analysis.normed_space.dual ⟷ Mathlib.Analysis.NormedSpace.Dual

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Heather Macbeth
 -/
 import Analysis.NormedSpace.HahnBanach.Extension
-import Analysis.NormedSpace.IsROrC
+import Analysis.NormedSpace.RCLike
 import Analysis.LocallyConvex.Polar
 
 #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
@@ -137,7 +137,7 @@ end General
 
 section BidualIsometry
 
-variable (π•œ : Type v) [IsROrC π•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace π•œ E]
+variable (π•œ : Type v) [RCLike π•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace π•œ E]
 
 #print NormedSpace.norm_le_dual_bound /-
 /-- If one controls the norm of every `f x`, then one controls the norm of `x`.
@@ -302,7 +302,7 @@ theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
 #print NormedSpace.polar_closedBall /-
 /-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with
 inverse radius. -/
-theorem polar_closedBall {π•œ E : Type _} [IsROrC π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {r : ℝ}
+theorem polar_closedBall {π•œ E : Type _} [RCLike π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {r : ℝ}
     (hr : 0 < r) : polar π•œ (closedBall (0 : E) r) = closedBall (0 : Dual π•œ E) r⁻¹ :=
   by
   refine' subset.antisymm _ (closed_ball_inv_subset_polar_closed_ball _)
Diff
@@ -265,7 +265,7 @@ theorem smul_mem_polar {s : Set E} {x' : Dual π•œ E} {c : π•œ} (hc : βˆ€ z, z
     apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _)
   have cancel : β€–c⁻¹‖ * β€–cβ€– = 1 := by
     simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv]
-  rwa [cancel] at le 
+  rwa [cancel] at le
 #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar
 -/
 
@@ -274,7 +274,7 @@ theorem polar_ball_subset_closedBall_div {c : π•œ} (hc : 1 < β€–cβ€–) {r : ℝ}
     polar π•œ (ball (0 : E) r) βŠ† closedBall (0 : Dual π•œ E) (β€–cβ€– / r) :=
   by
   intro x' hx'
-  rw [mem_polar_iff] at hx' 
+  rw [mem_polar_iff] at hx'
   simp only [polar, mem_set_of_eq, mem_closedBall_zero_iff, mem_ball_zero_iff] at *
   have hcr : 0 < β€–cβ€– / r := div_pos (zero_lt_one.trans hc) hr
   refine' ContinuousLinearMap.opNorm_le_of_shell hr hcr.le hc fun x h₁ hβ‚‚ => _
Diff
@@ -95,7 +95,7 @@ theorem dual_def (x : E) (f : Dual π•œ E) : inclusionInDoubleDual π•œ E x f =
 #print NormedSpace.inclusionInDoubleDual_norm_eq /-
 theorem inclusionInDoubleDual_norm_eq :
     β€–inclusionInDoubleDual π•œ Eβ€– = β€–ContinuousLinearMap.id π•œ (Dual π•œ E)β€– :=
-  ContinuousLinearMap.op_norm_flip _
+  ContinuousLinearMap.opNorm_flip _
 #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq
 -/
 
@@ -107,7 +107,7 @@ theorem inclusionInDoubleDual_norm_le : β€–inclusionInDoubleDual π•œ Eβ€– ≀ 1
 
 #print NormedSpace.double_dual_bound /-
 theorem double_dual_bound (x : E) : β€–(inclusionInDoubleDual π•œ E) xβ€– ≀ β€–xβ€– := by
-  simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusion_in_double_dual_norm_le π•œ E) x
+  simpa using ContinuousLinearMap.le_of_opNorm_le _ (inclusion_in_double_dual_norm_le π•œ E) x
 #align normed_space.double_dual_bound NormedSpace.double_dual_bound
 -/
 
@@ -277,7 +277,7 @@ theorem polar_ball_subset_closedBall_div {c : π•œ} (hc : 1 < β€–cβ€–) {r : ℝ}
   rw [mem_polar_iff] at hx' 
   simp only [polar, mem_set_of_eq, mem_closedBall_zero_iff, mem_ball_zero_iff] at *
   have hcr : 0 < β€–cβ€– / r := div_pos (zero_lt_one.trans hc) hr
-  refine' ContinuousLinearMap.op_norm_le_of_shell hr hcr.le hc fun x h₁ hβ‚‚ => _
+  refine' ContinuousLinearMap.opNorm_le_of_shell hr hcr.le hc fun x h₁ hβ‚‚ => _
   calc
     β€–x' xβ€– ≀ 1 := hx' _ hβ‚‚
     _ ≀ β€–cβ€– / r * β€–xβ€– := (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa [inv_div])
@@ -308,7 +308,7 @@ theorem polar_closedBall {π•œ E : Type _} [IsROrC π•œ] [NormedAddCommGroup E]
   refine' subset.antisymm _ (closed_ball_inv_subset_polar_closed_ball _)
   intro x' h
   simp only [mem_closedBall_zero_iff]
-  refine' ContinuousLinearMap.op_norm_le_of_ball hr (inv_nonneg.mpr hr.le) fun z hz => _
+  refine' ContinuousLinearMap.opNorm_le_of_ball hr (inv_nonneg.mpr hr.le) fun z hz => _
   simpa only [one_div] using LinearMap.bound_of_ball_bound' hr 1 x'.to_linear_map h z
 #align normed_space.polar_closed_ball NormedSpace.polar_closedBall
 -/
Diff
@@ -143,7 +143,16 @@ variable (π•œ : Type v) [IsROrC π•œ] {E : Type u} [NormedAddCommGroup E] [Norm
 /-- If one controls the norm of every `f x`, then one controls the norm of `x`.
     Compare `continuous_linear_map.op_norm_le_bound`. -/
 theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual π•œ E, β€–f xβ€– ≀ M * β€–fβ€–) :
-    β€–xβ€– ≀ M := by classical
+    β€–xβ€– ≀ M := by
+  classical
+  by_cases h : x = 0
+  Β· simp only [h, hMp, norm_zero]
+  Β· obtain ⟨f, hf₁, hfx⟩ : βˆƒ f : E β†’L[π•œ] π•œ, β€–fβ€– = 1 ∧ f x = β€–xβ€– := exists_dual_vector π•œ x h
+    calc
+      β€–xβ€– = β€–(β€–xβ€– : π•œ)β€– := is_R_or_C.norm_coe_norm.symm
+      _ = β€–f xβ€– := by rw [hfx]
+      _ ≀ M * β€–fβ€– := (hM f)
+      _ = M := by rw [hf₁, mul_one]
 #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound
 -/
 
Diff
@@ -143,16 +143,7 @@ variable (π•œ : Type v) [IsROrC π•œ] {E : Type u} [NormedAddCommGroup E] [Norm
 /-- If one controls the norm of every `f x`, then one controls the norm of `x`.
     Compare `continuous_linear_map.op_norm_le_bound`. -/
 theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual π•œ E, β€–f xβ€– ≀ M * β€–fβ€–) :
-    β€–xβ€– ≀ M := by
-  classical
-  by_cases h : x = 0
-  Β· simp only [h, hMp, norm_zero]
-  Β· obtain ⟨f, hf₁, hfx⟩ : βˆƒ f : E β†’L[π•œ] π•œ, β€–fβ€– = 1 ∧ f x = β€–xβ€– := exists_dual_vector π•œ x h
-    calc
-      β€–xβ€– = β€–(β€–xβ€– : π•œ)β€– := is_R_or_C.norm_coe_norm.symm
-      _ = β€–f xβ€– := by rw [hfx]
-      _ ≀ M * β€–fβ€– := (hM f)
-      _ = M := by rw [hf₁, mul_one]
+    β€–xβ€– ≀ M := by classical
 #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound
 -/
 
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2020 Heather Macbeth. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Heather Macbeth
 -/
-import Mathbin.Analysis.NormedSpace.HahnBanach.Extension
-import Mathbin.Analysis.NormedSpace.IsROrC
-import Mathbin.Analysis.LocallyConvex.Polar
+import Analysis.NormedSpace.HahnBanach.Extension
+import Analysis.NormedSpace.IsROrC
+import Analysis.LocallyConvex.Polar
 
 #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
 
Diff
@@ -313,10 +313,11 @@ theorem polar_closedBall {π•œ E : Type _} [IsROrC π•œ] [NormedAddCommGroup E]
 #align normed_space.polar_closed_ball NormedSpace.polar_closedBall
 -/
 
-#print NormedSpace.bounded_polar_of_mem_nhds_zero /-
+#print NormedSpace.isBounded_polar_of_mem_nhds_zero /-
 /-- Given a neighborhood `s` of the origin in a normed space `E`, the dual norms
 of all elements of the polar `polar π•œ s` are bounded by a constant. -/
-theorem bounded_polar_of_mem_nhds_zero {s : Set E} (s_nhd : s ∈ 𝓝 (0 : E)) : Bounded (polar π•œ s) :=
+theorem isBounded_polar_of_mem_nhds_zero {s : Set E} (s_nhd : s ∈ 𝓝 (0 : E)) :
+    Bounded (polar π•œ s) :=
   by
   obtain ⟨a, ha⟩ : βˆƒ a : π•œ, 1 < β€–aβ€– := NormedField.exists_one_lt_norm π•œ
   obtain ⟨r, r_pos, r_ball⟩ : βˆƒ (r : ℝ) (hr : 0 < r), ball 0 r βŠ† s := Metric.mem_nhds_iff.1 s_nhd
@@ -324,7 +325,7 @@ theorem bounded_polar_of_mem_nhds_zero {s : Set E} (s_nhd : s ∈ 𝓝 (0 : E))
     bounded_closed_ball.mono
       (((dual_pairing π•œ E).flip.polar_antitone r_ball).trans <|
         polar_ball_subset_closed_ball_div ha r_pos)
-#align normed_space.bounded_polar_of_mem_nhds_zero NormedSpace.bounded_polar_of_mem_nhds_zero
+#align normed_space.bounded_polar_of_mem_nhds_zero NormedSpace.isBounded_polar_of_mem_nhds_zero
 -/
 
 end PolarSets
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2020 Heather Macbeth. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Heather Macbeth
-
-! This file was ported from Lean 3 source module analysis.normed_space.dual
-! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.NormedSpace.HahnBanach.Extension
 import Mathbin.Analysis.NormedSpace.IsROrC
 import Mathbin.Analysis.LocallyConvex.Polar
 
+#align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"0b7c740e25651db0ba63648fbae9f9d6f941e31b"
+
 /-!
 # The topological dual of a normed space
 
Diff
@@ -88,23 +88,31 @@ def inclusionInDoubleDual : E β†’L[π•œ] Dual π•œ (Dual π•œ E) :=
 #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual
 -/
 
+#print NormedSpace.dual_def /-
 @[simp]
 theorem dual_def (x : E) (f : Dual π•œ E) : inclusionInDoubleDual π•œ E x f = f x :=
   rfl
 #align normed_space.dual_def NormedSpace.dual_def
+-/
 
+#print NormedSpace.inclusionInDoubleDual_norm_eq /-
 theorem inclusionInDoubleDual_norm_eq :
     β€–inclusionInDoubleDual π•œ Eβ€– = β€–ContinuousLinearMap.id π•œ (Dual π•œ E)β€– :=
   ContinuousLinearMap.op_norm_flip _
 #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq
+-/
 
+#print NormedSpace.inclusionInDoubleDual_norm_le /-
 theorem inclusionInDoubleDual_norm_le : β€–inclusionInDoubleDual π•œ Eβ€– ≀ 1 := by
   rw [inclusion_in_double_dual_norm_eq]; exact ContinuousLinearMap.norm_id_le
 #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le
+-/
 
+#print NormedSpace.double_dual_bound /-
 theorem double_dual_bound (x : E) : β€–(inclusionInDoubleDual π•œ E) xβ€– ≀ β€–xβ€– := by
   simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusion_in_double_dual_norm_le π•œ E) x
 #align normed_space.double_dual_bound NormedSpace.double_dual_bound
+-/
 
 #print NormedSpace.dualPairing /-
 /-- The dual pairing as a bilinear form. -/
@@ -113,16 +121,20 @@ def dualPairing : Dual π•œ E β†’β‚—[π•œ] E β†’β‚—[π•œ] π•œ :=
 #align normed_space.dual_pairing NormedSpace.dualPairing
 -/
 
+#print NormedSpace.dualPairing_apply /-
 @[simp]
 theorem dualPairing_apply {v : Dual π•œ E} {x : E} : dualPairing π•œ E v x = v x :=
   rfl
 #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply
+-/
 
+#print NormedSpace.dualPairing_separatingLeft /-
 theorem dualPairing_separatingLeft : (dualPairing π•œ E).SeparatingLeft :=
   by
   rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot]
   exact ContinuousLinearMap.coe_injective
 #align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft
+-/
 
 end General
 
@@ -130,6 +142,7 @@ section BidualIsometry
 
 variable (π•œ : Type v) [IsROrC π•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace π•œ E]
 
+#print NormedSpace.norm_le_dual_bound /-
 /-- If one controls the norm of every `f x`, then one controls the norm of `x`.
     Compare `continuous_linear_map.op_norm_le_bound`. -/
 theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual π•œ E, β€–f xβ€– ≀ M * β€–fβ€–) :
@@ -144,21 +157,28 @@ theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual
       _ ≀ M * β€–fβ€– := (hM f)
       _ = M := by rw [hf₁, mul_one]
 #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound
+-/
 
+#print NormedSpace.eq_zero_of_forall_dual_eq_zero /-
 theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : βˆ€ f : Dual π•œ E, f x = (0 : π•œ)) : x = 0 :=
   norm_le_zero_iff.mp (norm_le_dual_bound π•œ x le_rfl fun f => by simp [h f])
 #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero
+-/
 
+#print NormedSpace.eq_zero_iff_forall_dual_eq_zero /-
 theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 ↔ βˆ€ g : Dual π•œ E, g x = 0 :=
   ⟨fun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero π•œ h⟩
 #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero
+-/
 
+#print NormedSpace.eq_iff_forall_dual_eq /-
 /-- See also `geometric_hahn_banach_point_point`. -/
 theorem eq_iff_forall_dual_eq {x y : E} : x = y ↔ βˆ€ g : Dual π•œ E, g x = g y :=
   by
   rw [← sub_eq_zero, eq_zero_iff_forall_dual_eq_zero π•œ (x - y)]
   simp [sub_eq_zero]
 #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq
+-/
 
 #print NormedSpace.inclusionInDoubleDualLi /-
 /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/
@@ -195,15 +215,19 @@ variable (π•œ : Type _) [NontriviallyNormedField π•œ]
 
 variable {E : Type _} [SeminormedAddCommGroup E] [NormedSpace π•œ E]
 
+#print NormedSpace.mem_polar_iff /-
 theorem mem_polar_iff {x' : Dual π•œ E} (s : Set E) : x' ∈ polar π•œ s ↔ βˆ€ z ∈ s, β€–x' zβ€– ≀ 1 :=
   Iff.rfl
 #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff
+-/
 
