analysis.normed_space.is_R_or_C
β·
Mathlib.Analysis.NormedSpace.IsROrC
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -3,8 +3,8 @@ Copyright (c) 2021 Kalle KytΓΆlΓ€. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kalle KytΓΆlΓ€
-/
-import Data.IsROrC.Basic
-import Analysis.NormedSpace.OperatorNorm
+import Analysis.RCLike.Basic
+import Analysis.NormedSpace.OperatorNorm.Basic
import Analysis.NormedSpace.Pointwise
#align_import analysis.normed_space.is_R_or_C from "leanprover-community/mathlib"@"50251fd6309cca5ca2e747882ffecd2729f38c5d"
@@ -34,11 +34,11 @@ This file exists mainly to avoid importing `is_R_or_C` in the main normed space
open Metric
-variable {π : Type _} [IsROrC π] {E : Type _} [NormedAddCommGroup E]
+variable {π : Type _} [RCLike π] {E : Type _} [NormedAddCommGroup E]
-#print IsROrC.norm_coe_norm /-
-theorem IsROrC.norm_coe_norm {z : E} : β(βzβ : π)β = βzβ := by simp
-#align is_R_or_C.norm_coe_norm IsROrC.norm_coe_norm
+#print RCLike.norm_coe_norm /-
+theorem RCLike.norm_coe_norm {z : E} : β(βzβ : π)β = βzβ := by simp
+#align is_R_or_C.norm_coe_norm RCLike.norm_coe_norm
-/
variable [NormedSpace π E]
@@ -77,9 +77,9 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
have eq : f z = βzβ / r * f zβ :=
by
rw [hzβ, LinearMap.map_smul, smul_eq_mul]
- rw [β mul_assoc, β mul_assoc, div_mul_cancel _ r_ne_zero, mul_inv_cancel, one_mul]
- simp only [z_zero, IsROrC.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
- rw [Eq, norm_mul, norm_div, IsROrC.norm_coe_norm, IsROrC.norm_of_nonneg r_pos.le,
+ rw [β mul_assoc, β mul_assoc, div_mul_cancelβ _ r_ne_zero, mul_inv_cancel, one_mul]
+ simp only [z_zero, RCLike.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
+ rw [Eq, norm_mul, norm_div, RCLike.norm_coe_norm, RCLike.norm_of_nonneg r_pos.le,
div_mul_eq_mul_div, div_mul_eq_mul_div, mul_comm]
apply div_le_div _ _ r_pos rfl.ge
Β· exact mul_nonneg ((norm_nonneg _).trans norm_f_zβ) (norm_nonneg z)
@@ -112,11 +112,11 @@ theorem ContinuousLinearMap.opNorm_bound_of_ball_bound {r : β} (r_pos : 0 < r)
variable (π)
-#print NormedSpace.sphere_nonempty_isROrC /-
-theorem NormedSpace.sphere_nonempty_isROrC [Nontrivial E] {r : β} (hr : 0 β€ r) :
+#print NormedSpace.sphere_nonempty_rclike /-
+theorem NormedSpace.sphere_nonempty_rclike [Nontrivial E] {r : β} (hr : 0 β€ r) :
Nonempty (sphere (0 : E) r) :=
letI : NormedSpace β E := NormedSpace.restrictScalars β π E
(normed_space.sphere_nonempty.mpr hr).coeSort
-#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_isROrC
+#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_rclike
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -96,18 +96,18 @@ theorem LinearMap.bound_of_ball_bound' {r : β} (r_pos : 0 < r) (c : β) (f :
#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'
-/
-#print ContinuousLinearMap.op_norm_bound_of_ball_bound /-
-theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : β} (r_pos : 0 < r) (c : β)
+#print ContinuousLinearMap.opNorm_bound_of_ball_bound /-
+theorem ContinuousLinearMap.opNorm_bound_of_ball_bound {r : β} (r_pos : 0 < r) (c : β)
(f : E βL[π] π) (h : β z β closedBall (0 : E) r, βf zβ β€ c) : βfβ β€ c / r :=
by
- apply ContinuousLinearMap.op_norm_le_bound
+ apply ContinuousLinearMap.opNorm_le_bound
Β· apply div_nonneg _ r_pos.le
exact
(norm_nonneg _).trans
(h 0 (by simp only [norm_zero, mem_closed_ball, dist_zero_left, r_pos.le]))
apply LinearMap.bound_of_ball_bound' r_pos
exact fun z hz => h z hz
-#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.op_norm_bound_of_ball_bound
+#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.opNorm_bound_of_ball_bound
-/
variable (π)
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,9 +3,9 @@ Copyright (c) 2021 Kalle KytΓΆlΓ€. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kalle KytΓΆlΓ€
-/
-import Mathbin.Data.IsROrC.Basic
-import Mathbin.Analysis.NormedSpace.OperatorNorm
-import Mathbin.Analysis.NormedSpace.Pointwise
+import Data.IsROrC.Basic
+import Analysis.NormedSpace.OperatorNorm
+import Analysis.NormedSpace.Pointwise
#align_import analysis.normed_space.is_R_or_C from "leanprover-community/mathlib"@"50251fd6309cca5ca2e747882ffecd2729f38c5d"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,16 +2,13 @@
Copyright (c) 2021 Kalle KytΓΆlΓ€. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kalle KytΓΆlΓ€
-
-! This file was ported from Lean 3 source module analysis.normed_space.is_R_or_C
-! leanprover-community/mathlib commit 50251fd6309cca5ca2e747882ffecd2729f38c5d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Data.IsROrC.Basic
import Mathbin.Analysis.NormedSpace.OperatorNorm
import Mathbin.Analysis.NormedSpace.Pointwise
+#align_import analysis.normed_space.is_R_or_C from "leanprover-community/mathlib"@"50251fd6309cca5ca2e747882ffecd2729f38c5d"
+
/-!
