analysis.normed_space.is_R_or_C ⟷ Mathlib.Analysis.NormedSpace.IsROrC

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -3,8 +3,8 @@ Copyright (c) 2021 Kalle KytΓΆlΓ€. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kalle KytΓΆlΓ€
 -/
-import Data.IsROrC.Basic
-import Analysis.NormedSpace.OperatorNorm
+import Analysis.RCLike.Basic
+import Analysis.NormedSpace.OperatorNorm.Basic
 import Analysis.NormedSpace.Pointwise
 
 #align_import analysis.normed_space.is_R_or_C from "leanprover-community/mathlib"@"50251fd6309cca5ca2e747882ffecd2729f38c5d"
@@ -34,11 +34,11 @@ This file exists mainly to avoid importing `is_R_or_C` in the main normed space
 
 open Metric
 
-variable {π•œ : Type _} [IsROrC π•œ] {E : Type _} [NormedAddCommGroup E]
+variable {π•œ : Type _} [RCLike π•œ] {E : Type _} [NormedAddCommGroup E]
 
-#print IsROrC.norm_coe_norm /-
-theorem IsROrC.norm_coe_norm {z : E} : β€–(β€–zβ€– : π•œ)β€– = β€–zβ€– := by simp
-#align is_R_or_C.norm_coe_norm IsROrC.norm_coe_norm
+#print RCLike.norm_coe_norm /-
+theorem RCLike.norm_coe_norm {z : E} : β€–(β€–zβ€– : π•œ)β€– = β€–zβ€– := by simp
+#align is_R_or_C.norm_coe_norm RCLike.norm_coe_norm
 -/
 
 variable [NormedSpace π•œ E]
@@ -77,9 +77,9 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
   have eq : f z = β€–zβ€– / r * f z₁ :=
     by
     rw [hz₁, LinearMap.map_smul, smul_eq_mul]
-    rw [← mul_assoc, ← mul_assoc, div_mul_cancel _ r_ne_zero, mul_inv_cancel, one_mul]
-    simp only [z_zero, IsROrC.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
-  rw [Eq, norm_mul, norm_div, IsROrC.norm_coe_norm, IsROrC.norm_of_nonneg r_pos.le,
+    rw [← mul_assoc, ← mul_assoc, div_mul_cancelβ‚€ _ r_ne_zero, mul_inv_cancel, one_mul]
+    simp only [z_zero, RCLike.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
+  rw [Eq, norm_mul, norm_div, RCLike.norm_coe_norm, RCLike.norm_of_nonneg r_pos.le,
     div_mul_eq_mul_div, div_mul_eq_mul_div, mul_comm]
   apply div_le_div _ _ r_pos rfl.ge
   Β· exact mul_nonneg ((norm_nonneg _).trans norm_f_z₁) (norm_nonneg z)
@@ -112,11 +112,11 @@ theorem ContinuousLinearMap.opNorm_bound_of_ball_bound {r : ℝ} (r_pos : 0 < r)
 
 variable (π•œ)
 
-#print NormedSpace.sphere_nonempty_isROrC /-
-theorem NormedSpace.sphere_nonempty_isROrC [Nontrivial E] {r : ℝ} (hr : 0 ≀ r) :
+#print NormedSpace.sphere_nonempty_rclike /-
+theorem NormedSpace.sphere_nonempty_rclike [Nontrivial E] {r : ℝ} (hr : 0 ≀ r) :
     Nonempty (sphere (0 : E) r) :=
   letI : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ π•œ E
   (normed_space.sphere_nonempty.mpr hr).coeSort
-#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_isROrC
+#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_rclike
 -/
 
Diff
@@ -96,18 +96,18 @@ theorem LinearMap.bound_of_ball_bound' {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
 #align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'
 -/
 
-#print ContinuousLinearMap.op_norm_bound_of_ball_bound /-
-theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ)
+#print ContinuousLinearMap.opNorm_bound_of_ball_bound /-
+theorem ContinuousLinearMap.opNorm_bound_of_ball_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ)
     (f : E β†’L[π•œ] π•œ) (h : βˆ€ z ∈ closedBall (0 : E) r, β€–f zβ€– ≀ c) : β€–fβ€– ≀ c / r :=
   by
-  apply ContinuousLinearMap.op_norm_le_bound
+  apply ContinuousLinearMap.opNorm_le_bound
   Β· apply div_nonneg _ r_pos.le
     exact
       (norm_nonneg _).trans
         (h 0 (by simp only [norm_zero, mem_closed_ball, dist_zero_left, r_pos.le]))
   apply LinearMap.bound_of_ball_bound' r_pos
   exact fun z hz => h z hz
-#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.op_norm_bound_of_ball_bound
+#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.opNorm_bound_of_ball_bound
 -/
 