+#print NormedSpace.polar_univ /-
 @[simp]
 theorem polar_univ : polar π•œ (univ : Set E) = {(0 : dual π•œ E)} :=
   (dualPairing π•œ E).flip.polar_univ
     (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft π•œ E))
 #align normed_space.polar_univ NormedSpace.polar_univ
+-/
 
 #print NormedSpace.isClosed_polar /-
 theorem isClosed_polar (s : Set E) : IsClosed (polar π•œ s) :=
@@ -228,6 +252,7 @@ theorem polar_closure (s : Set E) : polar π•œ (closure s) = polar π•œ s :=
 
 variable {π•œ}
 
+#print NormedSpace.smul_mem_polar /-
 /-- If `x'` is a dual element such that the norms `β€–x' zβ€–` are bounded for `z ∈ s`, then a
 small scalar multiple of `x'` is in `polar π•œ s`. -/
 theorem smul_mem_polar {s : Set E} {x' : Dual π•œ E} {c : π•œ} (hc : βˆ€ z, z ∈ s β†’ β€–x' zβ€– ≀ β€–cβ€–) :
@@ -245,7 +270,9 @@ theorem smul_mem_polar {s : Set E} {x' : Dual π•œ E} {c : π•œ} (hc : βˆ€ z, z
     simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv]
   rwa [cancel] at le 
 #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar
+-/
 
+#print NormedSpace.polar_ball_subset_closedBall_div /-
 theorem polar_ball_subset_closedBall_div {c : π•œ} (hc : 1 < β€–cβ€–) {r : ℝ} (hr : 0 < r) :
     polar π•œ (ball (0 : E) r) βŠ† closedBall (0 : Dual π•œ E) (β€–cβ€– / r) :=
   by
@@ -258,9 +285,11 @@ theorem polar_ball_subset_closedBall_div {c : π•œ} (hc : 1 < β€–cβ€–) {r : ℝ}
     β€–x' xβ€– ≀ 1 := hx' _ hβ‚‚
     _ ≀ β€–cβ€– / r * β€–xβ€– := (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa [inv_div])
 #align normed_space.polar_ball_subset_closed_ball_div NormedSpace.polar_ball_subset_closedBall_div
+-/
 
 variable (π•œ)
 
+#print NormedSpace.closedBall_inv_subset_polar_closedBall /-
 theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
     closedBall (0 : Dual π•œ E) r⁻¹ βŠ† polar π•œ (closedBall (0 : E) r) := fun x' hx' x hx =>
   calc
@@ -271,7 +300,9 @@ theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
     _ = r / r := (inv_mul_eq_div _ _)
     _ ≀ 1 := div_self_le_one r
 #align normed_space.closed_ball_inv_subset_polar_closed_ball NormedSpace.closedBall_inv_subset_polar_closedBall
+-/
 
+#print NormedSpace.polar_closedBall /-
 /-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with
 inverse radius. -/
 theorem polar_closedBall {π•œ E : Type _} [IsROrC π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {r : ℝ}
@@ -283,7 +314,9 @@ theorem polar_closedBall {π•œ E : Type _} [IsROrC π•œ] [NormedAddCommGroup E]
   refine' ContinuousLinearMap.op_norm_le_of_ball hr (inv_nonneg.mpr hr.le) fun z hz => _
   simpa only [one_div] using LinearMap.bound_of_ball_bound' hr 1 x'.to_linear_map h z
 #align normed_space.polar_closed_ball NormedSpace.polar_closedBall
+-/
 
+#print NormedSpace.bounded_polar_of_mem_nhds_zero /-
 /-- Given a neighborhood `s` of the origin in a normed space `E`, the dual norms
 of all elements of the polar `polar π•œ s` are bounded by a constant. -/
 theorem bounded_polar_of_mem_nhds_zero {s : Set E} (s_nhd : s ∈ 𝓝 (0 : E)) : Bounded (polar π•œ s) :=
@@ -295,6 +328,7 @@ theorem bounded_polar_of_mem_nhds_zero {s : Set E} (s_nhd : s ∈ 𝓝 (0 : E))
       (((dual_pairing π•œ E).flip.polar_antitone r_ball).trans <|
         polar_ball_subset_closed_ball_div ha r_pos)
 #align normed_space.bounded_polar_of_mem_nhds_zero NormedSpace.bounded_polar_of_mem_nhds_zero
+-/
 
 end PolarSets
 
Diff
@@ -143,7 +143,6 @@ theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual
       _ = β€–f xβ€– := by rw [hfx]
       _ ≀ M * β€–fβ€– := (hM f)
       _ = M := by rw [hf₁, mul_one]
-      
 #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound
 
 theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : βˆ€ f : Dual π•œ E, f x = (0 : π•œ)) : x = 0 :=
@@ -258,7 +257,6 @@ theorem polar_ball_subset_closedBall_div {c : π•œ} (hc : 1 < β€–cβ€–) {r : ℝ}
   calc
     β€–x' xβ€– ≀ 1 := hx' _ hβ‚‚
     _ ≀ β€–cβ€– / r * β€–xβ€– := (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa [inv_div])
-    
 #align normed_space.polar_ball_subset_closed_ball_div NormedSpace.polar_ball_subset_closedBall_div
 
 variable (π•œ)
@@ -272,7 +270,6 @@ theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
         (dist_nonneg.trans hx'))
     _ = r / r := (inv_mul_eq_div _ _)
     _ ≀ 1 := div_self_le_one r
-    
 #align normed_space.closed_ball_inv_subset_polar_closed_ball NormedSpace.closedBall_inv_subset_polar_closedBall
 
 /-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with
Diff
@@ -58,13 +58,13 @@ variable (E : Type _) [SeminormedAddCommGroup E] [NormedSpace π•œ E]
 
 variable (F : Type _) [NormedAddCommGroup F] [NormedSpace π•œ F]
 
-/- ./././Mathport/Syntax/Translate/Command.lean:42:9: unsupported derive handler normed_space[normed_space] π•œ -/
+/- ./././Mathport/Syntax/Translate/Command.lean:43:9: unsupported derive handler normed_space[normed_space] π•œ -/
 #print NormedSpace.Dual /-
 /-- The topological dual of a seminormed space `E`. -/
 def Dual :=
   E β†’L[π•œ] π•œ
 deriving Inhabited, SeminormedAddCommGroup,
-  Β«./././Mathport/Syntax/Translate/Command.lean:42:9: unsupported derive handler normed_space[normed_space] π•œΒ»
+  Β«./././Mathport/Syntax/Translate/Command.lean:43:9: unsupported derive handler normed_space[normed_space] π•œΒ»
 #align normed_space.dual NormedSpace.Dual
 -/
 
@@ -135,15 +135,15 @@ variable (π•œ : Type v) [IsROrC π•œ] {E : Type u} [NormedAddCommGroup E] [Norm
 theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual π•œ E, β€–f xβ€– ≀ M * β€–fβ€–) :
     β€–xβ€– ≀ M := by
   classical
-    by_cases h : x = 0
-    Β· simp only [h, hMp, norm_zero]
-    Β· obtain ⟨f, hf₁, hfx⟩ : βˆƒ f : E β†’L[π•œ] π•œ, β€–fβ€– = 1 ∧ f x = β€–xβ€– := exists_dual_vector π•œ x h
-      calc
-        β€–xβ€– = β€–(β€–xβ€– : π•œ)β€– := is_R_or_C.norm_coe_norm.symm
-        _ = β€–f xβ€– := by rw [hfx]
-        _ ≀ M * β€–fβ€– := (hM f)
-        _ = M := by rw [hf₁, mul_one]
-        
+  by_cases h : x = 0
+  Β· simp only [h, hMp, norm_zero]
+  Β· obtain ⟨f, hf₁, hfx⟩ : βˆƒ f : E β†’L[π•œ] π•œ, β€–fβ€– = 1 ∧ f x = β€–xβ€– := exists_dual_vector π•œ x h
+    calc
+      β€–xβ€– = β€–(β€–xβ€– : π•œ)β€– := is_R_or_C.norm_coe_norm.symm
+      _ = β€–f xβ€– := by rw [hfx]
+      _ ≀ M * β€–fβ€– := (hM f)
+      _ = M := by rw [hf₁, mul_one]
+      
 #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound
 
 theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : βˆ€ f : Dual π•œ E, f x = (0 : π•œ)) : x = 0 :=
Diff
@@ -62,7 +62,8 @@ variable (F : Type _) [NormedAddCommGroup F] [NormedSpace π•œ F]
 #print NormedSpace.Dual /-
 /-- The topological dual of a seminormed space `E`. -/
 def Dual :=
-  E β†’L[π•œ] π•œ deriving Inhabited, SeminormedAddCommGroup,
+  E β†’L[π•œ] π•œ
+deriving Inhabited, SeminormedAddCommGroup,
   Β«./././Mathport/Syntax/Translate/Command.lean:42:9: unsupported derive handler normed_space[normed_space] π•œΒ»
 #align normed_space.dual NormedSpace.Dual
 -/
@@ -243,14 +244,14 @@ theorem smul_mem_polar {s : Set E} {x' : Dual π•œ E} {c : π•œ} (hc : βˆ€ z, z
     apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _)
   have cancel : β€–c⁻¹‖ * β€–cβ€– = 1 := by
     simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv]
-  rwa [cancel] at le
+  rwa [cancel] at le 
 #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar
 
 theorem polar_ball_subset_closedBall_div {c : π•œ} (hc : 1 < β€–cβ€–) {r : ℝ} (hr : 0 < r) :
     polar π•œ (ball (0 : E) r) βŠ† closedBall (0 : Dual π•œ E) (β€–cβ€– / r) :=
   by
   intro x' hx'
-  rw [mem_polar_iff] at hx'
+  rw [mem_polar_iff] at hx' 
   simp only [polar, mem_set_of_eq, mem_closedBall_zero_iff, mem_ball_zero_iff] at *
   have hcr : 0 < β€–cβ€– / r := div_pos (zero_lt_one.trans hc) hr
   refine' ContinuousLinearMap.op_norm_le_of_shell hr hcr.le hc fun x h₁ hβ‚‚ => _
@@ -291,7 +292,7 @@ of all elements of the polar `polar π•œ s` are bounded by a constant. -/
 theorem bounded_polar_of_mem_nhds_zero {s : Set E} (s_nhd : s ∈ 𝓝 (0 : E)) : Bounded (polar π•œ s) :=
   by
   obtain ⟨a, ha⟩ : βˆƒ a : π•œ, 1 < β€–aβ€– := NormedField.exists_one_lt_norm π•œ
-  obtain ⟨r, r_pos, r_ball⟩ : βˆƒ (r : ℝ)(hr : 0 < r), ball 0 r βŠ† s := Metric.mem_nhds_iff.1 s_nhd
+  obtain ⟨r, r_pos, r_ball⟩ : βˆƒ (r : ℝ) (hr : 0 < r), ball 0 r βŠ† s := Metric.mem_nhds_iff.1 s_nhd
   exact
     bounded_closed_ball.mono
       (((dual_pairing π•œ E).flip.polar_antitone r_ball).trans <|
Diff
@@ -44,7 +44,7 @@ dual
 
 noncomputable section
 
-open Classical Topology
+open scoped Classical Topology
 
 universe u v
 
Diff
@@ -87,32 +87,20 @@ def inclusionInDoubleDual : E β†’L[π•œ] Dual π•œ (Dual π•œ E) :=
 #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual
 -/
 
-/- warning: normed_space.dual_def -> NormedSpace.dual_def is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align normed_space.dual_def NormedSpace.dual_defβ‚“'. -/
 @[simp]
 theorem dual_def (x : E) (f : Dual π•œ E) : inclusionInDoubleDual π•œ E x f = f x :=
   rfl
 #align normed_space.dual_def NormedSpace.dual_def
 
-/- warning: normed_space.inclusion_in_double_dual_norm_eq -> NormedSpace.inclusionInDoubleDual_norm_eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eqβ‚“'. -/
 theorem inclusionInDoubleDual_norm_eq :
     β€–inclusionInDoubleDual π•œ Eβ€– = β€–ContinuousLinearMap.id π•œ (Dual π•œ E)β€– :=
   ContinuousLinearMap.op_norm_flip _
 #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq
 
-/- warning: normed_space.inclusion_in_double_dual_norm_le -> NormedSpace.inclusionInDoubleDual_norm_le is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_leβ‚“'. -/
 theorem inclusionInDoubleDual_norm_le : β€–inclusionInDoubleDual π•œ Eβ€– ≀ 1 := by
   rw [inclusion_in_double_dual_norm_eq]; exact ContinuousLinearMap.norm_id_le
 #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le
 
-/- warning: normed_space.double_dual_bound -> NormedSpace.double_dual_bound is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align normed_space.double_dual_bound NormedSpace.double_dual_boundβ‚“'. -/
 theorem double_dual_bound (x : E) : β€–(inclusionInDoubleDual π•œ E) xβ€– ≀ β€–xβ€– := by
   simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusion_in_double_dual_norm_le π•œ E) x
 #align normed_space.double_dual_bound NormedSpace.double_dual_bound
@@ -124,20 +112,11 @@ def dualPairing : Dual π•œ E β†’β‚—[π•œ] E β†’β‚—[π•œ] π•œ :=
 #align normed_space.dual_pairing NormedSpace.dualPairing
 -/
 
-/- warning: normed_space.dual_pairing_apply -> NormedSpace.dualPairing_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align normed_space.dual_pairing_apply NormedSpace.dualPairing_applyβ‚“'. -/
 @[simp]
 theorem dualPairing_apply {v : Dual π•œ E} {x : E} : dualPairing π•œ E v x = v x :=
   rfl
 #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply
 
-/- warning: normed_space.dual_pairing_separating_left -> NormedSpace.dualPairing_separatingLeft is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] (E : Type.{u2}) [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2], LinearMap.SeparatingLeft.{u1, u1, u1, max u2 u1, u2} π•œ π•œ π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) E (Semifield.toCommSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (Semifield.toCommSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Semifield.toCommSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.dualPairing.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] (E : Type.{u1}) [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2], LinearMap.SeparatingLeft.{u2, u2, u2, max u2 u1, u1} π•œ π•œ π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E (Semifield.toCommSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (Semifield.toCommSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Semifield.toCommSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NormedSpace.dualPairing.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)
-Case conversion may be inaccurate. Consider using '#align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeftβ‚“'. -/
 theorem dualPairing_separatingLeft : (dualPairing π•œ E).SeparatingLeft :=
   by
   rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot]
@@ -150,9 +129,6 @@ section BidualIsometry
 
 variable (π•œ : Type v) [IsROrC π•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace π•œ E]
 