# Normed spaces over R or C
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -39,11 +39,14 @@ open Metric
variable {π : Type _} [IsROrC π] {E : Type _} [NormedAddCommGroup E]
+#print IsROrC.norm_coe_norm /-
theorem IsROrC.norm_coe_norm {z : E} : β(βzβ : π)β = βzβ := by simp
#align is_R_or_C.norm_coe_norm IsROrC.norm_coe_norm
+-/
variable [NormedSpace π E]
+#print norm_smul_inv_norm /-
/-- Lemma to normalize a vector in a normed space `E` over either `β` or `β` to unit length. -/
@[simp]
theorem norm_smul_inv_norm {x : E} (hx : x β 0) : β(βxββ»ΒΉ : π) β’ xβ = 1 :=
@@ -51,14 +54,18 @@ theorem norm_smul_inv_norm {x : E} (hx : x β 0) : β(βxββ»ΒΉ : π) β’
have : βxβ β 0 := by simp [hx]
field_simp [norm_smul]
#align norm_smul_inv_norm norm_smul_inv_norm
+-/
+#print norm_smul_inv_norm' /-
/-- Lemma to normalize a vector in a normed space `E` over either `β` or `β` to length `r`. -/
theorem norm_smul_inv_norm' {r : β} (r_nonneg : 0 β€ r) {x : E} (hx : x β 0) :
β(r * βxββ»ΒΉ : π) β’ xβ = r := by
have : βxβ β 0 := by simp [hx]
field_simp [norm_smul, r_nonneg, is_R_or_C_simps]
#align norm_smul_inv_norm' norm_smul_inv_norm'
+-/
+#print LinearMap.bound_of_sphere_bound /-
theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f : E ββ[π] π)
(h : β z β sphere (0 : E) r, βf zβ β€ c) (z : E) : βf zβ β€ c / r * βzβ :=
by
@@ -81,14 +88,18 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
Β· exact mul_nonneg ((norm_nonneg _).trans norm_f_zβ) (norm_nonneg z)
apply mul_le_mul norm_f_zβ rfl.le (norm_nonneg z) ((norm_nonneg _).trans norm_f_zβ)
#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_bound
+-/
+#print LinearMap.bound_of_ball_bound' /-
/-- `linear_map.bound_of_ball_bound` is a version of this over arbitrary nontrivially normed fields.
It produces a less precise bound so we keep both versions. -/
theorem LinearMap.bound_of_ball_bound' {r : β} (r_pos : 0 < r) (c : β) (f : E ββ[π] π)
(h : β z β closedBall (0 : E) r, βf zβ β€ c) (z : E) : βf zβ β€ c / r * βzβ :=
f.bound_of_sphere_bound r_pos c (fun z hz => h z hz.le) z
#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'
+-/
+#print ContinuousLinearMap.op_norm_bound_of_ball_bound /-
theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : β} (r_pos : 0 < r) (c : β)
(f : E βL[π] π) (h : β z β closedBall (0 : E) r, βf zβ β€ c) : βfβ β€ c / r :=
by
@@ -100,14 +111,15 @@ theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : β} (r_pos : 0 < r
apply LinearMap.bound_of_ball_bound' r_pos
exact fun z hz => h z hz
#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.op_norm_bound_of_ball_bound
+-/
variable (π)
-include π
-
+#print NormedSpace.sphere_nonempty_isROrC /-
theorem NormedSpace.sphere_nonempty_isROrC [Nontrivial E] {r : β} (hr : 0 β€ r) :
Nonempty (sphere (0 : E) r) :=
letI : NormedSpace β E := NormedSpace.restrictScalars β π E
(normed_space.sphere_nonempty.mpr hr).coeSort
#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_isROrC
+-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -39,23 +39,11 @@ open Metric
variable {π : Type _} [IsROrC π] {E : Type _} [NormedAddCommGroup E]
-/- warning: is_R_or_C.norm_coe_norm -> IsROrC.norm_coe_norm is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] {z : E}, Eq.{1} Real (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π (HasLiftT.mk.{1, succ u1} Real π (CoeTCβ.coe.{1, succ u1} Real π (IsROrC.algebraMapCoe.{u1} π _inst_1))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z)
-but is expected to have type
- forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] {z : E}, Eq.{1} Real (Norm.norm.{u2} π (NormedField.toNorm.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))) (IsROrC.ofReal.{u2} π _inst_1 (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z)
-Case conversion may be inaccurate. Consider using '#align is_R_or_C.norm_coe_norm IsROrC.norm_coe_normβ'. -/
theorem IsROrC.norm_coe_norm {z : E} : β(βzβ : π)β = βzβ := by simp
#align is_R_or_C.norm_coe_norm IsROrC.norm_coe_norm
variable [NormedSpace π E]
-/- warning: norm_smul_inv_norm -> norm_smul_inv_norm is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (Inv.inv.{u1} π (DivInvMonoid.toHasInv.{u1} π (DivisionRing.toDivInvMonoid.{u1} π (NormedDivisionRing.toDivisionRing.{u1} π (NormedField.toNormedDivisionRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π (HasLiftT.mk.{1, succ u1} Real π (CoeTCβ.coe.{1, succ u1} Real π (IsROrC.algebraMapCoe.{u1} π _inst_1))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) x))) x)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))))
-but is expected to have type
- forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSMul.hSMul.{u1, u2, u2} π E E (instHSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))))) (Inv.inv.{u1} π (Field.toInv.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.ofReal.{u1} π _inst_1 (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) x))) x)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)))
-Case conversion may be inaccurate. Consider using '#align norm_smul_inv_norm norm_smul_inv_normβ'. -/
/-- Lemma to normalize a vector in a normed space `E` over either `β` or `β` to unit length. -/
@[simp]
theorem norm_smul_inv_norm {x : E} (hx : x β 0) : β(βxββ»ΒΉ : π) β’ xβ = 1 :=
@@ -64,12 +52,6 @@ theorem norm_smul_inv_norm {x : E} (hx : x β 0) : β(βxββ»ΒΉ : π) β’
field_simp [norm_smul]
#align norm_smul_inv_norm norm_smul_inv_norm