 variable (π•œ)
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2021 Kalle KytΓΆlΓ€. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kalle KytΓΆlΓ€
 -/
-import Mathbin.Data.IsROrC.Basic
-import Mathbin.Analysis.NormedSpace.OperatorNorm
-import Mathbin.Analysis.NormedSpace.Pointwise
+import Data.IsROrC.Basic
+import Analysis.NormedSpace.OperatorNorm
+import Analysis.NormedSpace.Pointwise
 
 #align_import analysis.normed_space.is_R_or_C from "leanprover-community/mathlib"@"50251fd6309cca5ca2e747882ffecd2729f38c5d"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Kalle KytΓΆlΓ€. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kalle KytΓΆlΓ€
-
-! This file was ported from Lean 3 source module analysis.normed_space.is_R_or_C
-! leanprover-community/mathlib commit 50251fd6309cca5ca2e747882ffecd2729f38c5d
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Data.IsROrC.Basic
 import Mathbin.Analysis.NormedSpace.OperatorNorm
 import Mathbin.Analysis.NormedSpace.Pointwise
 
+#align_import analysis.normed_space.is_R_or_C from "leanprover-community/mathlib"@"50251fd6309cca5ca2e747882ffecd2729f38c5d"
+
 /-!
 # Normed spaces over R or C
 
Diff
@@ -39,11 +39,14 @@ open Metric
 
 variable {π•œ : Type _} [IsROrC π•œ] {E : Type _} [NormedAddCommGroup E]
 
+#print IsROrC.norm_coe_norm /-
 theorem IsROrC.norm_coe_norm {z : E} : β€–(β€–zβ€– : π•œ)β€– = β€–zβ€– := by simp
 #align is_R_or_C.norm_coe_norm IsROrC.norm_coe_norm
+-/
 
 variable [NormedSpace π•œ E]
 
+#print norm_smul_inv_norm /-
 /-- Lemma to normalize a vector in a normed space `E` over either `β„‚` or `ℝ` to unit length. -/
 @[simp]
 theorem norm_smul_inv_norm {x : E} (hx : x β‰  0) : β€–(β€–x‖⁻¹ : π•œ) β€’ xβ€– = 1 :=
@@ -51,14 +54,18 @@ theorem norm_smul_inv_norm {x : E} (hx : x β‰  0) : β€–(β€–x‖⁻¹ : π•œ) β€’
   have : β€–xβ€– β‰  0 := by simp [hx]
   field_simp [norm_smul]
 #align norm_smul_inv_norm norm_smul_inv_norm
+-/
 
+#print norm_smul_inv_norm' /-
 /-- Lemma to normalize a vector in a normed space `E` over either `β„‚` or `ℝ` to length `r`. -/
 theorem norm_smul_inv_norm' {r : ℝ} (r_nonneg : 0 ≀ r) {x : E} (hx : x β‰  0) :
     β€–(r * β€–x‖⁻¹ : π•œ) β€’ xβ€– = r := by
   have : β€–xβ€– β‰  0 := by simp [hx]
   field_simp [norm_smul, r_nonneg, is_R_or_C_simps]
 #align norm_smul_inv_norm' norm_smul_inv_norm'
+-/
 
+#print LinearMap.bound_of_sphere_bound /-
 theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E β†’β‚—[π•œ] π•œ)
     (h : βˆ€ z ∈ sphere (0 : E) r, β€–f zβ€– ≀ c) (z : E) : β€–f zβ€– ≀ c / r * β€–zβ€– :=
   by
@@ -81,14 +88,18 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
   Β· exact mul_nonneg ((norm_nonneg _).trans norm_f_z₁) (norm_nonneg z)
   apply mul_le_mul norm_f_z₁ rfl.le (norm_nonneg z) ((norm_nonneg _).trans norm_f_z₁)
 #align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_bound
+-/
 
+#print LinearMap.bound_of_ball_bound' /-
 /-- `linear_map.bound_of_ball_bound` is a version of this over arbitrary nontrivially normed fields.
 It produces a less precise bound so we keep both versions. -/
 theorem LinearMap.bound_of_ball_bound' {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E β†’β‚—[π•œ] π•œ)
     (h : βˆ€ z ∈ closedBall (0 : E) r, β€–f zβ€– ≀ c) (z : E) : β€–f zβ€– ≀ c / r * β€–zβ€– :=
   f.bound_of_sphere_bound r_pos c (fun z hz => h z hz.le) z
 #align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'
+-/
 