-/- warning: normed_space.norm_le_dual_bound -> NormedSpace.norm_le_dual_bound is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_boundβ‚“'. -/
 /-- If one controls the norm of every `f x`, then one controls the norm of `x`.
     Compare `continuous_linear_map.op_norm_le_bound`. -/
 theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual π•œ E, β€–f xβ€– ≀ M * β€–fβ€–) :
@@ -169,23 +145,14 @@ theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual
         
 #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound
 
-/- warning: normed_space.eq_zero_of_forall_dual_eq_zero -> NormedSpace.eq_zero_of_forall_dual_eq_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zeroβ‚“'. -/
 theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : βˆ€ f : Dual π•œ E, f x = (0 : π•œ)) : x = 0 :=
   norm_le_zero_iff.mp (norm_le_dual_bound π•œ x le_rfl fun f => by simp [h f])
 #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero
 
-/- warning: normed_space.eq_zero_iff_forall_dual_eq_zero -> NormedSpace.eq_zero_iff_forall_dual_eq_zero is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zeroβ‚“'. -/
 theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 ↔ βˆ€ g : Dual π•œ E, g x = 0 :=
   ⟨fun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero π•œ h⟩
 #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero
 
-/- warning: normed_space.eq_iff_forall_dual_eq -> NormedSpace.eq_iff_forall_dual_eq is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eqβ‚“'. -/
 /-- See also `geometric_hahn_banach_point_point`. -/
 theorem eq_iff_forall_dual_eq {x y : E} : x = y ↔ βˆ€ g : Dual π•œ E, g x = g y :=
   by
@@ -228,19 +195,10 @@ variable (π•œ : Type _) [NontriviallyNormedField π•œ]
 
 variable {E : Type _} [SeminormedAddCommGroup E] [NormedSpace π•œ E]
 
-/- warning: normed_space.mem_polar_iff -> NormedSpace.mem_polar_iff is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align normed_space.mem_polar_iff NormedSpace.mem_polar_iffβ‚“'. -/
 theorem mem_polar_iff {x' : Dual π•œ E} (s : Set E) : x' ∈ polar π•œ s ↔ βˆ€ z ∈ s, β€–x' zβ€– ≀ 1 :=
   Iff.rfl
 #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff
 
-/- warning: normed_space.polar_univ -> NormedSpace.polar_univ is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2], Eq.{succ (max u2 u1)} (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 (Set.univ.{u2} E)) (Singleton.singleton.{max u2 u1, max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Set.hasSingleton.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) 0 (OfNat.mk.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) 0 (Zero.zero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubNegMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddGroup.toSubNegMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddGroup.toAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))))))))
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2], Eq.{max (succ u2) (succ u1)} (Set.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.polar.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3 (Set.univ.{u1} E)) (Singleton.singleton.{max u2 u1, max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (Set.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Set.instSingletonSet.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) 0 (Zero.toOfNat0.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NegZeroClass.toZero.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubNegZeroMonoid.toNegZeroClass.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))))))))
-Case conversion may be inaccurate. Consider using '#align normed_space.polar_univ NormedSpace.polar_univβ‚“'. -/
 @[simp]
 theorem polar_univ : polar π•œ (univ : Set E) = {(0 : dual π•œ E)} :=
   (dualPairing π•œ E).flip.polar_univ
@@ -270,9 +228,6 @@ theorem polar_closure (s : Set E) : polar π•œ (closure s) = polar π•œ s :=
 
 variable {π•œ}
 
-/- warning: normed_space.smul_mem_polar -> NormedSpace.smul_mem_polar is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align normed_space.smul_mem_polar NormedSpace.smul_mem_polarβ‚“'. -/
 /-- If `x'` is a dual element such that the norms `β€–x' zβ€–` are bounded for `z ∈ s`, then a
 small scalar multiple of `x'` is in `polar π•œ s`. -/
 theorem smul_mem_polar {s : Set E} {x' : Dual π•œ E} {c : π•œ} (hc : βˆ€ z, z ∈ s β†’ β€–x' zβ€– ≀ β€–cβ€–) :
@@ -291,12 +246,6 @@ theorem smul_mem_polar {s : Set E} {x' : Dual π•œ E} {c : π•œ} (hc : βˆ€ z, z
   rwa [cancel] at le
 #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar
 
-/- warning: normed_space.polar_ball_subset_closed_ball_div -> NormedSpace.polar_ball_subset_closedBall_div is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {c : π•œ}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)) c)) -> (forall {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (HasSubset.Subset.{max u2 u1} (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Set.hasSubset.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 (Metric.ball.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))) r)) (Metric.closedBall.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) 0 (OfNat.mk.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) 0 (Zero.zero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubNegMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddGroup.toSubNegMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddGroup.toAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))))))) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)) c) r))))
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2] {c : π•œ}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)) c)) -> (forall {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (HasSubset.Subset.{max u2 u1} (Set.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Set.instHasSubsetSet.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.polar.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3 (Metric.ball.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) (Metric.closedBall.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) 0 (Zero.toOfNat0.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NegZeroClass.toZero.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubNegZeroMonoid.toNegZeroClass.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))))))) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)) c) r))))
-Case conversion may be inaccurate. Consider using '#align normed_space.polar_ball_subset_closed_ball_div NormedSpace.polar_ball_subset_closedBall_divβ‚“'. -/
 theorem polar_ball_subset_closedBall_div {c : π•œ} (hc : 1 < β€–cβ€–) {r : ℝ} (hr : 0 < r) :
     polar π•œ (ball (0 : E) r) βŠ† closedBall (0 : Dual π•œ E) (β€–cβ€– / r) :=
   by
@@ -313,12 +262,6 @@ theorem polar_ball_subset_closedBall_div {c : π•œ} (hc : 1 < β€–cβ€–) {r : ℝ}
 
 variable (π•œ)
 
-/- warning: normed_space.closed_ball_inv_subset_polar_closed_ball -> NormedSpace.closedBall_inv_subset_polar_closedBall is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {r : Real}, HasSubset.Subset.{max u2 u1} (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Set.hasSubset.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Metric.closedBall.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) 0 (OfNat.mk.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) 0 (Zero.zero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubNegMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddGroup.toSubNegMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddGroup.toAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))))))) (Inv.inv.{0} Real Real.hasInv r)) (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))) r))
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2] {r : Real}, HasSubset.Subset.{max u2 u1} (Set.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Set.instHasSubsetSet.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Metric.closedBall.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) 0 (Zero.toOfNat0.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NegZeroClass.toZero.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubNegZeroMonoid.toNegZeroClass.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))))))) (Inv.inv.{0} Real Real.instInvReal r)) (NormedSpace.polar.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3 (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r))
-Case conversion may be inaccurate. Consider using '#align normed_space.closed_ball_inv_subset_polar_closed_ball NormedSpace.closedBall_inv_subset_polar_closedBallβ‚“'. -/
 theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
     closedBall (0 : Dual π•œ E) r⁻¹ βŠ† polar π•œ (closedBall (0 : E) r) := fun x' hx' x hx =>
   calc
@@ -331,12 +274,6 @@ theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
     
 #align normed_space.closed_ball_inv_subset_polar_closed_ball NormedSpace.closedBall_inv_subset_polar_closedBall
 
-/- warning: normed_space.polar_closed_ball -> NormedSpace.polar_closedBall is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_4 : IsROrC.{u1} π•œ] [_inst_5 : NormedAddCommGroup.{u2} E] [_inst_6 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (Eq.{succ (max u2 u1)} (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6)) (NormedSpace.polar.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6 (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_5))))))))) r)) (Metric.closedBall.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) 0 (OfNat.mk.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) 0 (Zero.zero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (SubNegMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (AddGroup.toSubNegMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (NormedAddGroup.toAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (NormedAddCommGroup.toNormedAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (NormedSpace.Dual.normedAddCommGroup.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E _inst_5 _inst_6)))))))))) (Inv.inv.{0} Real Real.hasInv r)))
-but is expected to have type
-  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_4 : IsROrC.{u2} π•œ] [_inst_5 : NormedAddCommGroup.{u1} E] [_inst_6 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (Eq.{max (succ u2) (succ u1)} (Set.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6)) (NormedSpace.polar.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6 (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_5)))))))) r)) (Metric.closedBall.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) 0 (Zero.toOfNat0.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (NegZeroClass.toZero.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (SubNegZeroMonoid.toNegZeroClass.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (NormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (NormedSpace.instNormedAddCommGroupDualToSeminormedAddCommGroup.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E _inst_5 _inst_6))))))))) (Inv.inv.{0} Real Real.instInvReal r)))
-Case conversion may be inaccurate. Consider using '#align normed_space.polar_closed_ball NormedSpace.polar_closedBallβ‚“'. -/
 /-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with
 inverse radius. -/
 theorem polar_closedBall {π•œ E : Type _} [IsROrC π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {r : ℝ}
@@ -349,12 +286,6 @@ theorem polar_closedBall {π•œ E : Type _} [IsROrC π•œ] [NormedAddCommGroup E]
   simpa only [one_div] using LinearMap.bound_of_ball_bound' hr 1 x'.to_linear_map h z
 #align normed_space.polar_closed_ball NormedSpace.polar_closedBall
 
-/- warning: normed_space.bounded_polar_of_mem_nhds_zero -> NormedSpace.bounded_polar_of_mem_nhds_zero is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {s : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))))) -> (Metric.Bounded.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 s))
-but is expected to have type
-  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {s : Set.{u2} E}, (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))))))) -> (Metric.Bounded.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 s))
-Case conversion may be inaccurate. Consider using '#align normed_space.bounded_polar_of_mem_nhds_zero NormedSpace.bounded_polar_of_mem_nhds_zeroβ‚“'. -/
 /-- Given a neighborhood `s` of the origin in a normed space `E`, the dual norms
 of all elements of the polar `polar π•œ s` are bounded by a constant. -/
 theorem bounded_polar_of_mem_nhds_zero {s : Set E} (s_nhd : s ∈ 𝓝 (0 : E)) : Bounded (polar π•œ s) :=
Diff
@@ -106,10 +106,8 @@ theorem inclusionInDoubleDual_norm_eq :
 /- warning: normed_space.inclusion_in_double_dual_norm_le -> NormedSpace.inclusionInDoubleDual_norm_le is a dubious translation:
 <too large>
 Case conversion may be inaccurate. Consider using '#align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_leβ‚“'. -/
-theorem inclusionInDoubleDual_norm_le : β€–inclusionInDoubleDual π•œ Eβ€– ≀ 1 :=
-  by
-  rw [inclusion_in_double_dual_norm_eq]
-  exact ContinuousLinearMap.norm_id_le
+theorem inclusionInDoubleDual_norm_le : β€–inclusionInDoubleDual π•œ Eβ€– ≀ 1 := by
+  rw [inclusion_in_double_dual_norm_eq]; exact ContinuousLinearMap.norm_id_le
 #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le
 
 /- warning: normed_space.double_dual_bound -> NormedSpace.double_dual_bound is a dubious translation:
@@ -279,7 +277,7 @@ Case conversion may be inaccurate. Consider using '#align normed_space.smul_mem_
 small scalar multiple of `x'` is in `polar π•œ s`. -/
 theorem smul_mem_polar {s : Set E} {x' : Dual π•œ E} {c : π•œ} (hc : βˆ€ z, z ∈ s β†’ β€–x' zβ€– ≀ β€–cβ€–) :
     c⁻¹ β€’ x' ∈ polar π•œ s := by
-  by_cases c_zero : c = 0
+  by_cases c_zero : c = 0;
   Β· simp only [c_zero, inv_zero, zero_smul]
     exact (dual_pairing π•œ E).flip.zero_mem_polar _
   have eq : βˆ€ z, β€–c⁻¹ β€’ x' zβ€– = β€–c⁻¹‖ * β€–x' zβ€– := fun z => norm_smul c⁻¹ _
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Heather Macbeth
 
 ! This file was ported from Lean 3 source module analysis.normed_space.dual
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit 0b7c740e25651db0ba63648fbae9f9d6f941e31b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Analysis.LocallyConvex.Polar
 /-!
 # The topological dual of a normed space
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 In this file we define the topological dual `normed_space.dual` of a normed space, and the
 continuous linear map `normed_space.inclusion_in_double_dual` from a normed space into its double
 dual.
@@ -85,10 +88,7 @@ def inclusionInDoubleDual : E β†’L[π•œ] Dual π•œ (Dual π•œ E) :=
 -/
 
 /- warning: normed_space.dual_def -> NormedSpace.dual_def is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] (E : Type.{u2}) [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] (x : E) (f : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3), Eq.{succ u1} π•œ (coeFn.{max (succ (max u2 u1)) (succ u1), max (succ (max u2 u1)) (succ u1)} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (fun (_x : NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) => (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (coeFn.{max (succ u2) (succ (max u2 u1)), max (succ u2) (succ (max u2 u1))} (ContinuousLinearMap.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) => E -> (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (ContinuousLinearMap.toFun.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.inclusionInDoubleDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) x) f) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (fun (_x : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) f x)
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] (E : Type.{u1}) [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2] (x : E) (f : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3), Eq.{succ u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) => π•œ) f) (FunLike.coe.{max (succ u2) (succ (max u2 u1)), succ (max u2 u1), succ u2} (NormedSpace.Dual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, max u2 u1, u2} (NormedSpace.Dual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) π•œ (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, max u2 u1, u2} (NormedSpace.Dual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, max u2 u1} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) E (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, max u2 u1} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))))) (NormedSpace.inclusionInDoubleDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) x) f) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) f x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align normed_space.dual_def NormedSpace.dual_defβ‚“'. -/
 @[simp]
 theorem dual_def (x : E) (f : Dual π•œ E) : inclusionInDoubleDual π•œ E x f = f x :=
@@ -96,10 +96,7 @@ theorem dual_def (x : E) (f : Dual π•œ E) : inclusionInDoubleDual π•œ E x f =
 #align normed_space.dual_def NormedSpace.dual_def
 
 /- warning: normed_space.inclusion_in_double_dual_norm_eq -> NormedSpace.inclusionInDoubleDual_norm_eq is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] (E : Type.{u2}) [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2], Eq.{1} Real (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, max u2 u1} π•œ π•œ E (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) _inst_2 (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) _inst_1 _inst_1 _inst_3 (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.inclusionInDoubleDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u1, u1, max u2 u1, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (ContinuousLinearMap.hasOpNorm.{u1, u1, max u2 u1, max u2 u1} π•œ π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) _inst_1 _inst_1 (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.id.{u1, max u2 u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] (E : Type.{u1}) [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2], Eq.{1} Real (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (ContinuousLinearMap.hasOpNorm.{u2, u2, u1, max u2 u1} π•œ π•œ E (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) _inst_2 (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) _inst_1 _inst_1 _inst_3 (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.inclusionInDoubleDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u2, u2, max u1 u2, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (ContinuousLinearMap.hasOpNorm.{u2, u2, max u2 u1, max u2 u1} π•œ π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) _inst_1 _inst_1 (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (ContinuousLinearMap.id.{u2, max u1 u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eqβ‚“'. -/
 theorem inclusionInDoubleDual_norm_eq :
     β€–inclusionInDoubleDual π•œ Eβ€– = β€–ContinuousLinearMap.id π•œ (Dual π•œ E)β€– :=
@@ -107,10 +104,7 @@ theorem inclusionInDoubleDual_norm_eq :
 #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq
 