-/- warning: norm_smul_inv_norm' -> norm_smul_inv_norm' is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (HMul.hMul.{u1, u1, u1} π π π (instHMul.{u1} π (Distrib.toHasMul.{u1} π (Ring.toDistrib.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π (HasLiftT.mk.{1, succ u1} Real π (CoeTCβ.coe.{1, succ u1} Real π (IsROrC.algebraMapCoe.{u1} π _inst_1))) r) (Inv.inv.{u1} π (DivInvMonoid.toHasInv.{u1} π (DivisionRing.toDivInvMonoid.{u1} π (NormedDivisionRing.toDivisionRing.{u1} π (NormedField.toNormedDivisionRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π (HasLiftT.mk.{1, succ u1} Real π (CoeTCβ.coe.{1, succ u1} Real π (IsROrC.algebraMapCoe.{u1} π _inst_1))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) x)))) x)) r))
-but is expected to have type
- forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSMul.hSMul.{u1, u2, u2} π E E (instHSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))))) (HMul.hMul.{u1, u1, u1} π π π (instHMul.{u1} π (NonUnitalNonAssocRing.toMul.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (IsROrC.ofReal.{u1} π _inst_1 r) (Inv.inv.{u1} π (Field.toInv.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.ofReal.{u1} π _inst_1 (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) x)))) x)) r))
-Case conversion may be inaccurate. Consider using '#align norm_smul_inv_norm' norm_smul_inv_norm'β'. -/
/-- Lemma to normalize a vector in a normed space `E` over either `β` or `β` to length `r`. -/
theorem norm_smul_inv_norm' {r : β} (r_nonneg : 0 β€ r) {x : E} (hx : x β 0) :
β(r * βxββ»ΒΉ : π) β’ xβ = r := by
@@ -77,9 +59,6 @@ theorem norm_smul_inv_norm' {r : β} (r_nonneg : 0 β€ r) {x : E} (hx : x β 0
field_simp [norm_smul, r_nonneg, is_R_or_C_simps]
#align norm_smul_inv_norm' norm_smul_inv_norm'
-/- warning: linear_map.bound_of_sphere_bound -> LinearMap.bound_of_sphere_bound is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_boundβ'. -/
theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f : E ββ[π] π)
(h : β z β sphere (0 : E) r, βf zβ β€ c) (z : E) : βf zβ β€ c / r * βzβ :=
by
@@ -103,9 +82,6 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
apply mul_le_mul norm_f_zβ rfl.le (norm_nonneg z) ((norm_nonneg _).trans norm_f_zβ)
#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_bound
-/- warning: linear_map.bound_of_ball_bound' -> LinearMap.bound_of_ball_bound' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'β'. -/
/-- `linear_map.bound_of_ball_bound` is a version of this over arbitrary nontrivially normed fields.
It produces a less precise bound so we keep both versions. -/
theorem LinearMap.bound_of_ball_bound' {r : β} (r_pos : 0 < r) (c : β) (f : E ββ[π] π)
@@ -113,9 +89,6 @@ theorem LinearMap.bound_of_ball_bound' {r : β} (r_pos : 0 < r) (c : β) (f :
f.bound_of_sphere_bound r_pos c (fun z hz => h z hz.le) z
#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'
-/- warning: continuous_linear_map.op_norm_bound_of_ball_bound -> ContinuousLinearMap.op_norm_bound_of_ball_bound is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.op_norm_bound_of_ball_boundβ'. -/
theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : β} (r_pos : 0 < r) (c : β)
(f : E βL[π] π) (h : β z β closedBall (0 : E) r, βf zβ β€ c) : βfβ β€ c / r :=
by
@@ -132,12 +105,6 @@ variable (π)
include π
-/- warning: normed_space.sphere_nonempty_is_R_or_C -> NormedSpace.sphere_nonempty_isROrC is a dubious translation:
-lean 3 declaration is
- forall (π : Type.{u1}) [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : Nontrivial.{u2} E] {r : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (Nonempty.{succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} E) Type.{u2} (Set.hasCoeToSort.{u2} E) (Metric.sphere.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)))
-but is expected to have type
- forall (π : Type.{u2}) [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] [_inst_4 : Nontrivial.{u1} E] {r : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (Nonempty.{succ u1} (Set.Elem.{u1} E (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)))
-Case conversion may be inaccurate. Consider using '#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_isROrCβ'. -/
theorem NormedSpace.sphere_nonempty_isROrC [Nontrivial E] {r : β} (hr : 0 β€ r) :
Nonempty (sphere (0 : E) r) :=
letI : NormedSpace β E := NormedSpace.restrictScalars β π E
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -84,8 +84,7 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
(h : β z β sphere (0 : E) r, βf zβ β€ c) (z : E) : βf zβ β€ c / r * βzβ :=
by
by_cases z_zero : z = 0
- Β· rw [z_zero]
- simp only [LinearMap.map_zero, norm_zero, MulZeroClass.mul_zero]
+ Β· rw [z_zero]; simp only [LinearMap.map_zero, norm_zero, MulZeroClass.mul_zero]
set zβ := (r * βzββ»ΒΉ : π) β’ z with hzβ
have norm_f_zβ : βf zββ β€ c := by
apply h
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -78,10 +78,7 @@ theorem norm_smul_inv_norm' {r : β} (r_nonneg : 0 β€ r) {x : E} (hx : x β 0
#align norm_smul_inv_norm' norm_smul_inv_norm'
/- warning: linear_map.bound_of_sphere_bound -> LinearMap.bound_of_sphere_bound is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.sphere.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
-but is expected to have type
- forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_boundβ'. -/
theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f : E ββ[π] π)
(h : β z β sphere (0 : E) r, βf zβ β€ c) (z : E) : βf zβ β€ c / r * βzβ :=
@@ -108,10 +105,7 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_bound
/- warning: linear_map.bound_of_ball_bound' -> LinearMap.bound_of_ball_bound' is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
-but is expected to have type
- forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+<too large>
Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'β'. -/
/-- `linear_map.bound_of_ball_bound` is a version of this over arbitrary nontrivially normed fields.
