i : ΞΉ, βg i zβ β€ m := by
- intro z hz i
- replace hz := mem_iInter.mp (interior_iInter_subset _ (hΞ΅ hz)) i
- apply interior_subset hz
- have Ξ΅k_pos : 0 < Ξ΅ / βkβ := div_pos Ξ΅_pos (zero_lt_one.trans hk)
- refine' β¨(m + m : β) / (Ξ΅ / βkβ), fun i => ContinuousLinearMap.op_norm_le_of_shell Ξ΅_pos _ hk _β©
- Β· exact div_nonneg (Nat.cast_nonneg _) Ξ΅k_pos.le
- intro y le_y y_lt
- calc
- βg i yβ = βg i (y + x) - g i xβ := by rw [ContinuousLinearMap.map_add, add_sub_cancel]
- _ β€ βg i (y + x)β + βg i xβ := (norm_sub_le _ _)
- _ β€ m + m :=
- (add_le_add (real_norm_le (y + x) (by rwa [add_comm, add_mem_ball_iff_norm]) i)
- (real_norm_le x (Metric.mem_ball_self Ξ΅_pos) i))
- _ = (m + m : β) := (m.cast_add m).symm
- _ β€ (m + m : β) * (βyβ / (Ξ΅ / βkβ)) :=
- (le_mul_of_one_le_right (Nat.cast_nonneg _)
- ((one_le_div <| div_pos Ξ΅_pos (zero_lt_one.trans hk)).2 le_y))
- _ = (m + m : β) / (Ξ΅ / βkβ) * βyβ := (mul_comm_div _ _ _).symm
+ rw [show (β C, β i, βg iβ β€ C) β _ from (NormedSpace.equicontinuous_TFAE g).out 5 2]
+ refine (norm_withSeminorms πβ F).banach_steinhaus (fun _ x β¦ ?_)
+ simpa [bddAbove_def, forall_range_iff] using h x
#align banach_steinhaus banach_steinhaus
open ENNReal
@@ -78,19 +44,11 @@ open ENNReal
/-- This version of Banach-Steinhaus is stated in terms of suprema of `ββΒ·ββ : ββ₯0β`
for convenience. -/
theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
- (h : β x, β¨ i, ββg i xββ < β) : β¨ i, ββg iββ < β := by
- have h' : β x : E, β C : β, β i : ΞΉ, βg i xβ β€ C := by
- intro x
- rcases lt_iff_exists_coe.mp (h x) with β¨p, hpβ, _β©
- refine' β¨p, fun i => _β©
- exact_mod_cast
- calc
- (βg i xββ : ββ₯0β) β€ β¨ j, ββg j xββ := le_iSup (fun j => (βg j xββ : ββ₯0β)) i
- _ = p := hpβ
- cases' banach_steinhaus h' with C' hC'
- refine' (iSup_le fun i => _).trans_lt (@coe_lt_top C'.toNNReal)
- rw [β norm_toNNReal]
- exact coe_mono (Real.toNNReal_le_toNNReal <| hC' i)
+ (h : β x, (β¨ i, ββg i xββ) < β) : (β¨ i, ββg iββ) < β := by
+ rw [show ((β¨ i, ββg iββ) < β) β _ from (NormedSpace.equicontinuous_TFAE g).out 8 2]
+ refine (norm_withSeminorms πβ F).banach_steinhaus (fun _ x β¦ ?_)
+ simpa [β NNReal.bddAbove_coe, β Set.range_comp] using
+ (WithTop.iSup_coe_lt_top (fun i β¦ βg i xββ)).mp (h x)
#align banach_steinhaus_supr_nnnorm banach_steinhaus_iSup_nnnorm
open Topology
@@ -100,33 +58,9 @@ open Filter
/-- Given a *sequence* of continuous linear maps which converges pointwise and for which the
domain is complete, the Banach-Steinhaus theorem is used to guarantee that the limit map
is a *continuous* linear map as well. -/
-def continuousLinearMapOfTendsto [CompleteSpace E] [T2Space F] (g : β β E βSL[Οββ] F) {f : E β F}
- (h : Tendsto (fun n x => g n x) atTop (π f)) : E βSL[Οββ] F where
- toFun := f
- map_add' := (linearMapOfTendsto _ _ h).map_add'
- map_smul' := (linearMapOfTendsto _ _ h).map_smul'
- cont := by
- -- show that the maps are pointwise bounded and apply `banach_steinhaus`
- have h_point_bdd : β x : E, β C : β, β n : β, βg n xβ β€ C := by
- intro x
- rcases cauchySeq_bdd (tendsto_pi_nhds.mp h x).cauchySeq with β¨C, -, hCβ©
- refine' β¨C + βg 0 xβ, fun n => _β©
- simp_rw [dist_eq_norm] at hC
- calc
- βg n xβ β€ βg 0 xβ + βg n x - g 0 xβ := norm_le_insert' _ _
- _ β€ C + βg 0 xβ := by linarith [hC n 0]
- cases' banach_steinhaus h_point_bdd with C' hC'
- /- show the uniform bound from `banach_steinhaus` is a norm bound of the limit map
- by allowing "an `Ξ΅` of room." -/
- refine'
- AddMonoidHomClass.continuous_of_bound (linearMapOfTendsto _ _ h) C' fun x =>
- le_of_forall_pos_lt_add fun Ξ΅ Ξ΅_pos => _
- cases' Metric.tendsto_atTop.mp (tendsto_pi_nhds.mp h x) Ξ΅ Ξ΅_pos with n hn
- have lt_Ξ΅ : βg n x - f xβ < Ξ΅ := by
- rw [β dist_eq_norm]
- exact hn n (le_refl n)
- calc
- βf xβ β€ βg n xβ + βg n x - f xβ := norm_le_insert _ _
- _ < βg nβ * βxβ + Ξ΅ := by linarith [lt_Ξ΅, (g n).le_op_norm x]
- _ β€ C' * βxβ + Ξ΅ := by nlinarith [hC' n, norm_nonneg x]
+abbrev continuousLinearMapOfTendsto {Ξ± : Type*} [CompleteSpace E] [T2Space F] {l : Filter Ξ±}
+ [l.IsCountablyGenerated] [l.NeBot] (g : Ξ± β E βSL[Οββ] F) {f : E β F}
+ (h : Tendsto (fun n x β¦ g n x) l (π f)) :
+ E βSL[Οββ] F :=
+ (norm_withSeminorms πβ F).continuousLinearMapOfTendsto g h
#align continuous_linear_map_of_tendsto continuousLinearMapOfTendsto
β¬ BLACK VERY SMALL SQUARE
with Β· MIDDLE DOT
(#6522)
MIDDLE DOT
is now valid Lean syntax for function arguments, which is what these docstrings are referring to.