 /- warning: normed_space.inclusion_in_double_dual_norm_le -> NormedSpace.inclusionInDoubleDual_norm_le is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] (E : Type.{u2}) [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2], LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, max u2 u1} π•œ π•œ E (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) _inst_2 (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) _inst_1 _inst_1 _inst_3 (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.inclusionInDoubleDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] (E : Type.{u1}) [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2], LE.le.{0} Real Real.instLEReal (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (ContinuousLinearMap.hasOpNorm.{u2, u2, u1, max u2 u1} π•œ π•œ E (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) _inst_2 (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) _inst_1 _inst_1 _inst_3 (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.inclusionInDoubleDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
+<too large>
 Case conversion may be inaccurate. Consider using '#align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_leβ‚“'. -/
 theorem inclusionInDoubleDual_norm_le : β€–inclusionInDoubleDual π•œ Eβ€– ≀ 1 :=
   by
@@ -119,10 +113,7 @@ theorem inclusionInDoubleDual_norm_le : β€–inclusionInDoubleDual π•œ Eβ€– ≀ 1
 #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le
 
 /- warning: normed_space.double_dual_bound -> NormedSpace.double_dual_bound is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] (E : Type.{u2}) [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] (x : E), LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toHasNorm.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (coeFn.{max (succ u2) (succ (max u2 u1)), max (succ u2) (succ (max u2 u1))} (ContinuousLinearMap.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) => E -> (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (ContinuousLinearMap.toFun.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.inclusionInDoubleDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) x)) (Norm.norm.{u2} E (SeminormedAddCommGroup.toHasNorm.{u2} E _inst_2) x)
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] (E : Type.{u1}) [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2] (x : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{max u2 u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) x) (SeminormedAddCommGroup.toNorm.{max u2 u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) x) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, max u2 u1} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) E (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, max u2 u1} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))))) (NormedSpace.inclusionInDoubleDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) x)) (Norm.norm.{u1} E (SeminormedAddCommGroup.toNorm.{u1} E _inst_2) x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align normed_space.double_dual_bound NormedSpace.double_dual_boundβ‚“'. -/
 theorem double_dual_bound (x : E) : β€–(inclusionInDoubleDual π•œ E) xβ€– ≀ β€–xβ€– := by
   simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusion_in_double_dual_norm_le π•œ E) x
@@ -136,10 +127,7 @@ def dualPairing : Dual π•œ E β†’β‚—[π•œ] E β†’β‚—[π•œ] π•œ :=
 -/
 
 /- warning: normed_space.dual_pairing_apply -> NormedSpace.dualPairing_apply is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] (E : Type.{u2}) [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {v : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3} {x : E}, Eq.{succ u1} π•œ (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (coeFn.{succ (max u2 u1), succ (max u2 u1)} (LinearMap.{u1, u1, max u2 u1, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (LinearMap.addCommMonoid.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (LinearMap.module.{u1, u1, u1, u2, u1} π•œ π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.dualPairing._proof_1.{u1} π•œ _inst_1))) (fun (_x : LinearMap.{u1, u1, max u2 u1, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (LinearMap.addCommMonoid.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (LinearMap.module.{u1, u1, u1, u2, u1} π•œ π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.dualPairing._proof_1.{u1} π•œ _inst_1))) => (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) -> (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (LinearMap.hasCoeToFun.{u1, u1, max u2 u1, max u2 u1} π•œ π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (LinearMap.addCommMonoid.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (LinearMap.module.{u1, u1, u1, u2, u1} π•œ π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.dualPairing._proof_1.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.dualPairing.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) v) x) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (fun (_x : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) v x)
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] (E : Type.{u1}) [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2] {v : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3} {x : E}, Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) x) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) => LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) v) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u2, u2, max u1 u2, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (LinearMap.addCommMonoid.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (LinearMap.instModuleLinearMapAddCommMonoid.{u2, u2, u2, u1, u2} π•œ π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (smulCommClass_self.{u2, u2} π•œ π•œ (CommRing.toCommMonoid.{u2} π•œ (EuclideanDomain.toCommRing.{u2} π•œ (Field.toEuclideanDomain.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (MulActionWithZero.toMulAction.{u2, u2} π•œ π•œ (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (MonoidWithZero.toMulActionWithZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))))))) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) => LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, max u2 u1, max u2 u1} π•œ π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (LinearMap.addCommMonoid.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (LinearMap.instModuleLinearMapAddCommMonoid.{u2, u2, u2, u1, u2} π•œ π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (smulCommClass_self.{u2, u2} π•œ π•œ (CommRing.toCommMonoid.{u2} π•œ (EuclideanDomain.toCommRing.{u2} π•œ (Field.toEuclideanDomain.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (MulActionWithZero.toMulAction.{u2, u2} π•œ π•œ (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (MonoidWithZero.toMulActionWithZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.dualPairing.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) v) x) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) v x)
+<too large>
 Case conversion may be inaccurate. Consider using '#align normed_space.dual_pairing_apply NormedSpace.dualPairing_applyβ‚“'. -/
 @[simp]
 theorem dualPairing_apply {v : Dual π•œ E} {x : E} : dualPairing π•œ E v x = v x :=
@@ -165,10 +153,7 @@ section BidualIsometry
 variable (π•œ : Type v) [IsROrC π•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace π•œ E]
 
 /- warning: normed_space.norm_le_dual_bound -> NormedSpace.norm_le_dual_bound is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] (x : E) {M : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) M) -> (forall (f : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), LE.le.{0} Real Real.hasLe (Norm.norm.{u2} π•œ (NormedField.toHasNorm.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) f x)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) M (Norm.norm.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedAddCommGroup.toHasNorm.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.Dual.normedAddCommGroup.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E _inst_2 _inst_3)) f))) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} E (NormedAddCommGroup.toHasNorm.{u1} E _inst_2) x) M)
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] (x : E) {M : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) M) -> (forall (f : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (NormedField.toNorm.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (DenselyNormedField.toNormedField.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (IsROrC.toDenselyNormedField.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))) f x)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) M (Norm.norm.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedAddCommGroup.toNorm.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.instNormedAddCommGroupDualToSeminormedAddCommGroup.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E _inst_2 _inst_3)) f))) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) x) M)
+<too large>
 Case conversion may be inaccurate. Consider using '#align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_boundβ‚“'. -/
 /-- If one controls the norm of every `f x`, then one controls the norm of `x`.
     Compare `continuous_linear_map.op_norm_le_bound`. -/
@@ -187,30 +172,21 @@ theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual
 #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound
 
 /- warning: normed_space.eq_zero_of_forall_dual_eq_zero -> NormedSpace.eq_zero_of_forall_dual_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E}, (forall (f : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), Eq.{succ u2} π•œ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) f x) (OfNat.ofNat.{u2} π•œ 0 (OfNat.mk.{u2} π•œ 0 (Zero.zero.{u2} π•œ (MulZeroClass.toHasZero.{u2} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))))))) -> (Eq.{succ u1} E x (OfNat.ofNat.{u1} E 0 (OfNat.mk.{u1} E 0 (Zero.zero.{u1} E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))))))
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E}, (forall (f : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), Eq.{succ u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))) f x) (OfNat.ofNat.{u2} π•œ 0 (Zero.toOfNat0.{u2} π•œ (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) -> (Eq.{succ u1} E x (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zeroβ‚“'. -/
 theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : βˆ€ f : Dual π•œ E, f x = (0 : π•œ)) : x = 0 :=
   norm_le_zero_iff.mp (norm_le_dual_bound π•œ x le_rfl fun f => by simp [h f])
 #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero
 
 /- warning: normed_space.eq_zero_iff_forall_dual_eq_zero -> NormedSpace.eq_zero_iff_forall_dual_eq_zero is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] (x : E), Iff (Eq.{succ u1} E x (OfNat.ofNat.{u1} E 0 (OfNat.mk.{u1} E 0 (Zero.zero.{u1} E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2)))))))))) (forall (g : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), Eq.{succ u2} π•œ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) g x) (OfNat.ofNat.{u2} π•œ 0 (OfNat.mk.{u2} π•œ 0 (Zero.zero.{u2} π•œ (MulZeroClass.toHasZero.{u2} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))))))))
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] (x : E), Iff (Eq.{succ u1} E x (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2))))))))) (forall (g : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), Eq.{succ u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))) g x) (OfNat.ofNat.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) 0 (Zero.toOfNat0.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (CommMonoidWithZero.toZero.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (CommGroupWithZero.toCommMonoidWithZero.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (Semifield.toCommGroupWithZero.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (Field.toSemifield.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (NormedField.toField.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (DenselyNormedField.toNormedField.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (IsROrC.toDenselyNormedField.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) _inst_1))))))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zeroβ‚“'. -/
 theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 ↔ βˆ€ g : Dual π•œ E, g x = 0 :=
   ⟨fun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero π•œ h⟩
 #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero
 
 /- warning: normed_space.eq_iff_forall_dual_eq -> NormedSpace.eq_iff_forall_dual_eq is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {y : E}, Iff (Eq.{succ u1} E x y) (forall (g : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), Eq.{succ u2} π•œ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) g x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) g y))
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {y : E}, Iff (Eq.{succ u1} E x y) (forall (g : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), Eq.{succ u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))) g x) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))) g y))
+<too large>
 Case conversion may be inaccurate. Consider using '#align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eqβ‚“'. -/
 /-- See also `geometric_hahn_banach_point_point`. -/
 theorem eq_iff_forall_dual_eq {x y : E} : x = y ↔ βˆ€ g : Dual π•œ E, g x = g y :=
@@ -255,10 +231,7 @@ variable (π•œ : Type _) [NontriviallyNormedField π•œ]
 variable {E : Type _} [SeminormedAddCommGroup E] [NormedSpace π•œ E]
 
 /- warning: normed_space.mem_polar_iff -> NormedSpace.mem_polar_iff is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {x' : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3} (s : Set.{u2} E), Iff (Membership.Mem.{max u2 u1, max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Set.hasMem.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) x' (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 s)) (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z s) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (fun (_x : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) x' z)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))))
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2] {x' : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3} (s : Set.{u1} E), Iff (Membership.mem.{max u2 u1, max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (Set.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Set.instMembershipSet.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) x' (NormedSpace.polar.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3 s)) (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z s) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) z) (NontriviallyNormedField.toNormedField.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) z) _inst_1)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) x' z)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align normed_space.mem_polar_iff NormedSpace.mem_polar_iffβ‚“'. -/
 theorem mem_polar_iff {x' : Dual π•œ E} (s : Set E) : x' ∈ polar π•œ s ↔ βˆ€ z ∈ s, β€–x' zβ€– ≀ 1 :=
   Iff.rfl
@@ -300,10 +273,7 @@ theorem polar_closure (s : Set E) : polar π•œ (closure s) = polar π•œ s :=
 variable {π•œ}
 
 /- warning: normed_space.smul_mem_polar -> NormedSpace.smul_mem_polar is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {s : Set.{u2} E} {x' : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3} {c : π•œ}, (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z s) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (fun (_x : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) x' z)) (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)) c))) -> (Membership.Mem.{max u2 u1, max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Set.hasMem.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SMul.smul.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SMulZeroClass.toHasSmul.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))) (SMulWithZero.toSmulZeroClass.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))) (Module.toMulActionWithZero.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))) (Inv.inv.{u1} π•œ (DivInvMonoid.toHasInv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) c) x') (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 s))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {s : Set.{u2} E} {x' : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3} {c : π•œ}, (forall (z : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) z s) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u1} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) z) (NormedField.toNorm.{u1} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) z) (NontriviallyNormedField.toNormedField.{u1} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) z) _inst_1)) (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u2, u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u1 u2, u1, u1, u2, u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) x' z)) (Norm.norm.{u1} π•œ (NormedField.toNorm.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)) c))) -> (Membership.mem.{max u1 u2, max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Set.instMembershipSet.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (HSMul.hSMul.{u1, max u1 u2, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (instHSMul.{u1, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SMulZeroClass.toSMul.{u1, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NegZeroClass.toZero.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubNegZeroMonoid.toNegZeroClass.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionMonoid.toSubNegZeroMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionCommMonoid.toSubtractionMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toDivisionAddCommMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))))) (SMulWithZero.toSMulZeroClass.{u1, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubNegZeroMonoid.toNegZeroClass.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionMonoid.toSubNegZeroMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionCommMonoid.toSubtractionMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toDivisionAddCommMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))))) (MulActionWithZero.toSMulWithZero.{u1, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubNegZeroMonoid.toNegZeroClass.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionMonoid.toSubNegZeroMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionCommMonoid.toSubtractionMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toDivisionAddCommMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))))) (Module.toMulActionWithZero.{u1, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u1, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))))) (Inv.inv.{u1} π•œ (Field.toInv.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) c) x') (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 s))
+<too large>
 Case conversion may be inaccurate. Consider using '#align normed_space.smul_mem_polar NormedSpace.smul_mem_polarβ‚“'. -/
 /-- If `x'` is a dual element such that the norms `β€–x' zβ€–` are bounded for `z ∈ s`, then a
 small scalar multiple of `x'` is in `polar π•œ s`. -/
Diff
@@ -56,11 +56,13 @@ variable (E : Type _) [SeminormedAddCommGroup E] [NormedSpace π•œ E]
 variable (F : Type _) [NormedAddCommGroup F] [NormedSpace π•œ F]
 
 /- ./././Mathport/Syntax/Translate/Command.lean:42:9: unsupported derive handler normed_space[normed_space] π•œ -/
+#print NormedSpace.Dual /-
 /-- The topological dual of a seminormed space `E`. -/
 def Dual :=
   E β†’L[π•œ] π•œ deriving Inhabited, SeminormedAddCommGroup,
   Β«./././Mathport/Syntax/Translate/Command.lean:42:9: unsupported derive handler normed_space[normed_space] π•œΒ»
 #align normed_space.dual NormedSpace.Dual
+-/
 
 instance : ContinuousLinearMapClass (Dual π•œ E) π•œ E π•œ :=
   ContinuousLinearMap.continuousSemilinearMapClass
@@ -74,42 +76,82 @@ instance : NormedAddCommGroup (Dual π•œ F) :=
 instance [FiniteDimensional π•œ E] : FiniteDimensional π•œ (Dual π•œ E) :=
   ContinuousLinearMap.finiteDimensional
 
+#print NormedSpace.inclusionInDoubleDual /-
 /-- The inclusion of a normed space in its double (topological) dual, considered
    as a bounded linear map. -/
 def inclusionInDoubleDual : E β†’L[π•œ] Dual π•œ (Dual π•œ E) :=
   ContinuousLinearMap.apply π•œ π•œ
 #align normed_space.inclusion_in_double_dual NormedSpace.inclusionInDoubleDual
+-/
 