+#print ContinuousLinearMap.op_norm_bound_of_ball_bound /-
 theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ)
     (f : E β†’L[π•œ] π•œ) (h : βˆ€ z ∈ closedBall (0 : E) r, β€–f zβ€– ≀ c) : β€–fβ€– ≀ c / r :=
   by
@@ -100,14 +111,15 @@ theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : ℝ} (r_pos : 0 < r
   apply LinearMap.bound_of_ball_bound' r_pos
   exact fun z hz => h z hz
 #align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.op_norm_bound_of_ball_bound
+-/
 
 variable (π•œ)
 
-include π•œ
-
+#print NormedSpace.sphere_nonempty_isROrC /-
 theorem NormedSpace.sphere_nonempty_isROrC [Nontrivial E] {r : ℝ} (hr : 0 ≀ r) :
     Nonempty (sphere (0 : E) r) :=
   letI : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ π•œ E
   (normed_space.sphere_nonempty.mpr hr).coeSort
 #align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_isROrC
+-/
 
Diff
@@ -39,23 +39,11 @@ open Metric
 
 variable {π•œ : Type _} [IsROrC π•œ] {E : Type _} [NormedAddCommGroup E]
 
-/- warning: is_R_or_C.norm_coe_norm -> IsROrC.norm_coe_norm is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] {z : E}, Eq.{1} Real (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π•œ (HasLiftT.mk.{1, succ u1} Real π•œ (CoeTCβ‚“.coe.{1, succ u1} Real π•œ (IsROrC.algebraMapCoe.{u1} π•œ _inst_1))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z)
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] {z : E}, Eq.{1} Real (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (IsROrC.ofReal.{u2} π•œ _inst_1 (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z)
-Case conversion may be inaccurate. Consider using '#align is_R_or_C.norm_coe_norm IsROrC.norm_coe_normβ‚“'. -/
 theorem IsROrC.norm_coe_norm {z : E} : β€–(β€–zβ€– : π•œ)β€– = β€–zβ€– := by simp
 #align is_R_or_C.norm_coe_norm IsROrC.norm_coe_norm
 
 variable [NormedSpace π•œ E]
 
-/- warning: norm_smul_inv_norm -> norm_smul_inv_norm is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (SMul.smul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (Inv.inv.{u1} π•œ (DivInvMonoid.toHasInv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π•œ (HasLiftT.mk.{1, succ u1} Real π•œ (CoeTCβ‚“.coe.{1, succ u1} Real π•œ (IsROrC.algebraMapCoe.{u1} π•œ _inst_1))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) x))) x)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSMul.hSMul.{u1, u2, u2} π•œ E E (instHSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))))) (Inv.inv.{u1} π•œ (Field.toInv.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (IsROrC.ofReal.{u1} π•œ _inst_1 (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) x))) x)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)))
-Case conversion may be inaccurate. Consider using '#align norm_smul_inv_norm norm_smul_inv_normβ‚“'. -/
 /-- Lemma to normalize a vector in a normed space `E` over either `β„‚` or `ℝ` to unit length. -/
 @[simp]
 theorem norm_smul_inv_norm {x : E} (hx : x β‰  0) : β€–(β€–x‖⁻¹ : π•œ) β€’ xβ€– = 1 :=
@@ -64,12 +52,6 @@ theorem norm_smul_inv_norm {x : E} (hx : x β‰  0) : β€–(β€–x‖⁻¹ : π•œ) β€’
   field_simp [norm_smul]
 #align norm_smul_inv_norm norm_smul_inv_norm
 