It produces a less precise bound so we keep both versions. -/
@@ -121,10 +115,7 @@ theorem LinearMap.bound_of_ball_bound' {r : β} (r_pos : 0 < r) (c : β) (f :
#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'
/- warning: continuous_linear_map.op_norm_bound_of_ball_bound -> ContinuousLinearMap.op_norm_bound_of_ball_bound is a dubious translation:
-lean 3 declaration is
- forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : ContinuousLinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (ContinuousLinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (ContinuousLinearMap.toFun.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) f z)) c)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, u1} π π E π (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (DenselyNormedField.toNontriviallyNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) _inst_3 (NormedField.toNormedSpace.{u1} π (NontriviallyNormedField.toNormedField.{u1} π (DenselyNormedField.toNontriviallyNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r)))
-but is expected to have type
- forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : ContinuousLinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (ContinuousLinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (ContinuousLinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E π (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (ContinuousLinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) f z)) c)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (ContinuousLinearMap.hasOpNorm.{u2, u2, u1, u2} π π E π (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (DenselyNormedField.toNontriviallyNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) _inst_3 (NormedField.toNormedSpace.{u2} π (NontriviallyNormedField.toNormedField.{u2} π (DenselyNormedField.toNontriviallyNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r)))
+<too large>
Case conversion may be inaccurate. Consider using '#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.op_norm_bound_of_ball_boundβ'. -/
theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : β} (r_pos : 0 < r) (c : β)
(f : E βL[π] π) (h : β z β closedBall (0 : E) r, βf zβ β€ c) : βfβ β€ c / r :=
mathlib commit https://github.com/leanprover-community/mathlib/commit/8d33f09cd7089ecf074b4791907588245aec5d1b
@@ -81,7 +81,7 @@ theorem norm_smul_inv_norm' {r : β} (r_nonneg : 0 β€ r) {x : E} (hx : x β 0
lean 3 declaration is
forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.sphere.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
but is expected to have type
- forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+ forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_boundβ'. -/
theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f : E ββ[π] π)
(h : β z β sphere (0 : E) r, βf zβ β€ c) (z : E) : βf zβ β€ c / r * βzβ :=
@@ -111,7 +111,7 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
lean 3 declaration is
forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
but is expected to have type
- forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+ forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'β'. -/
/-- `linear_map.bound_of_ball_bound` is a version of this over arbitrary nontrivially normed fields.
It produces a less precise bound so we keep both versions. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kalle KytΓΆlΓ€
! This file was ported from Lean 3 source module analysis.normed_space.is_R_or_C
-! leanprover-community/mathlib commit 3f655f5297b030a87d641ad4e825af8d9679eb0b
+! leanprover-community/mathlib commit 50251fd6309cca5ca2e747882ffecd2729f38c5d
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -15,6 +15,9 @@ import Mathbin.Analysis.NormedSpace.Pointwise
/-!
# Normed spaces over R or C
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
This file is about results on normed spaces over the fields `β` and `β`.
## Main definitions
mathlib commit https://github.com/leanprover-community/mathlib/commit/c89fe2d59ae06402c3f55f978016d1ada444f57e
@@ -78,7 +78,7 @@ theorem norm_smul_inv_norm' {r : β} (r_nonneg : 0 β€ r) {x : E} (hx : x β 0
lean 3 declaration is
forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.sphere.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
but is expected to have type
- forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+ forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_boundβ'. -/
theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f : E ββ[π] π)
(h : β z β sphere (0 : E) r, βf zβ β€ c) (z : E) : βf zβ β€ c / r * βzβ :=
@@ -108,7 +108,7 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
lean 3 declaration is
forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
but is expected to have type
- forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+ forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'β'. -/
/-- `linear_map.bound_of_ball_bound` is a version of this over arbitrary nontrivially normed fields.
It produces a less precise bound so we keep both versions. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/f8c79b0a623404854a2902b836eac32156fd7712
@@ -36,11 +36,23 @@ open Metric
variable {π : Type _} [IsROrC π] {E : Type _} [NormedAddCommGroup E]
+/- warning: is_R_or_C.norm_coe_norm -> IsROrC.norm_coe_norm is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] {z : E}, Eq.{1} Real (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π (HasLiftT.mk.{1, succ u1} Real π (CoeTCβ.coe.{1, succ u1} Real π (IsROrC.algebraMapCoe.{u1} π _inst_1))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z)
+but is expected to have type
+ forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] {z : E}, Eq.{1} Real (Norm.norm.{u2} π (NormedField.toNorm.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))) (IsROrC.ofReal.{u2} π _inst_1 (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z)
+Case conversion may be inaccurate. Consider using '#align is_R_or_C.norm_coe_norm IsROrC.norm_coe_normβ'. -/
theorem IsROrC.norm_coe_norm {z : E} : β(βzβ : π)β = βzβ := by simp
#align is_R_or_C.norm_coe_norm IsROrC.norm_coe_norm
variable [NormedSpace π E]
+/- warning: norm_smul_inv_norm -> norm_smul_inv_norm is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (Inv.inv.{u1} π (DivInvMonoid.toHasInv.{u1} π (DivisionRing.toDivInvMonoid.{u1} π (NormedDivisionRing.toDivisionRing.{u1} π (NormedField.toNormedDivisionRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π (HasLiftT.mk.{1, succ u1} Real π (CoeTCβ.coe.{1, succ u1} Real π (IsROrC.algebraMapCoe.{u1} π _inst_1))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) x))) x)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))))
+but is expected to have type
+ forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSMul.hSMul.{u1, u2, u2} π E E (instHSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))))) (Inv.inv.{u1} π (Field.toInv.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.ofReal.{u1} π _inst_1 (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) x))) x)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)))
+Case conversion may be inaccurate. Consider using '#align norm_smul_inv_norm norm_smul_inv_normβ'. -/
/-- Lemma to normalize a vector in a normed space `E` over either `β` or `β` to unit length. -/
@[simp]
theorem norm_smul_inv_norm {x : E} (hx : x β 0) : β(βxββ»ΒΉ : π) β’ xβ = 1 :=
@@ -49,6 +61,12 @@ theorem norm_smul_inv_norm {x : E} (hx : x β 0) : β(βxββ»ΒΉ : π) β’
field_simp [norm_smul]
#align norm_smul_inv_norm norm_smul_inv_norm
+/- warning: norm_smul_inv_norm' -> norm_smul_inv_norm' is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (SMul.smul.{u1, u2} π E (SMulZeroClass.toHasSmul.{u1, u2} π E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π E (MulZeroClass.toHasZero.{u1} π (MulZeroOneClass.toMulZeroClass.{u1} π (MonoidWithZero.toMulZeroOneClass.{u1} π (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (HMul.hMul.{u1, u1, u1} π π π (instHMul.{u1} π (Distrib.toHasMul.{u1} π (Ring.toDistrib.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π (HasLiftT.mk.{1, succ u1} Real π (CoeTCβ.coe.{1, succ u1} Real π (IsROrC.algebraMapCoe.{u1} π _inst_1))) r) (Inv.inv.{u1} π (DivInvMonoid.toHasInv.{u1} π (DivisionRing.toDivInvMonoid.{u1} π (NormedDivisionRing.toDivisionRing.{u1} π (NormedField.toNormedDivisionRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π (HasLiftT.mk.{1, succ u1} Real π (CoeTCβ.coe.{1, succ u1} Real π (IsROrC.algebraMapCoe.{u1} π _inst_1))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) x)))) x)) r))
+but is expected to have type
+ forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSMul.hSMul.{u1, u2, u2} π E E (instHSMul.{u1, u2} π E (SMulZeroClass.toSMul.{u1, u2} π E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π E (CommMonoidWithZero.toZero.{u1} π (CommGroupWithZero.toCommMonoidWithZero.{u1} π (Semifield.toCommGroupWithZero.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π E (Semiring.toMonoidWithZero.{u1} π (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π E (DivisionSemiring.toSemiring.{u1} π (Semifield.toDivisionSemiring.{u1} π (Field.toSemifield.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))))) (HMul.hMul.{u1, u1, u1} π π π (instHMul.{u1} π (NonUnitalNonAssocRing.toMul.{u1} π (NonAssocRing.toNonUnitalNonAssocRing.{u1} π (Ring.toNonAssocRing.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) (IsROrC.ofReal.{u1} π _inst_1 r) (Inv.inv.{u1} π (Field.toInv.{u1} π (NormedField.toField.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (IsROrC.ofReal.{u1} π _inst_1 (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) x)))) x)) r))
+Case conversion may be inaccurate. Consider using '#align norm_smul_inv_norm' norm_smul_inv_norm'β'. -/
/-- Lemma to normalize a vector in a normed space `E` over either `β` or `β` to length `r`. -/
theorem norm_smul_inv_norm' {r : β} (r_nonneg : 0 β€ r) {x : E} (hx : x β 0) :
β(r * βxββ»ΒΉ : π) β’ xβ = r := by
@@ -56,6 +74,12 @@ theorem norm_smul_inv_norm' {r : β} (r_nonneg : 0 β€ r) {x : E} (hx : x β 0
field_simp [norm_smul, r_nonneg, is_R_or_C_simps]
#align norm_smul_inv_norm' norm_smul_inv_norm'
+/- warning: linear_map.bound_of_sphere_bound -> LinearMap.bound_of_sphere_bound is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.sphere.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
+but is expected to have type
+ forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_boundβ'. -/
theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f : E ββ[π] π)
(h : β z β sphere (0 : E) r, βf zβ β€ c) (z : E) : βf zβ β€ c / r * βzβ :=
by
@@ -80,6 +104,12 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
apply mul_le_mul norm_f_zβ rfl.le (norm_nonneg z) ((norm_nonneg _).trans norm_f_zβ)
#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_bound
+/- warning: linear_map.bound_of_ball_bound' -> LinearMap.bound_of_ball_bound' is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π π E π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
+but is expected to have type
+ forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E π (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π π E π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'β'. -/
/-- `linear_map.bound_of_ball_bound` is a version of this over arbitrary nontrivially normed fields.