+/- warning: normed_space.dual_def -> NormedSpace.dual_def is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] (E : Type.{u2}) [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] (x : E) (f : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3), Eq.{succ u1} π•œ (coeFn.{max (succ (max u2 u1)) (succ u1), max (succ (max u2 u1)) (succ u1)} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (fun (_x : NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) => (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (coeFn.{max (succ u2) (succ (max u2 u1)), max (succ u2) (succ (max u2 u1))} (ContinuousLinearMap.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) => E -> (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (ContinuousLinearMap.toFun.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.inclusionInDoubleDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) x) f) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (fun (_x : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) f x)
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] (E : Type.{u1}) [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2] (x : E) (f : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3), Eq.{succ u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) => π•œ) f) (FunLike.coe.{max (succ u2) (succ (max u2 u1)), succ (max u2 u1), succ u2} (NormedSpace.Dual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, max u2 u1, u2} (NormedSpace.Dual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) π•œ (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, max u2 u1, u2} (NormedSpace.Dual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, max u2 u1} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) E (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, max u2 u1} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))))) (NormedSpace.inclusionInDoubleDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) x) f) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) f x)
+Case conversion may be inaccurate. Consider using '#align normed_space.dual_def NormedSpace.dual_defβ‚“'. -/
 @[simp]
 theorem dual_def (x : E) (f : Dual π•œ E) : inclusionInDoubleDual π•œ E x f = f x :=
   rfl
 #align normed_space.dual_def NormedSpace.dual_def
 
+/- warning: normed_space.inclusion_in_double_dual_norm_eq -> NormedSpace.inclusionInDoubleDual_norm_eq is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] (E : Type.{u2}) [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2], Eq.{1} Real (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, max u2 u1} π•œ π•œ E (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) _inst_2 (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) _inst_1 _inst_1 _inst_3 (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.inclusionInDoubleDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u1, u1, max u2 u1, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (ContinuousLinearMap.hasOpNorm.{u1, u1, max u2 u1, max u2 u1} π•œ π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) _inst_1 _inst_1 (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (ContinuousLinearMap.id.{u1, max u2 u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] (E : Type.{u1}) [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2], Eq.{1} Real (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (ContinuousLinearMap.hasOpNorm.{u2, u2, u1, max u2 u1} π•œ π•œ E (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) _inst_2 (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) _inst_1 _inst_1 _inst_3 (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.inclusionInDoubleDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u2, u2, max u1 u2, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (ContinuousLinearMap.hasOpNorm.{u2, u2, max u2 u1, max u2 u1} π•œ π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) _inst_1 _inst_1 (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (ContinuousLinearMap.id.{u2, max u1 u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))
+Case conversion may be inaccurate. Consider using '#align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eqβ‚“'. -/
 theorem inclusionInDoubleDual_norm_eq :
     β€–inclusionInDoubleDual π•œ Eβ€– = β€–ContinuousLinearMap.id π•œ (Dual π•œ E)β€– :=
   ContinuousLinearMap.op_norm_flip _
 #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq
 
+/- warning: normed_space.inclusion_in_double_dual_norm_le -> NormedSpace.inclusionInDoubleDual_norm_le is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] (E : Type.{u2}) [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2], LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, max u2 u1} π•œ π•œ E (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) _inst_2 (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) _inst_1 _inst_1 _inst_3 (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.inclusionInDoubleDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] (E : Type.{u1}) [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2], LE.le.{0} Real Real.instLEReal (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (ContinuousLinearMap.hasOpNorm.{u2, u2, u1, max u2 u1} π•œ π•œ E (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) _inst_2 (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) _inst_1 _inst_1 _inst_3 (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.inclusionInDoubleDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))
+Case conversion may be inaccurate. Consider using '#align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_leβ‚“'. -/
 theorem inclusionInDoubleDual_norm_le : β€–inclusionInDoubleDual π•œ Eβ€– ≀ 1 :=
   by
   rw [inclusion_in_double_dual_norm_eq]
   exact ContinuousLinearMap.norm_id_le
 #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le
 
+/- warning: normed_space.double_dual_bound -> NormedSpace.double_dual_bound is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] (E : Type.{u2}) [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] (x : E), LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toHasNorm.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (coeFn.{max (succ u2) (succ (max u2 u1)), max (succ u2) (succ (max u2 u1))} (ContinuousLinearMap.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) => E -> (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (ContinuousLinearMap.toFun.{u1, u1, u2, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.Dual.normedSpace.{u1, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.inclusionInDoubleDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) x)) (Norm.norm.{u2} E (SeminormedAddCommGroup.toHasNorm.{u2} E _inst_2) x)
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] (E : Type.{u1}) [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2] (x : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{max u2 u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) x) (SeminormedAddCommGroup.toNorm.{max u2 u1} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) x) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, max (succ u2) (succ u1)} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, max u2 u1} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) E (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, max u2 u1} (ContinuousLinearMap.{u2, u2, u1, max u1 u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (UniformSpace.toTopologicalSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (PseudoMetricSpace.toUniformSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, max u1 u2} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, max u2 u1} π•œ _inst_1 (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)))))) (NormedSpace.inclusionInDoubleDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) x)) (Norm.norm.{u1} E (SeminormedAddCommGroup.toNorm.{u1} E _inst_2) x)
+Case conversion may be inaccurate. Consider using '#align normed_space.double_dual_bound NormedSpace.double_dual_boundβ‚“'. -/
 theorem double_dual_bound (x : E) : β€–(inclusionInDoubleDual π•œ E) xβ€– ≀ β€–xβ€– := by
   simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusion_in_double_dual_norm_le π•œ E) x
 #align normed_space.double_dual_bound NormedSpace.double_dual_bound
 
+#print NormedSpace.dualPairing /-
 /-- The dual pairing as a bilinear form. -/
 def dualPairing : Dual π•œ E β†’β‚—[π•œ] E β†’β‚—[π•œ] π•œ :=
   ContinuousLinearMap.coeLM π•œ
 #align normed_space.dual_pairing NormedSpace.dualPairing
+-/
 
+/- warning: normed_space.dual_pairing_apply -> NormedSpace.dualPairing_apply is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] (E : Type.{u2}) [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {v : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3} {x : E}, Eq.{succ u1} π•œ (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (coeFn.{succ (max u2 u1), succ (max u2 u1)} (LinearMap.{u1, u1, max u2 u1, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (LinearMap.addCommMonoid.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (LinearMap.module.{u1, u1, u1, u2, u1} π•œ π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.dualPairing._proof_1.{u1} π•œ _inst_1))) (fun (_x : LinearMap.{u1, u1, max u2 u1, max u2 u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (LinearMap.addCommMonoid.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (LinearMap.module.{u1, u1, u1, u2, u1} π•œ π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.dualPairing._proof_1.{u1} π•œ _inst_1))) => (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) -> (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (LinearMap.hasCoeToFun.{u1, u1, max u2 u1, max u2 u1} π•œ π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (LinearMap.addCommMonoid.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (LinearMap.module.{u1, u1, u1, u2, u1} π•œ π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.dualPairing._proof_1.{u1} π•œ _inst_1)) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.dualPairing.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) v) x) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (fun (_x : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) v x)
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] (E : Type.{u1}) [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2] {v : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3} {x : E}, Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) x) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) => LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) v) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (FunLike.coe.{max (succ u2) (succ u1), max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u2, u2, max u1 u2, max u2 u1} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (LinearMap.addCommMonoid.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (LinearMap.instModuleLinearMapAddCommMonoid.{u2, u2, u2, u1, u2} π•œ π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (smulCommClass_self.{u2, u2} π•œ π•œ (CommRing.toCommMonoid.{u2} π•œ (EuclideanDomain.toCommRing.{u2} π•œ (Field.toEuclideanDomain.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (MulActionWithZero.toMulAction.{u2, u2} π•œ π•œ (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (MonoidWithZero.toMulActionWithZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))))))) (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) => LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, max u2 u1, max u2 u1} π•œ π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (LinearMap.addCommMonoid.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (LinearMap.instModuleLinearMapAddCommMonoid.{u2, u2, u2, u1, u2} π•œ π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (smulCommClass_self.{u2, u2} π•œ π•œ (CommRing.toCommMonoid.{u2} π•œ (EuclideanDomain.toCommRing.{u2} π•œ (Field.toEuclideanDomain.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (MulActionWithZero.toMulAction.{u2, u2} π•œ π•œ (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (MonoidWithZero.toMulActionWithZero.{u2} π•œ (Semiring.toMonoidWithZero.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.dualPairing.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) v) x) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) v x)
+Case conversion may be inaccurate. Consider using '#align normed_space.dual_pairing_apply NormedSpace.dualPairing_applyβ‚“'. -/
 @[simp]
 theorem dualPairing_apply {v : Dual π•œ E} {x : E} : dualPairing π•œ E v x = v x :=
   rfl
 #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply
 
+/- warning: normed_space.dual_pairing_separating_left -> NormedSpace.dualPairing_separatingLeft is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] (E : Type.{u2}) [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2], LinearMap.SeparatingLeft.{u1, u1, u1, max u2 u1, u2} π•œ π•œ π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) E (Semifield.toCommSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (Semifield.toCommSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Semifield.toCommSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NormedSpace.dualPairing.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] (E : Type.{u1}) [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2], LinearMap.SeparatingLeft.{u2, u2, u2, max u2 u1, u1} π•œ π•œ π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E (Semifield.toCommSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (Semifield.toCommSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u2, max u2 u1} π•œ (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Semifield.toCommSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NormedSpace.dualPairing.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)
+Case conversion may be inaccurate. Consider using '#align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeftβ‚“'. -/
 theorem dualPairing_separatingLeft : (dualPairing π•œ E).SeparatingLeft :=
   by
   rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot]
@@ -122,6 +164,12 @@ section BidualIsometry
 
 variable (π•œ : Type v) [IsROrC π•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace π•œ E]
 
+/- warning: normed_space.norm_le_dual_bound -> NormedSpace.norm_le_dual_bound is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] (x : E) {M : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) M) -> (forall (f : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), LE.le.{0} Real Real.hasLe (Norm.norm.{u2} π•œ (NormedField.toHasNorm.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) f x)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) M (Norm.norm.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedAddCommGroup.toHasNorm.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.Dual.normedAddCommGroup.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E _inst_2 _inst_3)) f))) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} E (NormedAddCommGroup.toHasNorm.{u1} E _inst_2) x) M)
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] (x : E) {M : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) M) -> (forall (f : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (NormedField.toNorm.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (DenselyNormedField.toNormedField.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (IsROrC.toDenselyNormedField.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))) f x)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) M (Norm.norm.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedAddCommGroup.toNorm.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.instNormedAddCommGroupDualToSeminormedAddCommGroup.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E _inst_2 _inst_3)) f))) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) x) M)
+Case conversion may be inaccurate. Consider using '#align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_boundβ‚“'. -/
 /-- If one controls the norm of every `f x`, then one controls the norm of `x`.
     Compare `continuous_linear_map.op_norm_le_bound`. -/
 theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual π•œ E, β€–f xβ€– ≀ M * β€–fβ€–) :
@@ -138,14 +186,32 @@ theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual
         
 #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound
 
+/- warning: normed_space.eq_zero_of_forall_dual_eq_zero -> NormedSpace.eq_zero_of_forall_dual_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E}, (forall (f : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), Eq.{succ u2} π•œ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) f x) (OfNat.ofNat.{u2} π•œ 0 (OfNat.mk.{u2} π•œ 0 (Zero.zero.{u2} π•œ (MulZeroClass.toHasZero.{u2} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))))))) -> (Eq.{succ u1} E x (OfNat.ofNat.{u1} E 0 (OfNat.mk.{u1} E 0 (Zero.zero.{u1} E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2))))))))))
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E}, (forall (f : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), Eq.{succ u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))) f x) (OfNat.ofNat.{u2} π•œ 0 (Zero.toOfNat0.{u2} π•œ (CommMonoidWithZero.toZero.{u2} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u2} π•œ (Semifield.toCommGroupWithZero.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) -> (Eq.{succ u1} E x (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))))
+Case conversion may be inaccurate. Consider using '#align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zeroβ‚“'. -/
 theorem eq_zero_of_forall_dual_eq_zero {x : E} (h : βˆ€ f : Dual π•œ E, f x = (0 : π•œ)) : x = 0 :=
   norm_le_zero_iff.mp (norm_le_dual_bound π•œ x le_rfl fun f => by simp [h f])
 #align normed_space.eq_zero_of_forall_dual_eq_zero NormedSpace.eq_zero_of_forall_dual_eq_zero
 
+/- warning: normed_space.eq_zero_iff_forall_dual_eq_zero -> NormedSpace.eq_zero_iff_forall_dual_eq_zero is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] (x : E), Iff (Eq.{succ u1} E x (OfNat.ofNat.{u1} E 0 (OfNat.mk.{u1} E 0 (Zero.zero.{u1} E (AddZeroClass.toHasZero.{u1} E (AddMonoid.toAddZeroClass.{u1} E (SubNegMonoid.toAddMonoid.{u1} E (AddGroup.toSubNegMonoid.{u1} E (NormedAddGroup.toAddGroup.{u1} E (NormedAddCommGroup.toNormedAddGroup.{u1} E _inst_2)))))))))) (forall (g : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), Eq.{succ u2} π•œ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) g x) (OfNat.ofNat.{u2} π•œ 0 (OfNat.mk.{u2} π•œ 0 (Zero.zero.{u2} π•œ (MulZeroClass.toHasZero.{u2} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))))))))
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] (x : E), Iff (Eq.{succ u1} E x (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2))))))))) (forall (g : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), Eq.{succ u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))) g x) (OfNat.ofNat.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) 0 (Zero.toOfNat0.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (CommMonoidWithZero.toZero.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (CommGroupWithZero.toCommMonoidWithZero.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (Semifield.toCommGroupWithZero.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (Field.toSemifield.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (NormedField.toField.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (DenselyNormedField.toNormedField.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (IsROrC.toDenselyNormedField.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) _inst_1))))))))))
+Case conversion may be inaccurate. Consider using '#align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zeroβ‚“'. -/
 theorem eq_zero_iff_forall_dual_eq_zero (x : E) : x = 0 ↔ βˆ€ g : Dual π•œ E, g x = 0 :=
   ⟨fun hx => by simp [hx], fun h => eq_zero_of_forall_dual_eq_zero π•œ h⟩
 #align normed_space.eq_zero_iff_forall_dual_eq_zero NormedSpace.eq_zero_iff_forall_dual_eq_zero
 