@@ -75,7 +75,7 @@ open ENNReal
open ENNReal
-/-- This version of Banach-Steinhaus is stated in terms of suprema of `βββ¬ββ : ββ₯0β`
+/-- This version of Banach-Steinhaus is stated in terms of suprema of `ββΒ·ββ : ββ₯0β`
for convenience. -/
theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
(h : β x, β¨ i, ββg i xββ < β) : β¨ i, ββg iββ < β := by
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -25,14 +25,14 @@ convex spaces), but these are not yet in `mathlib`.
open Set
-variable {E F π πβ : Type _} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F]
+variable {E F π πβ : Type*} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F]
[NontriviallyNormedField π] [NontriviallyNormedField πβ] [NormedSpace π E] [NormedSpace πβ F]
{Οββ : π β+* πβ} [RingHomIsometric Οββ]
/-- This is the standard Banach-Steinhaus theorem, or Uniform Boundedness Principle.
If a family of continuous linear maps from a Banach space into a normed space is pointwise
bounded, then the norms of these linear maps are uniformly bounded. -/
-theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
+theorem banach_steinhaus {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
(h : β x, β C, β i, βg i xβ β€ C) : β C', β i, βg iβ β€ C' := by
-- sequence of subsets consisting of those `x : E` with norms `βg i xβ` bounded by `n`
let e : β β Set E := fun n => β i : ΞΉ, { x : E | βg i xβ β€ n }
@@ -77,7 +77,7 @@ open ENNReal
/-- This version of Banach-Steinhaus is stated in terms of suprema of `βββ¬ββ : ββ₯0β`
for convenience. -/
-theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
+theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type*} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
(h : β x, β¨ i, ββg i xββ < β) : β¨ i, ββg iββ < β := by
have h' : β x : E, β C : β, β i : ΞΉ, βg i xβ β€ C := by
intro x
@@ -2,16 +2,13 @@
Copyright (c) 2021 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-
-! This file was ported from Lean 3 source module analysis.normed_space.banach_steinhaus
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Analysis.NormedSpace.OperatorNorm
import Mathlib.Topology.MetricSpace.Baire
import Mathlib.Topology.Algebra.Module.Basic
+#align_import analysis.normed_space.banach_steinhaus from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
/-!
# The Banach-Steinhaus theorem: Uniform Boundedness Principle
@@ -43,7 +43,7 @@ theorem banach_steinhaus {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Ο
have hc : β n : β, IsClosed (e n) := fun i =>
isClosed_iInter fun i => isClosed_le (Continuous.norm (g i).cont) continuous_const
-- the union is the entire space; this is where we use `h`
- have hU : (β n : β, e n) = univ := by
+ have hU : β n : β, e n = univ := by
refine' eq_univ_of_forall fun x => _
cases' h x with C hC
obtain β¨m, hmβ© := exists_nat_ge C
@@ -81,7 +81,7 @@ open ENNReal
/-- This version of Banach-Steinhaus is stated in terms of suprema of `βββ¬ββ : ββ₯0β`
for convenience. -/
theorem banach_steinhaus_iSup_nnnorm {ΞΉ : Type _} [CompleteSpace E] {g : ΞΉ β E βSL[Οββ] F}
- (h : β x, (β¨ i, ββg i xββ) < β) : (β¨ i, ββg iββ) < β := by
+ (h : β x, β¨ i, ββg i xββ < β) : β¨ i, ββg iββ < β := by
have h' : β x : E, β C : β, β i : ΞΉ, βg i xβ β€ C := by
intro x
rcases lt_iff_exists_coe.mp (h x) with β¨p, hpβ, _β©
The unported dependencies are
algebra.order.module
init.core
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
init.data.list.default
algebra.order.monoid.cancel.basic
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file