It produces a less precise bound so we keep both versions. -/
theorem LinearMap.bound_of_ball_bound' {r : β} (r_pos : 0 < r) (c : β) (f : E ββ[π] π)
@@ -87,6 +117,12 @@ theorem LinearMap.bound_of_ball_bound' {r : β} (r_pos : 0 < r) (c : β) (f :
f.bound_of_sphere_bound r_pos c (fun z hz => h z hz.le) z
#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'
+/- warning: continuous_linear_map.op_norm_bound_of_ball_bound -> ContinuousLinearMap.op_norm_bound_of_ball_bound is a dubious translation:
+lean 3 declaration is
+ forall {π : Type.{u1}} [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : ContinuousLinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π (NormedField.toHasNorm.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (ContinuousLinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) => E -> π) (ContinuousLinearMap.toFun.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) f z)) c)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u1, u1, u2, u1} π π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u1} π (PseudoMetricSpace.toUniformSpace.{u1} π (SeminormedRing.toPseudoMetricSpace.{u1} π (SeminormedCommRing.toSemiNormedRing.{u1} π (NormedCommRing.toSeminormedCommRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π (NormedAddCommGroup.toAddCommGroup.{u1} π (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (NormedField.toNormedSpace.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, u1} π π E π (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π (NormedRing.toNonUnitalNormedRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (DenselyNormedField.toNontriviallyNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) _inst_3 (NormedField.toNormedSpace.{u1} π (NontriviallyNormedField.toNormedField.{u1} π (DenselyNormedField.toNontriviallyNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)))) (RingHom.id.{u1} π (Semiring.toNonAssocSemiring.{u1} π (Ring.toSemiring.{u1} π (NormedRing.toRing.{u1} π (NormedCommRing.toNormedRing.{u1} π (NormedField.toNormedCommRing.{u1} π (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1))))))))) f) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r)))
+but is expected to have type
+ forall {π : Type.{u2}} [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : ContinuousLinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (ContinuousLinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (ContinuousLinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) E π (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (ContinuousLinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) f z)) c)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u2, u2, u1, u2} π π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π (UniformSpace.toTopologicalSpace.{u2} π (PseudoMetricSpace.toUniformSpace.{u2} π (SeminormedRing.toPseudoMetricSpace.{u2} π (SeminormedCommRing.toSeminormedRing.{u2} π (NormedCommRing.toSeminormedCommRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π (NonAssocRing.toNonUnitalNonAssocRing.{u2} π (Ring.toNonAssocRing.{u2} π (NormedRing.toRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (NormedField.toNormedSpace.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))) (ContinuousLinearMap.hasOpNorm.{u2, u2, u1, u2} π π E π (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π (NormedRing.toNonUnitalNormedRing.{u2} π (NormedCommRing.toNormedRing.{u2} π (NormedField.toNormedCommRing.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (DenselyNormedField.toNontriviallyNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) _inst_3 (NormedField.toNormedSpace.{u2} π (NontriviallyNormedField.toNormedField.{u2} π (DenselyNormedField.toNontriviallyNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)))) (RingHom.id.{u2} π (Semiring.toNonAssocSemiring.{u2} π (DivisionSemiring.toSemiring.{u2} π (Semifield.toDivisionSemiring.{u2} π (Field.toSemifield.{u2} π (NormedField.toField.{u2} π (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1))))))))) f) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r)))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.op_norm_bound_of_ball_boundβ'. -/
theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : β} (r_pos : 0 < r) (c : β)
(f : E βL[π] π) (h : β z β closedBall (0 : E) r, βf zβ β€ c) : βfβ β€ c / r :=
by
@@ -103,6 +139,12 @@ variable (π)
include π
+/- warning: normed_space.sphere_nonempty_is_R_or_C -> NormedSpace.sphere_nonempty_isROrC is a dubious translation:
+lean 3 declaration is
+ forall (π : Type.{u1}) [_inst_1 : IsROrC.{u1} π] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π E (DenselyNormedField.toNormedField.{u1} π (IsROrC.toDenselyNormedField.{u1} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : Nontrivial.{u2} E] {r : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (Nonempty.{succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} E) Type.{u2} (Set.hasCoeToSort.{u2} E) (Metric.sphere.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)))
+but is expected to have type
+ forall (π : Type.{u2}) [_inst_1 : IsROrC.{u2} π] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π E (DenselyNormedField.toNormedField.{u2} π (IsROrC.toDenselyNormedField.{u2} π _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] [_inst_4 : Nontrivial.{u1} E] {r : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (Nonempty.{succ u1} (Set.Elem.{u1} E (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)))
+Case conversion may be inaccurate. Consider using '#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_isROrCβ'. -/
theorem NormedSpace.sphere_nonempty_isROrC [Nontrivial E] {r : β} (hr : 0 β€ r) :
Nonempty (sphere (0 : E) r) :=
letI : NormedSpace β E := NormedSpace.restrictScalars β π E
mathlib commit https://github.com/leanprover-community/mathlib/commit/2f8347015b12b0864dfaf366ec4909eb70c78740
@@ -72,7 +72,7 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
by
rw [hzβ, LinearMap.map_smul, smul_eq_mul]
rw [β mul_assoc, β mul_assoc, div_mul_cancel _ r_ne_zero, mul_inv_cancel, one_mul]
- simp only [z_zero, IsROrC.of_real_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
+ simp only [z_zero, IsROrC.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
rw [Eq, norm_mul, norm_div, IsROrC.norm_coe_norm, IsROrC.norm_of_nonneg r_pos.le,
div_mul_eq_mul_div, div_mul_eq_mul_div, mul_comm]
apply div_le_div _ _ r_pos rfl.ge
mathlib commit https://github.com/leanprover-community/mathlib/commit/d4437c68c8d350fc9d4e95e1e174409db35e30d7
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kalle KytΓΆlΓ€
! This file was ported from Lean 3 source module analysis.normed_space.is_R_or_C
-! leanprover-community/mathlib commit 468b141b14016d54b479eb7a0fff1e360b7e3cf6
+! leanprover-community/mathlib commit 3f655f5297b030a87d641ad4e825af8d9679eb0b
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -53,7 +53,7 @@ theorem norm_smul_inv_norm {x : E} (hx : x β 0) : β(βxββ»ΒΉ : π) β’
theorem norm_smul_inv_norm' {r : β} (r_nonneg : 0 β€ r) {x : E} (hx : x β 0) :
β(r * βxββ»ΒΉ : π) β’ xβ = r := by
have : βxβ β 0 := by simp [hx]
- field_simp [norm_smul, IsROrC.norm_eq_abs, r_nonneg, is_R_or_C_simps]
+ field_simp [norm_smul, r_nonneg, is_R_or_C_simps]
#align norm_smul_inv_norm' norm_smul_inv_norm'
theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f : E ββ[π] π)
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -61,7 +61,7 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
by
by_cases z_zero : z = 0
Β· rw [z_zero]
- simp only [LinearMap.map_zero, norm_zero, mul_zero]
+ simp only [LinearMap.map_zero, norm_zero, MulZeroClass.mul_zero]
set zβ := (r * βzββ»ΒΉ : π) β’ z with hzβ
have norm_f_zβ : βf zββ β€ c := by
apply h
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
Occasionally, remove a "deprecated by" or "deprecated since", to fit the line length.