+/- warning: normed_space.eq_iff_forall_dual_eq -> NormedSpace.eq_iff_forall_dual_eq is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {y : E}, Iff (Eq.{succ u1} E x y) (forall (g : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), Eq.{succ u2} π•œ (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) g x) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (fun (_x : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) g y))
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {x : E} {y : E}, Iff (Eq.{succ u1} E x y) (forall (g : NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3), Eq.{succ u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) x) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))) g x) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2))) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3))) g y))
+Case conversion may be inaccurate. Consider using '#align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eqβ‚“'. -/
 /-- See also `geometric_hahn_banach_point_point`. -/
 theorem eq_iff_forall_dual_eq {x y : E} : x = y ↔ βˆ€ g : Dual π•œ E, g x = g y :=
   by
@@ -153,6 +219,7 @@ theorem eq_iff_forall_dual_eq {x y : E} : x = y ↔ βˆ€ g : Dual π•œ E, g x = g
   simp [sub_eq_zero]
 #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq
 
+#print NormedSpace.inclusionInDoubleDualLi /-
 /-- The inclusion of a normed space in its double dual is an isometry onto its image.-/
 def inclusionInDoubleDualLi : E β†’β‚—α΅’[π•œ] Dual π•œ (Dual π•œ E) :=
   { inclusionInDoubleDual π•œ E with
@@ -165,6 +232,7 @@ def inclusionInDoubleDualLi : E β†’β‚—α΅’[π•œ] Dual π•œ (Dual π•œ E) :=
       rintro c ⟨hc1, hc2⟩
       exact norm_le_dual_bound π•œ x hc1 hc2 }
 #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi
+-/
 
 end BidualIsometry
 
@@ -172,6 +240,7 @@ section PolarSets
 
 open Metric Set NormedSpace
 
+#print NormedSpace.polar /-
 /-- Given a subset `s` in a normed space `E` (over a field `π•œ`), the polar
 `polar π•œ s` is the subset of `dual π•œ E` consisting of those functionals which
 evaluate to something of norm at most one at all points `z ∈ s`. -/
@@ -179,21 +248,35 @@ def polar (π•œ : Type _) [NontriviallyNormedField π•œ] {E : Type _} [Seminorme
     [NormedSpace π•œ E] : Set E β†’ Set (Dual π•œ E) :=
   (dualPairing π•œ E).flip.polar
 #align normed_space.polar NormedSpace.polar
+-/
 
 variable (π•œ : Type _) [NontriviallyNormedField π•œ]
 
 variable {E : Type _} [SeminormedAddCommGroup E] [NormedSpace π•œ E]
 
+/- warning: normed_space.mem_polar_iff -> NormedSpace.mem_polar_iff is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {x' : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3} (s : Set.{u2} E), Iff (Membership.Mem.{max u2 u1, max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Set.hasMem.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) x' (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 s)) (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z s) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (fun (_x : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) x' z)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))))
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2] {x' : NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3} (s : Set.{u1} E), Iff (Membership.mem.{max u2 u1, max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (Set.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Set.instMembershipSet.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) x' (NormedSpace.polar.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3 s)) (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z s) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) z) (NontriviallyNormedField.toNormedField.{u2} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) z) _inst_1)) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))))) (NormedSpace.toModule.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))) x' z)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))))
+Case conversion may be inaccurate. Consider using '#align normed_space.mem_polar_iff NormedSpace.mem_polar_iffβ‚“'. -/
 theorem mem_polar_iff {x' : Dual π•œ E} (s : Set E) : x' ∈ polar π•œ s ↔ βˆ€ z ∈ s, β€–x' zβ€– ≀ 1 :=
   Iff.rfl
 #align normed_space.mem_polar_iff NormedSpace.mem_polar_iff
 
+/- warning: normed_space.polar_univ -> NormedSpace.polar_univ is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2], Eq.{succ (max u2 u1)} (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 (Set.univ.{u2} E)) (Singleton.singleton.{max u2 u1, max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Set.hasSingleton.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) 0 (OfNat.mk.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) 0 (Zero.zero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubNegMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddGroup.toSubNegMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddGroup.toAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))))))))
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2], Eq.{max (succ u2) (succ u1)} (Set.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.polar.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3 (Set.univ.{u1} E)) (Singleton.singleton.{max u2 u1, max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (Set.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Set.instSingletonSet.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) 0 (Zero.toOfNat0.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NegZeroClass.toZero.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubNegZeroMonoid.toNegZeroClass.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))))))))
+Case conversion may be inaccurate. Consider using '#align normed_space.polar_univ NormedSpace.polar_univβ‚“'. -/
 @[simp]
 theorem polar_univ : polar π•œ (univ : Set E) = {(0 : dual π•œ E)} :=
   (dualPairing π•œ E).flip.polar_univ
     (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft π•œ E))
 #align normed_space.polar_univ NormedSpace.polar_univ
 
+#print NormedSpace.isClosed_polar /-
 theorem isClosed_polar (s : Set E) : IsClosed (polar π•œ s) :=
   by
   dsimp only [NormedSpace.polar]
@@ -201,7 +284,9 @@ theorem isClosed_polar (s : Set E) : IsClosed (polar π•œ s) :=
   refine' isClosed_biInter fun z hz => _
   exact is_closed_Iic.preimage (ContinuousLinearMap.apply π•œ π•œ z).Continuous.norm
 #align normed_space.is_closed_polar NormedSpace.isClosed_polar
+-/
 
+#print NormedSpace.polar_closure /-
 @[simp]
 theorem polar_closure (s : Set E) : polar π•œ (closure s) = polar π•œ s :=
   ((dualPairing π•œ E).flip.polar_antitone subset_closure).antisymm <|
@@ -210,9 +295,16 @@ theorem polar_closure (s : Set E) : polar π•œ (closure s) = polar π•œ s :=
         simpa [LinearMap.flip_flip] using
           (is_closed_polar _ _).Preimage (inclusion_in_double_dual π•œ E).Continuous
 #align normed_space.polar_closure NormedSpace.polar_closure
+-/
 
 variable {π•œ}
 
+/- warning: normed_space.smul_mem_polar -> NormedSpace.smul_mem_polar is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {s : Set.{u2} E} {x' : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3} {c : π•œ}, (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z s) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (fun (_x : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) => E -> π•œ) (NormedSpace.Dual.hasCoeToFun.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) x' z)) (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)) c))) -> (Membership.Mem.{max u2 u1, max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Set.hasMem.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (SMul.smul.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SMulZeroClass.toHasSmul.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))) (SMulWithZero.toSmulZeroClass.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))))) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))) (MulActionWithZero.toSMulWithZero.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))) (Module.toMulActionWithZero.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u1, max u2 u1} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.normedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))) (Inv.inv.{u1} π•œ (DivInvMonoid.toHasInv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) c) x') (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 s))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {s : Set.{u2} E} {x' : NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3} {c : π•œ}, (forall (z : E), (Membership.mem.{u2, u2} E (Set.{u2} E) (Set.instMembershipSet.{u2} E) z s) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u1} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) z) (NormedField.toNorm.{u1} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) z) (NontriviallyNormedField.toNormedField.{u1} ((fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) z) _inst_1)) (FunLike.coe.{max (succ u1) (succ u2), succ u2, succ u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) E (fun (_x : E) => (fun (a._@.Mathlib.Analysis.NormedSpace.Dual._hyg.279 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u1 u2, u2, u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) E π•œ (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u1 u2, u1, u1, u2, u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) π•œ π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2 _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) (NormedSpace.instContinuousLinearMapClassDualToSemiringToDivisionSemiringToSemifieldToFieldToNormedFieldToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToAddCommMonoidToAddCommGroupToTopologicalSpaceToUniformSpaceToPseudoMetricSpaceToSeminormedRingToSeminormedCommRingToNormedCommRingToAddCommMonoidToNonUnitalNonAssocSemiringToNonUnitalNonAssocRingToNonAssocRingToRingToNormedRingToModuleToModuleToSeminormedAddCommGroupToNonUnitalSeminormedRingToNonUnitalNormedRingToNormedSpace.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) x' z)) (Norm.norm.{u1} π•œ (NormedField.toNorm.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)) c))) -> (Membership.mem.{max u1 u2, max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Set.instMembershipSet.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (HSMul.hSMul.{u1, max u1 u2, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (instHSMul.{u1, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SMulZeroClass.toSMul.{u1, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NegZeroClass.toZero.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubNegZeroMonoid.toNegZeroClass.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionMonoid.toSubNegZeroMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionCommMonoid.toSubtractionMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toDivisionAddCommMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))))) (SMulWithZero.toSMulZeroClass.{u1, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubNegZeroMonoid.toNegZeroClass.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionMonoid.toSubNegZeroMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionCommMonoid.toSubtractionMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toDivisionAddCommMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))))) (MulActionWithZero.toSMulWithZero.{u1, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)))))) (NegZeroClass.toZero.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubNegZeroMonoid.toNegZeroClass.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionMonoid.toSubNegZeroMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionCommMonoid.toSubtractionMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toDivisionAddCommMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))))) (Module.toMulActionWithZero.{u1, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))))) (AddCommGroup.toAddCommMonoid.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))) (NormedSpace.toModule.{u1, max u1 u2} π•œ (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) (NormedSpace.instSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instNormedSpaceDualToNormedFieldInstSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3))))))) (Inv.inv.{u1} π•œ (Field.toInv.{u1} π•œ (NormedField.toField.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1))) c) x') (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 s))
+Case conversion may be inaccurate. Consider using '#align normed_space.smul_mem_polar NormedSpace.smul_mem_polarβ‚“'. -/
 /-- If `x'` is a dual element such that the norms `β€–x' zβ€–` are bounded for `z ∈ s`, then a
 small scalar multiple of `x'` is in `polar π•œ s`. -/
 theorem smul_mem_polar {s : Set E} {x' : Dual π•œ E} {c : π•œ} (hc : βˆ€ z, z ∈ s β†’ β€–x' zβ€– ≀ β€–cβ€–) :
@@ -231,6 +323,12 @@ theorem smul_mem_polar {s : Set E} {x' : Dual π•œ E} {c : π•œ} (hc : βˆ€ z, z
   rwa [cancel] at le
 #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar
 
+/- warning: normed_space.polar_ball_subset_closed_ball_div -> NormedSpace.polar_ball_subset_closedBall_div is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {c : π•œ}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))) (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)) c)) -> (forall {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (HasSubset.Subset.{max u2 u1} (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Set.hasSubset.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 (Metric.ball.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))) r)) (Metric.closedBall.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) 0 (OfNat.mk.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) 0 (Zero.zero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubNegMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddGroup.toSubNegMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddGroup.toAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))))))) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1)) c) r))))
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2] {c : π•œ}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)) (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)) c)) -> (forall {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (HasSubset.Subset.{max u2 u1} (Set.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Set.instHasSubsetSet.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.polar.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3 (Metric.ball.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) (Metric.closedBall.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) 0 (Zero.toOfNat0.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NegZeroClass.toZero.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubNegZeroMonoid.toNegZeroClass.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))))))) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1)) c) r))))
+Case conversion may be inaccurate. Consider using '#align normed_space.polar_ball_subset_closed_ball_div NormedSpace.polar_ball_subset_closedBall_divβ‚“'. -/
 theorem polar_ball_subset_closedBall_div {c : π•œ} (hc : 1 < β€–cβ€–) {r : ℝ} (hr : 0 < r) :
     polar π•œ (ball (0 : E) r) βŠ† closedBall (0 : Dual π•œ E) (β€–cβ€– / r) :=
   by
@@ -247,6 +345,12 @@ theorem polar_ball_subset_closedBall_div {c : π•œ} (hc : 1 < β€–cβ€–) {r : ℝ}
 
 variable (π•œ)
 
+/- warning: normed_space.closed_ball_inv_subset_polar_closed_ball -> NormedSpace.closedBall_inv_subset_polar_closedBall is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {r : Real}, HasSubset.Subset.{max u2 u1} (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Set.hasSubset.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (Metric.closedBall.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) 0 (OfNat.mk.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) 0 (Zero.zero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SubNegMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (AddGroup.toSubNegMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddGroup.toAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toSeminormedAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)))))))))) (Inv.inv.{0} Real Real.hasInv r)) (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))) r))
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : NontriviallyNormedField.{u2} π•œ] {E : Type.{u1}} [_inst_2 : SeminormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (NontriviallyNormedField.toNormedField.{u2} π•œ _inst_1) _inst_2] {r : Real}, HasSubset.Subset.{max u2 u1} (Set.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Set.instHasSubsetSet.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (Metric.closedBall.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) 0 (Zero.toOfNat0.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NegZeroClass.toZero.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubNegZeroMonoid.toNegZeroClass.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3))))))))) (Inv.inv.{0} Real Real.instInvReal r)) (NormedSpace.polar.{u2, u1} π•œ _inst_1 E _inst_2 _inst_3 (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E _inst_2) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (SeminormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r))
+Case conversion may be inaccurate. Consider using '#align normed_space.closed_ball_inv_subset_polar_closed_ball NormedSpace.closedBall_inv_subset_polar_closedBallβ‚“'. -/
 theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
     closedBall (0 : Dual π•œ E) r⁻¹ βŠ† polar π•œ (closedBall (0 : E) r) := fun x' hx' x hx =>
   calc
@@ -259,6 +363,12 @@ theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
     
 #align normed_space.closed_ball_inv_subset_polar_closed_ball NormedSpace.closedBall_inv_subset_polar_closedBall
 
+/- warning: normed_space.polar_closed_ball -> NormedSpace.polar_closedBall is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} {E : Type.{u2}} [_inst_4 : IsROrC.{u1} π•œ] [_inst_5 : NormedAddCommGroup.{u2} E] [_inst_6 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (Eq.{succ (max u2 u1)} (Set.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6)) (NormedSpace.polar.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6 (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_5))))))))) r)) (Metric.closedBall.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) 0 (OfNat.mk.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) 0 (Zero.zero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (AddZeroClass.toHasZero.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (AddMonoid.toAddZeroClass.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (SubNegMonoid.toAddMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (AddGroup.toSubNegMonoid.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (NormedAddGroup.toAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (NormedAddCommGroup.toNormedAddGroup.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_5) _inst_6) (NormedSpace.Dual.normedAddCommGroup.{u1, u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_4)) E _inst_5 _inst_6)))))))))) (Inv.inv.{0} Real Real.hasInv r)))
+but is expected to have type
+  forall {π•œ : Type.{u2}} {E : Type.{u1}} [_inst_4 : IsROrC.{u2} π•œ] [_inst_5 : NormedAddCommGroup.{u1} E] [_inst_6 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (Eq.{max (succ u2) (succ u1)} (Set.{max u1 u2} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6)) (NormedSpace.polar.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6 (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_5)))))))) r)) (Metric.closedBall.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (NormedSpace.instSeminormedAddCommGroupDual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6)) (OfNat.ofNat.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) 0 (Zero.toOfNat0.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (NegZeroClass.toZero.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (SubNegZeroMonoid.toNegZeroClass.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (SubtractionMonoid.toSubNegZeroMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (SubtractionCommMonoid.toSubtractionMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (AddCommGroup.toDivisionAddCommMonoid.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (NormedAddCommGroup.toAddCommGroup.{max u2 u1} (NormedSpace.Dual.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_5) _inst_6) (NormedSpace.instNormedAddCommGroupDualToSeminormedAddCommGroup.{u2, u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_4)) E _inst_5 _inst_6))))))))) (Inv.inv.{0} Real Real.instInvReal r)))
+Case conversion may be inaccurate. Consider using '#align normed_space.polar_closed_ball NormedSpace.polar_closedBallβ‚“'. -/
 /-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with
 inverse radius. -/
 theorem polar_closedBall {π•œ E : Type _} [IsROrC π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {r : ℝ}
@@ -271,6 +381,12 @@ theorem polar_closedBall {π•œ E : Type _} [IsROrC π•œ] [NormedAddCommGroup E]
   simpa only [one_div] using LinearMap.bound_of_ball_bound' hr 1 x'.to_linear_map h z
 #align normed_space.polar_closed_ball NormedSpace.polar_closedBall
 
+/- warning: normed_space.bounded_polar_of_mem_nhds_zero -> NormedSpace.bounded_polar_of_mem_nhds_zero is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {s : Set.{u2} E}, (Membership.Mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (Filter.hasMem.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (SeminormedAddGroup.toAddGroup.{u2} E (SeminormedAddCommGroup.toSeminormedAddGroup.{u2} E _inst_2))))))))))) -> (Metric.Bounded.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u2 u1} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.Dual.seminormedAddCommGroup.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 s))
+but is expected to have type
+  forall (π•œ : Type.{u1}) [_inst_1 : NontriviallyNormedField.{u1} π•œ] {E : Type.{u2}} [_inst_2 : SeminormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (NontriviallyNormedField.toNormedField.{u1} π•œ _inst_1) _inst_2] {s : Set.{u2} E}, (Membership.mem.{u2, u2} (Set.{u2} E) (Filter.{u2} E) (instMembershipSetFilter.{u2} E) s (nhds.{u2} E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E _inst_2))) (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))))))) -> (Metric.Bounded.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (SeminormedAddCommGroup.toPseudoMetricSpace.{max u1 u2} (NormedSpace.Dual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3) (NormedSpace.instSeminormedAddCommGroupDual.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3)) (NormedSpace.polar.{u1, u2} π•œ _inst_1 E _inst_2 _inst_3 s))
+Case conversion may be inaccurate. Consider using '#align normed_space.bounded_polar_of_mem_nhds_zero NormedSpace.bounded_polar_of_mem_nhds_zeroβ‚“'. -/
 /-- Given a neighborhood `s` of the origin in a normed space `E`, the dual norms
 of all elements of the polar `polar π•œ s` are bounded by a constant. -/
 theorem bounded_polar_of_mem_nhds_zero {s : Set E} (s_nhd : s ∈ 𝓝 (0 : E)) : Bounded (polar π•œ s) :=
Diff
@@ -161,7 +161,7 @@ def inclusionInDoubleDualLi : E β†’β‚—α΅’[π•œ] Dual π•œ (Dual π•œ E) :=
       apply le_antisymm
       Β· exact double_dual_bound π•œ E x
       rw [ContinuousLinearMap.norm_def]
-      refine' le_cinfβ‚› ContinuousLinearMap.bounds_nonempty _
+      refine' le_csInf ContinuousLinearMap.bounds_nonempty _
       rintro c ⟨hc1, hc2⟩
       exact norm_le_dual_bound π•œ x hc1 hc2 }
 #align normed_space.inclusion_in_double_dual_li NormedSpace.inclusionInDoubleDualLi
@@ -197,8 +197,8 @@ theorem polar_univ : polar π•œ (univ : Set E) = {(0 : dual π•œ E)} :=
 theorem isClosed_polar (s : Set E) : IsClosed (polar π•œ s) :=
   by
   dsimp only [NormedSpace.polar]
-  simp only [LinearMap.polar_eq_interα΅’, LinearMap.flip_apply]
-  refine' isClosed_binterα΅’ fun z hz => _
+  simp only [LinearMap.polar_eq_iInter, LinearMap.flip_apply]
+  refine' isClosed_biInter fun z hz => _
   exact is_closed_Iic.preimage (ContinuousLinearMap.apply π•œ π•œ z).Continuous.norm
 #align normed_space.is_closed_polar NormedSpace.isClosed_polar
 
Diff
@@ -102,7 +102,7 @@ theorem double_dual_bound (x : E) : β€–(inclusionInDoubleDual π•œ E) xβ€– ≀ 
 
 /-- The dual pairing as a bilinear form. -/
 def dualPairing : Dual π•œ E β†’β‚—[π•œ] E β†’β‚—[π•œ] π•œ :=
-  ContinuousLinearMap.coeLm π•œ
+  ContinuousLinearMap.coeLM π•œ
 #align normed_space.dual_pairing NormedSpace.dualPairing
 
 @[simp]
Diff
@@ -110,11 +110,11 @@ theorem dualPairing_apply {v : Dual π•œ E} {x : E} : dualPairing π•œ E v x = v
   rfl
 #align normed_space.dual_pairing_apply NormedSpace.dualPairing_apply
 
-theorem dualPairingSeparatingLeft : (dualPairing π•œ E).SeparatingLeft :=
+theorem dualPairing_separatingLeft : (dualPairing π•œ E).SeparatingLeft :=
   by
   rw [LinearMap.separatingLeft_iff_ker_eq_bot, LinearMap.ker_eq_bot]
   exact ContinuousLinearMap.coe_injective
-#align normed_space.dual_pairing_separating_left NormedSpace.dualPairingSeparatingLeft
+#align normed_space.dual_pairing_separating_left NormedSpace.dualPairing_separatingLeft
 
 end General
 
@@ -191,7 +191,7 @@ theorem mem_polar_iff {x' : Dual π•œ E} (s : Set E) : x' ∈ polar π•œ s ↔ 
 @[simp]
 theorem polar_univ : polar π•œ (univ : Set E) = {(0 : dual π•œ E)} :=
   (dualPairing π•œ E).flip.polar_univ
-    (LinearMap.flip_separatingRight.mpr (dualPairingSeparatingLeft π•œ E))
+    (LinearMap.flip_separatingRight.mpr (dualPairing_separatingLeft π•œ E))
 #align normed_space.polar_univ NormedSpace.polar_univ
 
 theorem isClosed_polar (s : Set E) : IsClosed (polar π•œ s) :=
Diff
@@ -250,7 +250,7 @@ variable (π•œ)
 theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
     closedBall (0 : Dual π•œ E) r⁻¹ βŠ† polar π•œ (closedBall (0 : E) r) := fun x' hx' x hx =>
   calc
-    β€–x' xβ€– ≀ β€–x'β€– * β€–xβ€– := x'.le_op_norm x
+    β€–x' xβ€– ≀ β€–x'β€– * β€–xβ€– := x'.le_opNorm x
     _ ≀ r⁻¹ * r :=
       (mul_le_mul (mem_closedBall_zero_iff.1 hx') (mem_closedBall_zero_iff.1 hx) (norm_nonneg _)
         (dist_nonneg.trans hx'))
Diff
@@ -133,7 +133,7 @@ theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual
       calc
         β€–xβ€– = β€–(β€–xβ€– : π•œ)β€– := is_R_or_C.norm_coe_norm.symm
         _ = β€–f xβ€– := by rw [hfx]
-        _ ≀ M * β€–fβ€– := hM f
+        _ ≀ M * β€–fβ€– := (hM f)
         _ = M := by rw [hf₁, mul_one]
         
 #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound
@@ -252,9 +252,9 @@ theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
   calc
     β€–x' xβ€– ≀ β€–x'β€– * β€–xβ€– := x'.le_op_norm x
     _ ≀ r⁻¹ * r :=
-      mul_le_mul (mem_closedBall_zero_iff.1 hx') (mem_closedBall_zero_iff.1 hx) (norm_nonneg _)
-        (dist_nonneg.trans hx')
-    _ = r / r := inv_mul_eq_div _ _
+      (mul_le_mul (mem_closedBall_zero_iff.1 hx') (mem_closedBall_zero_iff.1 hx) (norm_nonneg _)
+        (dist_nonneg.trans hx'))
+    _ = r / r := (inv_mul_eq_div _ _)
     _ ≀ 1 := div_self_le_one r
     
 #align normed_space.closed_ball_inv_subset_polar_closed_ball NormedSpace.closedBall_inv_subset_polar_closedBall

Changes in mathlib4

mathlib3
mathlib4
chore: superfluous parentheses part 2 (#12131)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -120,7 +120,7 @@ theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual
       calc
         β€–xβ€– = β€–(β€–xβ€– : π•œ)β€– := RCLike.norm_coe_norm.symm
         _ = β€–f xβ€– := by rw [hfx]
-        _ ≀ M * β€–fβ€– := (hM f)
+        _ ≀ M * β€–fβ€– := hM f
         _ = M := by rw [hf₁, mul_one]
 #align normed_space.norm_le_dual_bound NormedSpace.norm_le_dual_bound
 
@@ -234,7 +234,7 @@ theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
     _ ≀ r⁻¹ * r :=
       (mul_le_mul (mem_closedBall_zero_iff.1 hx') (mem_closedBall_zero_iff.1 hx) (norm_nonneg _)
         (dist_nonneg.trans hx'))
-    _ = r / r := (inv_mul_eq_div _ _)
+    _ = r / r := inv_mul_eq_div _ _
     _ ≀ 1 := div_self_le_one r
 #align normed_space.closed_ball_inv_subset_polar_closed_ball NormedSpace.closedBall_inv_subset_polar_closedBall
 
style: replace '.-/' by '. -/' (#11938)

Purely automatic replacement. If this is in any way controversial; I'm happy to just close this PR.

Diff
@@ -138,7 +138,7 @@ theorem eq_iff_forall_dual_eq {x y : E} : x = y ↔ βˆ€ g : Dual π•œ E, g x = g
   simp [sub_eq_zero]
 #align normed_space.eq_iff_forall_dual_eq NormedSpace.eq_iff_forall_dual_eq
 
-/-- The inclusion of a normed space in its double dual is an isometry onto its image.-/
+/-- The inclusion of a normed space in its double dual is an isometry onto its image. -/
 def inclusionInDoubleDualLi : E β†’β‚—α΅’[π•œ] Dual π•œ (Dual π•œ E) :=
   { inclusionInDoubleDual π•œ E with
     norm_map' := by
chore: avoid Ne.def (adaptation for nightly-2024-03-27) (#11801)
Diff
@@ -209,7 +209,7 @@ theorem smul_mem_polar {s : Set E} {x' : Dual π•œ E} {c : π•œ} (hc : βˆ€ z, z
     rw [eq z]
     apply mul_le_mul (le_of_eq rfl) (hc z hzs) (norm_nonneg _) (norm_nonneg _)
   have cancel : β€–c⁻¹‖ * β€–cβ€– = 1 := by
-    simp only [c_zero, norm_eq_zero, Ne.def, not_false_iff, inv_mul_cancel, norm_inv]
+    simp only [c_zero, norm_eq_zero, Ne, not_false_iff, inv_mul_cancel, norm_inv]
   rwa [cancel] at le
 #align normed_space.smul_mem_polar NormedSpace.smul_mem_polar
 
chore: Rename IsROrC to RCLike (#10819)

IsROrC contains data, which goes against the expectation that classes prefixed with Is are prop-valued. People have been complaining about this on and off, so this PR renames IsROrC to RCLike.

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Heather Macbeth
 -/
 import Mathlib.Analysis.NormedSpace.HahnBanach.Extension
-import Mathlib.Analysis.NormedSpace.IsROrC
+import Mathlib.Analysis.NormedSpace.RCLike
 import Mathlib.Analysis.LocallyConvex.Polar
 
 #align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
@@ -107,7 +107,7 @@ end General
 
 section BidualIsometry
 
-variable (π•œ : Type v) [IsROrC π•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace π•œ E]
+variable (π•œ : Type v) [RCLike π•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace π•œ E]
 
 /-- If one controls the norm of every `f x`, then one controls the norm of `x`.
     Compare `ContinuousLinearMap.opNorm_le_bound`. -/
@@ -118,7 +118,7 @@ theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual
     Β· simp only [h, hMp, norm_zero]
     Β· obtain ⟨f, hf₁, hfx⟩ : βˆƒ f : E β†’L[π•œ] π•œ, β€–fβ€– = 1 ∧ f x = β€–xβ€– := exists_dual_vector π•œ x h
       calc
-        β€–xβ€– = β€–(β€–xβ€– : π•œ)β€– := IsROrC.norm_coe_norm.symm
+        β€–xβ€– = β€–(β€–xβ€– : π•œ)β€– := RCLike.norm_coe_norm.symm
         _ = β€–f xβ€– := by rw [hfx]
         _ ≀ M * β€–fβ€– := (hM f)
         _ = M := by rw [hf₁, mul_one]
@@ -240,7 +240,7 @@ theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
 
 /-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with
 inverse radius. -/
-theorem polar_closedBall {π•œ E : Type*} [IsROrC π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {r : ℝ}
+theorem polar_closedBall {π•œ E : Type*} [RCLike π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {r : ℝ}
     (hr : 0 < r) : polar π•œ (closedBall (0 : E) r) = closedBall (0 : Dual π•œ E) r⁻¹ := by
   refine' Subset.antisymm _ (closedBall_inv_subset_polar_closedBall π•œ)
   intro x' h
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -48,9 +48,7 @@ namespace NormedSpace
 section General
 
 variable (π•œ : Type*) [NontriviallyNormedField π•œ]
-
 variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace π•œ E]
-
 variable (F : Type*) [NormedAddCommGroup F] [NormedSpace π•œ F]
 
 /-- The topological dual of a seminormed space `E`. -/
@@ -168,7 +166,6 @@ def polar (π•œ : Type*) [NontriviallyNormedField π•œ] {E : Type*} [SeminormedA
 #align normed_space.polar NormedSpace.polar
 
 variable (π•œ : Type*) [NontriviallyNormedField π•œ]
-
 variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace π•œ E]
 
 theorem mem_polar_iff {x' : Dual π•œ E} (s : Set E) : x' ∈ polar π•œ s ↔ βˆ€ z ∈ s, β€–x' zβ€– ≀ 1 :=
chore: scope open Classical (#11199)

We remove all but one open Classicals, instead preferring to use open scoped Classical. The only real side-effect this led to is moving a couple declarations to use Exists.choose instead of Classical.choose.

The first few commits are explicitly labelled regex replaces for ease of review.