This is desirable (to me) because
@@ -93,9 +93,9 @@ theorem ContinuousLinearMap.opNorm_bound_of_ball_bound {r : β} (r_pos : 0 < r)
exact fun z hz => h z hz
#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.opNorm_bound_of_ball_bound
-@[deprecated]
+@[deprecated] -- 2024-02-02
alias ContinuousLinearMap.op_norm_bound_of_ball_bound :=
- ContinuousLinearMap.opNorm_bound_of_ball_bound -- deprecated on 2024-02-02
+ ContinuousLinearMap.opNorm_bound_of_ball_bound
variable (π)
These are changes from #11997, the latest adaptation PR for nightly-2024-04-07, which can be made directly on master.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>
@@ -67,7 +67,7 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
have eq : f z = βzβ / r * f zβ := by
rw [hzβ, LinearMap.map_smul, smul_eq_mul]
rw [β mul_assoc, β mul_assoc, div_mul_cancelβ _ r_ne_zero, mul_inv_cancel, one_mul]
- simp only [z_zero, RCLike.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
+ simp only [z_zero, RCLike.ofReal_eq_zero, norm_eq_zero, Ne, not_false_iff]
rw [eq, norm_mul, norm_div, RCLike.norm_coe_norm, RCLike.norm_of_nonneg r_pos.le,
div_mul_eq_mul_div, div_mul_eq_mul_div, mul_comm]
apply div_le_div _ _ r_pos rfl.ge
Data
(#11753)
RCLike
is an analytic typeclass, hence should be under Analysis
@@ -3,7 +3,7 @@ Copyright (c) 2021 Kalle KytΓΆlΓ€. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kalle KytΓΆlΓ€
-/
-import Mathlib.Data.RCLike.Basic
+import Mathlib.Analysis.RCLike.Basic
import Mathlib.Analysis.NormedSpace.OperatorNorm.Basic
import Mathlib.Analysis.NormedSpace.Pointwise
IsROrC
to RCLike
(#10819)
IsROrC
contains data, which goes against the expectation that classes prefixed with Is
are prop-valued. People have been complaining about this on and off, so this PR renames IsROrC
to RCLike
.
@@ -3,7 +3,7 @@ Copyright (c) 2021 Kalle KytΓΆlΓ€. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kalle KytΓΆlΓ€
-/
-import Mathlib.Data.IsROrC.Basic
+import Mathlib.Data.RCLike.Basic
import Mathlib.Analysis.NormedSpace.OperatorNorm.Basic
import Mathlib.Analysis.NormedSpace.Pointwise
@@ -25,16 +25,16 @@ None.
## Notes
-This file exists mainly to avoid importing `IsROrC` in the main normed space theory files.
+This file exists mainly to avoid importing `RCLike` in the main normed space theory files.
-/
open Metric
-variable {π : Type*} [IsROrC π] {E : Type*} [NormedAddCommGroup E]
+variable {π : Type*} [RCLike π] {E : Type*} [NormedAddCommGroup E]
-theorem IsROrC.norm_coe_norm {z : E} : β(βzβ : π)β = βzβ := by simp
-#align is_R_or_C.norm_coe_norm IsROrC.norm_coe_norm
+theorem RCLike.norm_coe_norm {z : E} : β(βzβ : π)β = βzβ := by simp
+#align is_R_or_C.norm_coe_norm RCLike.norm_coe_norm
variable [NormedSpace π E]
@@ -49,7 +49,7 @@ theorem norm_smul_inv_norm {x : E} (hx : x β 0) : β(βxββ»ΒΉ : π) β’
theorem norm_smul_inv_norm' {r : β} (r_nonneg : 0 β€ r) {x : E} (hx : x β 0) :
β((r : π) * (βxβ : π)β»ΒΉ) β’ xβ = r := by
have : βxβ β 0 := by simp [hx]
- field_simp [norm_smul, r_nonneg, isROrC_simps]
+ field_simp [norm_smul, r_nonneg, rclike_simps]
#align norm_smul_inv_norm' norm_smul_inv_norm'
theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f : E ββ[π] π)
@@ -63,12 +63,12 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
apply h
rw [mem_sphere_zero_iff_norm]
exact norm_smul_inv_norm' r_pos.le z_zero
- have r_ne_zero : (r : π) β 0 := IsROrC.ofReal_ne_zero.mpr r_pos.ne'
+ have r_ne_zero : (r : π) β 0 := RCLike.ofReal_ne_zero.mpr r_pos.ne'
have eq : f z = βzβ / r * f zβ := by
rw [hzβ, LinearMap.map_smul, smul_eq_mul]
rw [β mul_assoc, β mul_assoc, div_mul_cancelβ _ r_ne_zero, mul_inv_cancel, one_mul]
- simp only [z_zero, IsROrC.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
- rw [eq, norm_mul, norm_div, IsROrC.norm_coe_norm, IsROrC.norm_of_nonneg r_pos.le,
+ simp only [z_zero, RCLike.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
+ rw [eq, norm_mul, norm_div, RCLike.norm_coe_norm, RCLike.norm_of_nonneg r_pos.le,
div_mul_eq_mul_div, div_mul_eq_mul_div, mul_comm]
apply div_le_div _ _ r_pos rfl.ge
Β· exact mul_nonneg ((norm_nonneg _).trans norm_f_zβ) (norm_nonneg z)
@@ -99,8 +99,8 @@ alias ContinuousLinearMap.op_norm_bound_of_ball_bound :=
variable (π)
-theorem NormedSpace.sphere_nonempty_isROrC [Nontrivial E] {r : β} (hr : 0 β€ r) :
+theorem NormedSpace.sphere_nonempty_rclike [Nontrivial E] {r : β} (hr : 0 β€ r) :
Nonempty (sphere (0 : E) r) :=
letI : NormedSpace β E := NormedSpace.restrictScalars β π E
(NormedSpace.sphere_nonempty.mpr hr).coe_sort
-#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_isROrC
+#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_rclike
mul
-div
cancellation lemmas (#11530)
Lemma names around cancellation of multiplication and division are a mess.