Diff
@@ -38,7 +38,8 @@ dual
 
 noncomputable section
 
-open Classical Topology Bornology
+open scoped Classical
+open Topology Bornology
 
 universe u v
 
chore: rename op_norm to opNorm (#10185)

Co-authored-by: adomani <adomani@gmail.com>

Diff
@@ -77,7 +77,7 @@ theorem dual_def (x : E) (f : Dual π•œ E) : inclusionInDoubleDual π•œ E x f =
 
 theorem inclusionInDoubleDual_norm_eq :
     β€–inclusionInDoubleDual π•œ Eβ€– = β€–ContinuousLinearMap.id π•œ (Dual π•œ E)β€– :=
-  ContinuousLinearMap.op_norm_flip _
+  ContinuousLinearMap.opNorm_flip _
 #align normed_space.inclusion_in_double_dual_norm_eq NormedSpace.inclusionInDoubleDual_norm_eq
 
 theorem inclusionInDoubleDual_norm_le : β€–inclusionInDoubleDual π•œ Eβ€– ≀ 1 := by
@@ -86,7 +86,7 @@ theorem inclusionInDoubleDual_norm_le : β€–inclusionInDoubleDual π•œ Eβ€– ≀ 1
 #align normed_space.inclusion_in_double_dual_norm_le NormedSpace.inclusionInDoubleDual_norm_le
 
 theorem double_dual_bound (x : E) : β€–(inclusionInDoubleDual π•œ E) xβ€– ≀ β€–xβ€– := by
-  simpa using ContinuousLinearMap.le_of_op_norm_le _ (inclusionInDoubleDual_norm_le π•œ E) x
+  simpa using ContinuousLinearMap.le_of_opNorm_le _ (inclusionInDoubleDual_norm_le π•œ E) x
 #align normed_space.double_dual_bound NormedSpace.double_dual_bound
 
 /-- The dual pairing as a bilinear form. -/
@@ -111,7 +111,7 @@ section BidualIsometry
 variable (π•œ : Type v) [IsROrC π•œ] {E : Type u} [NormedAddCommGroup E] [NormedSpace π•œ E]
 
 /-- If one controls the norm of every `f x`, then one controls the norm of `x`.
-    Compare `ContinuousLinearMap.op_norm_le_bound`. -/
+    Compare `ContinuousLinearMap.opNorm_le_bound`. -/
 theorem norm_le_dual_bound (x : E) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ f : Dual π•œ E, β€–f xβ€– ≀ M * β€–fβ€–) :
     β€–xβ€– ≀ M := by
   classical
@@ -221,7 +221,7 @@ theorem polar_ball_subset_closedBall_div {c : π•œ} (hc : 1 < β€–cβ€–) {r : ℝ}
   rw [mem_polar_iff] at hx'
   simp only [polar, mem_setOf, mem_closedBall_zero_iff, mem_ball_zero_iff] at *
   have hcr : 0 < β€–cβ€– / r := div_pos (zero_lt_one.trans hc) hr
-  refine' ContinuousLinearMap.op_norm_le_of_shell hr hcr.le hc fun x h₁ hβ‚‚ => _
+  refine' ContinuousLinearMap.opNorm_le_of_shell hr hcr.le hc fun x h₁ hβ‚‚ => _
   calc
     β€–x' xβ€– ≀ 1 := hx' _ hβ‚‚
     _ ≀ β€–cβ€– / r * β€–xβ€– := (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa [inv_div])
@@ -232,7 +232,7 @@ variable (π•œ)
 theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
     closedBall (0 : Dual π•œ E) r⁻¹ βŠ† polar π•œ (closedBall (0 : E) r) := fun x' hx' x hx =>
   calc
-    β€–x' xβ€– ≀ β€–x'β€– * β€–xβ€– := x'.le_op_norm x
+    β€–x' xβ€– ≀ β€–x'β€– * β€–xβ€– := x'.le_opNorm x
     _ ≀ r⁻¹ * r :=
       (mul_le_mul (mem_closedBall_zero_iff.1 hx') (mem_closedBall_zero_iff.1 hx) (norm_nonneg _)
         (dist_nonneg.trans hx'))
@@ -247,7 +247,7 @@ theorem polar_closedBall {π•œ E : Type*} [IsROrC π•œ] [NormedAddCommGroup E] [
   refine' Subset.antisymm _ (closedBall_inv_subset_polar_closedBall π•œ)
   intro x' h
   simp only [mem_closedBall_zero_iff]
-  refine' ContinuousLinearMap.op_norm_le_of_ball hr (inv_nonneg.mpr hr.le) fun z _ => _
+  refine' ContinuousLinearMap.opNorm_le_of_ball hr (inv_nonneg.mpr hr.le) fun z _ => _
   simpa only [one_div] using LinearMap.bound_of_ball_bound' hr 1 x'.toLinearMap h z
 #align normed_space.polar_closed_ball NormedSpace.polar_closedBall
 
refactor(Topology/MetricSpace): remove Metric.Bounded (#7240)

Use Bornology.IsBounded instead.

Diff
@@ -38,7 +38,7 @@ dual
 
 noncomputable section
 
-open Classical Topology
+open Classical Topology Bornology
 
 universe u v
 
@@ -225,7 +225,6 @@ theorem polar_ball_subset_closedBall_div {c : π•œ} (hc : 1 < β€–cβ€–) {r : ℝ}
   calc
     β€–x' xβ€– ≀ 1 := hx' _ hβ‚‚
     _ ≀ β€–cβ€– / r * β€–xβ€– := (inv_pos_le_iff_one_le_mul' hcr).1 (by rwa [inv_div])
-
 #align normed_space.polar_ball_subset_closed_ball_div NormedSpace.polar_ball_subset_closedBall_div
 
 variable (π•œ)
@@ -254,15 +253,14 @@ theorem polar_closedBall {π•œ E : Type*} [IsROrC π•œ] [NormedAddCommGroup E] [
 
 /-- Given a neighborhood `s` of the origin in a normed space `E`, the dual norms
 of all elements of the polar `polar π•œ s` are bounded by a constant. -/
-theorem bounded_polar_of_mem_nhds_zero {s : Set E} (s_nhd : s ∈ 𝓝 (0 : E)) :
-    Bounded (polar π•œ s) := by
+theorem isBounded_polar_of_mem_nhds_zero {s : Set E} (s_nhd : s ∈ 𝓝 (0 : E)) :
+    IsBounded (polar π•œ s) := by
   obtain ⟨a, ha⟩ : βˆƒ a : π•œ, 1 < β€–aβ€– := NormedField.exists_one_lt_norm π•œ
   obtain ⟨r, r_pos, r_ball⟩ : βˆƒ r : ℝ, 0 < r ∧ ball 0 r βŠ† s := Metric.mem_nhds_iff.1 s_nhd
-  exact
-    bounded_closedBall.mono
-      (((dualPairing π•œ E).flip.polar_antitone r_ball).trans <|
-        polar_ball_subset_closedBall_div ha r_pos)
-#align normed_space.bounded_polar_of_mem_nhds_zero NormedSpace.bounded_polar_of_mem_nhds_zero
+  exact isBounded_closedBall.subset
+    (((dualPairing π•œ E).flip.polar_antitone r_ball).trans <|
+      polar_ball_subset_closedBall_div ha r_pos)
+#align normed_space.bounded_polar_of_mem_nhds_zero NormedSpace.isBounded_polar_of_mem_nhds_zero
 
 end PolarSets
 
feat (NormedSpace.Dual): make Dual reducible (#6998)

Following LinearAlgebra.Dual this makes NormedSpace.Dual reducible.

Diff
@@ -53,35 +53,16 @@ variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace π•œ E]
 variable (F : Type*) [NormedAddCommGroup F] [NormedSpace π•œ F]
 
 /-- The topological dual of a seminormed space `E`. -/
-def Dual :=
-  E β†’L[π•œ] π•œ
+abbrev Dual : Type _ := E β†’L[π•œ] π•œ
 #align normed_space.dual NormedSpace.Dual
 
--- Porting note: added manually
-section DerivedInstances
+-- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_eq until
+-- leanprover/lean4#2522 is resolved; remove once fixed
+instance : NormedSpace π•œ (Dual π•œ E) := inferInstance
 
-instance : Inhabited (Dual π•œ E) :=
-  inferInstanceAs (Inhabited (E β†’L[π•œ] π•œ))
-
-instance : SeminormedAddCommGroup (Dual π•œ E) :=
-  inferInstanceAs (SeminormedAddCommGroup (E β†’L[π•œ] π•œ))
-
-instance : NormedSpace π•œ (Dual π•œ E) :=
-  inferInstanceAs (NormedSpace π•œ (E β†’L[π•œ] π•œ))
-
-end DerivedInstances
-
-instance : ContinuousLinearMapClass (Dual π•œ E) π•œ E π•œ :=
-  ContinuousLinearMap.continuousSemilinearMapClass
-
-instance : CoeFun (Dual π•œ E) fun _ => E β†’ π•œ :=
-  FunLike.hasCoeToFun
-
-instance : NormedAddCommGroup (Dual π•œ F) :=
-  ContinuousLinearMap.toNormedAddCommGroup
-
-instance [FiniteDimensional π•œ E] : FiniteDimensional π•œ (Dual π•œ E) :=
-  inferInstanceAs (FiniteDimensional π•œ (E β†’L[π•œ] π•œ))
+-- TODO: helper instance for elaboration of inclusionInDoubleDual_norm_le until
+-- leanprover/lean4#2522 is resolved; remove once fixed
+instance : SeminormedAddCommGroup (Dual π•œ E) := inferInstance
 
 /-- The inclusion of a normed space in its double (topological) dual, considered
    as a bounded linear map. -/
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -46,11 +46,11 @@ namespace NormedSpace
 
 section General
 
-variable (π•œ : Type _) [NontriviallyNormedField π•œ]
+variable (π•œ : Type*) [NontriviallyNormedField π•œ]
 
-variable (E : Type _) [SeminormedAddCommGroup E] [NormedSpace π•œ E]
+variable (E : Type*) [SeminormedAddCommGroup E] [NormedSpace π•œ E]
 
-variable (F : Type _) [NormedAddCommGroup F] [NormedSpace π•œ F]
+variable (F : Type*) [NormedAddCommGroup F] [NormedSpace π•œ F]
 
 /-- The topological dual of a seminormed space `E`. -/
 def Dual :=
@@ -180,14 +180,14 @@ open Metric Set NormedSpace
 /-- Given a subset `s` in a normed space `E` (over a field `π•œ`), the polar
 `polar π•œ s` is the subset of `Dual π•œ E` consisting of those functionals which
 evaluate to something of norm at most one at all points `z ∈ s`. -/
-def polar (π•œ : Type _) [NontriviallyNormedField π•œ] {E : Type _} [SeminormedAddCommGroup E]
+def polar (π•œ : Type*) [NontriviallyNormedField π•œ] {E : Type*} [SeminormedAddCommGroup E]
     [NormedSpace π•œ E] : Set E β†’ Set (Dual π•œ E) :=
   (dualPairing π•œ E).flip.polar
 #align normed_space.polar NormedSpace.polar
 
-variable (π•œ : Type _) [NontriviallyNormedField π•œ]
+variable (π•œ : Type*) [NontriviallyNormedField π•œ]
 
-variable {E : Type _} [SeminormedAddCommGroup E] [NormedSpace π•œ E]
+variable {E : Type*} [SeminormedAddCommGroup E] [NormedSpace π•œ E]
 
 theorem mem_polar_iff {x' : Dual π•œ E} (s : Set E) : x' ∈ polar π•œ s ↔ βˆ€ z ∈ s, β€–x' zβ€– ≀ 1 :=
   Iff.rfl
@@ -262,7 +262,7 @@ theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
 
 /-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with
 inverse radius. -/
-theorem polar_closedBall {π•œ E : Type _} [IsROrC π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {r : ℝ}
+theorem polar_closedBall {π•œ E : Type*} [IsROrC π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] {r : ℝ}
     (hr : 0 < r) : polar π•œ (closedBall (0 : E) r) = closedBall (0 : Dual π•œ E) r⁻¹ := by
   refine' Subset.antisymm _ (closedBall_inv_subset_polar_closedBall π•œ)
   intro x' h
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2020 Heather Macbeth. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Heather Macbeth
-
-! This file was ported from Lean 3 source module analysis.normed_space.dual
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Analysis.NormedSpace.HahnBanach.Extension
 import Mathlib.Analysis.NormedSpace.IsROrC
 import Mathlib.Analysis.LocallyConvex.Polar
 
+#align_import analysis.normed_space.dual from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # The topological dual of a normed space
 
chore: tidy various files (#4757)
Diff
@@ -21,16 +21,16 @@ dual.
 
 For base field `π•œ = ℝ` or `π•œ = β„‚`, this map is actually an isometric embedding; we provide a
 version `NormedSpace.inclusionInDoubleDualLi` of the map which is of type a bundled linear
-isometric embedding, `E β†’β‚—α΅’[π•œ] (dual π•œ (dual π•œ E))`.
+isometric embedding, `E β†’β‚—α΅’[π•œ] (Dual π•œ (Dual π•œ E))`.
 
 Since a lot of elementary properties don't require `eq_of_dist_eq_zero` we start setting up the
 theory for `SeminormedAddCommGroup` and we specialize to `NormedAddCommGroup` when needed.
 
 ## Main definitions
 
-* `inclusion_in_double_dual` and `inclusion_in_double_dual_li` are the inclusion of a normed space
+* `inclusionInDoubleDual` and `inclusionInDoubleDualLi` are the inclusion of a normed space
   in its double dual, considered as a bounded linear map and as a linear isometry, respectively.
-* `polar π•œ s` is the subset of `dual π•œ E` consisting of those functionals `x'` for which
+* `polar π•œ s` is the subset of `Dual π•œ E` consisting of those functionals `x'` for which
   `β€–x' zβ€– ≀ 1` for every `z ∈ s`.
 
 ## Tags
@@ -181,7 +181,7 @@ section PolarSets
 open Metric Set NormedSpace
 
 /-- Given a subset `s` in a normed space `E` (over a field `π•œ`), the polar
-`polar π•œ s` is the subset of `dual π•œ E` consisting of those functionals which
+`polar π•œ s` is the subset of `Dual π•œ E` consisting of those functionals which
 evaluate to something of norm at most one at all points `z ∈ s`. -/
 def polar (π•œ : Type _) [NontriviallyNormedField π•œ] {E : Type _} [SeminormedAddCommGroup E]
     [NormedSpace π•œ E] : Set E β†’ Set (Dual π•œ E) :=
@@ -261,7 +261,6 @@ theorem closedBall_inv_subset_polar_closedBall {r : ℝ} :
         (dist_nonneg.trans hx'))
     _ = r / r := (inv_mul_eq_div _ _)
     _ ≀ 1 := div_self_le_one r
-
 #align normed_space.closed_ball_inv_subset_polar_closed_ball NormedSpace.closedBall_inv_subset_polar_closedBall
 
 /-- The `polar` of closed ball in a normed space `E` is the closed ball of the dual with
feat: port Analysis.NormedSpace.Dual (#4310)

Dependencies 12 + 826

827 files ported (98.6%)
363818 lines ported (98.5%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file