This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero
lemma name, the Group
lemma, the AddGroup
lemma name).
| Statement | New name | Old name | |
@@ -66,7 +66,7 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
have r_ne_zero : (r : π) β 0 := IsROrC.ofReal_ne_zero.mpr r_pos.ne'
have eq : f z = βzβ / r * f zβ := by
rw [hzβ, LinearMap.map_smul, smul_eq_mul]
- rw [β mul_assoc, β mul_assoc, div_mul_cancel _ r_ne_zero, mul_inv_cancel, one_mul]
+ rw [β mul_assoc, β mul_assoc, div_mul_cancelβ _ r_ne_zero, mul_inv_cancel, one_mul]
simp only [z_zero, IsROrC.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
rw [eq, norm_mul, norm_div, IsROrC.norm_coe_norm, IsROrC.norm_of_nonneg r_pos.le,
div_mul_eq_mul_div, div_mul_eq_mul_div, mul_comm]
Split the 2300-line behemoth OperatorNorm.lean
into 8 smaller files, of which the largest is 600 lines.
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kalle KytΓΆlΓ€
-/
import Mathlib.Data.IsROrC.Basic
-import Mathlib.Analysis.NormedSpace.OperatorNorm
+import Mathlib.Analysis.NormedSpace.OperatorNorm.Basic
import Mathlib.Analysis.NormedSpace.Pointwise
#align_import analysis.normed_space.is_R_or_C from "leanprover-community/mathlib"@"3f655f5297b030a87d641ad4e825af8d9679eb0b"
Following these Zulip discussions, I realised that my deprecation script produced a deprecation syntax that did not allow for auto-replacement in SΓ©bastien's #10185.
This PR fixes the deprecation statements, allowing self-correction: 119 times I replaced
@[deprecated xxx] --> @[deprecated]
.
@@ -93,7 +93,7 @@ theorem ContinuousLinearMap.opNorm_bound_of_ball_bound {r : β} (r_pos : 0 < r)
exact fun z hz => h z hz
#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.opNorm_bound_of_ball_bound
-@[deprecated ContinuousLinearMap.opNorm_bound_of_ball_bound]
+@[deprecated]
alias ContinuousLinearMap.op_norm_bound_of_ball_bound :=
ContinuousLinearMap.opNorm_bound_of_ball_bound -- deprecated on 2024-02-02
@@ -20,7 +20,7 @@ None.
## Main theorems
-* `ContinuousLinearMap.op_norm_bound_of_ball_bound`: A bound on the norms of values of a linear
+* `ContinuousLinearMap.opNorm_bound_of_ball_bound`: A bound on the norms of values of a linear
map in a ball yields a bound on the operator norm.
## Notes
@@ -82,16 +82,20 @@ theorem LinearMap.bound_of_ball_bound' {r : β} (r_pos : 0 < r) (c : β) (f :
f.bound_of_sphere_bound r_pos c (fun z hz => h z hz.le) z
#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'
-theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : β} (r_pos : 0 < r) (c : β)
+theorem ContinuousLinearMap.opNorm_bound_of_ball_bound {r : β} (r_pos : 0 < r) (c : β)
(f : E βL[π] π) (h : β z β closedBall (0 : E) r, βf zβ β€ c) : βfβ β€ c / r := by
- apply ContinuousLinearMap.op_norm_le_bound
+ apply ContinuousLinearMap.opNorm_le_bound
Β· apply div_nonneg _ r_pos.le
exact
(norm_nonneg _).trans
(h 0 (by simp only [norm_zero, mem_closedBall, dist_zero_left, r_pos.le]))
apply LinearMap.bound_of_ball_bound' r_pos
exact fun z hz => h z hz
-#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.op_norm_bound_of_ball_bound
+#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.opNorm_bound_of_ball_bound
+
+@[deprecated ContinuousLinearMap.opNorm_bound_of_ball_bound]
+alias ContinuousLinearMap.op_norm_bound_of_ball_bound :=
+ ContinuousLinearMap.opNorm_bound_of_ball_bound -- deprecated on 2024-02-02
variable (π)
MulZeroClass.
in mul_zero
/zero_mul
(#6682)
Search&replace MulZeroClass.mul_zero
-> mul_zero
, MulZeroClass.zero_mul
-> zero_mul
.
These were introduced by Mathport, as the full name of mul_zero
is actually MulZeroClass.mul_zero
(it's exported with the short name).
@@ -56,7 +56,7 @@ theorem LinearMap.bound_of_sphere_bound {r : β} (r_pos : 0 < r) (c : β) (f :
(h : β z β sphere (0 : E) r, βf zβ β€ c) (z : E) : βf zβ β€ c / r * βzβ := by
by_cases z_zero : z = 0
Β· rw [z_zero]
- simp only [LinearMap.map_zero, norm_zero, MulZeroClass.mul_zero]
+ simp only [LinearMap.map_zero, norm_zero, mul_zero]
exact le_rfl
set zβ := ((r : π) * (βzβ : π)β»ΒΉ) β’ z with hzβ
have norm_f_zβ : βf zββ β€ c := by
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -31,7 +31,7 @@ This file exists mainly to avoid importing `IsROrC` in the main normed space the
open Metric
-variable {π : Type _} [IsROrC π] {E : Type _} [NormedAddCommGroup E]
+variable {π : Type*} [IsROrC π] {E : Type*} [NormedAddCommGroup E]
theorem IsROrC.norm_coe_norm {z : E} : β(βzβ : π)β = βzβ := by simp
#align is_R_or_C.norm_coe_norm IsROrC.norm_coe_norm
@@ -2,16 +2,13 @@
Copyright (c) 2021 Kalle KytΓΆlΓ€. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kalle KytΓΆlΓ€
-
-! This file was ported from Lean 3 source module analysis.normed_space.is_R_or_C
-! leanprover-community/mathlib commit 3f655f5297b030a87d641ad4e825af8d9679eb0b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Data.IsROrC.Basic
import Mathlib.Analysis.NormedSpace.OperatorNorm
import Mathlib.Analysis.NormedSpace.Pointwise
+#align_import analysis.normed_space.is_R_or_C from "leanprover-community/mathlib"@"3f655f5297b030a87d641ad4e825af8d9679eb0b"
+
/-!
# Normed spaces over R or C
The unported dependencies are
algebra.order.module
init.core
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file