-/- warning: norm_smul_inv_norm' -> norm_smul_inv_norm' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (SMul.smul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (HMul.hMul.{u1, u1, u1} π•œ π•œ π•œ (instHMul.{u1} π•œ (Distrib.toHasMul.{u1} π•œ (Ring.toDistrib.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π•œ (HasLiftT.mk.{1, succ u1} Real π•œ (CoeTCβ‚“.coe.{1, succ u1} Real π•œ (IsROrC.algebraMapCoe.{u1} π•œ _inst_1))) r) (Inv.inv.{u1} π•œ (DivInvMonoid.toHasInv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π•œ (HasLiftT.mk.{1, succ u1} Real π•œ (CoeTCβ‚“.coe.{1, succ u1} Real π•œ (IsROrC.algebraMapCoe.{u1} π•œ _inst_1))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) x)))) x)) r))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSMul.hSMul.{u1, u2, u2} π•œ E E (instHSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))))) (HMul.hMul.{u1, u1, u1} π•œ π•œ π•œ (instHMul.{u1} π•œ (NonUnitalNonAssocRing.toMul.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) (IsROrC.ofReal.{u1} π•œ _inst_1 r) (Inv.inv.{u1} π•œ (Field.toInv.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (IsROrC.ofReal.{u1} π•œ _inst_1 (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) x)))) x)) r))
-Case conversion may be inaccurate. Consider using '#align norm_smul_inv_norm' norm_smul_inv_norm'β‚“'. -/
 /-- Lemma to normalize a vector in a normed space `E` over either `β„‚` or `ℝ` to length `r`. -/
 theorem norm_smul_inv_norm' {r : ℝ} (r_nonneg : 0 ≀ r) {x : E} (hx : x β‰  0) :
     β€–(r * β€–x‖⁻¹ : π•œ) β€’ xβ€– = r := by
@@ -77,9 +59,6 @@ theorem norm_smul_inv_norm' {r : ℝ} (r_nonneg : 0 ≀ r) {x : E} (hx : x β‰  0
   field_simp [norm_smul, r_nonneg, is_R_or_C_simps]
 #align norm_smul_inv_norm' norm_smul_inv_norm'
 
-/- warning: linear_map.bound_of_sphere_bound -> LinearMap.bound_of_sphere_bound is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_boundβ‚“'. -/
 theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E β†’β‚—[π•œ] π•œ)
     (h : βˆ€ z ∈ sphere (0 : E) r, β€–f zβ€– ≀ c) (z : E) : β€–f zβ€– ≀ c / r * β€–zβ€– :=
   by
@@ -103,9 +82,6 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
   apply mul_le_mul norm_f_z₁ rfl.le (norm_nonneg z) ((norm_nonneg _).trans norm_f_z₁)
 #align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_bound
 
-/- warning: linear_map.bound_of_ball_bound' -> LinearMap.bound_of_ball_bound' is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'β‚“'. -/
 /-- `linear_map.bound_of_ball_bound` is a version of this over arbitrary nontrivially normed fields.
 It produces a less precise bound so we keep both versions. -/
 theorem LinearMap.bound_of_ball_bound' {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E β†’β‚—[π•œ] π•œ)
@@ -113,9 +89,6 @@ theorem LinearMap.bound_of_ball_bound' {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
   f.bound_of_sphere_bound r_pos c (fun z hz => h z hz.le) z
 #align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'
 
-/- warning: continuous_linear_map.op_norm_bound_of_ball_bound -> ContinuousLinearMap.op_norm_bound_of_ball_bound is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.op_norm_bound_of_ball_boundβ‚“'. -/
 theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ)
     (f : E β†’L[π•œ] π•œ) (h : βˆ€ z ∈ closedBall (0 : E) r, β€–f zβ€– ≀ c) : β€–fβ€– ≀ c / r :=
   by
@@ -132,12 +105,6 @@ variable (π•œ)
 
 include π•œ
 
-/- warning: normed_space.sphere_nonempty_is_R_or_C -> NormedSpace.sphere_nonempty_isROrC is a dubious translation:
-lean 3 declaration is
-  forall (π•œ : Type.{u1}) [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : Nontrivial.{u2} E] {r : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (Nonempty.{succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} E) Type.{u2} (Set.hasCoeToSort.{u2} E) (Metric.sphere.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)))
-but is expected to have type
-  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] [_inst_4 : Nontrivial.{u1} E] {r : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (Nonempty.{succ u1} (Set.Elem.{u1} E (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)))
-Case conversion may be inaccurate. Consider using '#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_isROrCβ‚“'. -/
 theorem NormedSpace.sphere_nonempty_isROrC [Nontrivial E] {r : ℝ} (hr : 0 ≀ r) :
     Nonempty (sphere (0 : E) r) :=
   letI : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ π•œ E
Diff
@@ -84,8 +84,7 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
     (h : βˆ€ z ∈ sphere (0 : E) r, β€–f zβ€– ≀ c) (z : E) : β€–f zβ€– ≀ c / r * β€–zβ€– :=
   by
   by_cases z_zero : z = 0
-  Β· rw [z_zero]
-    simp only [LinearMap.map_zero, norm_zero, MulZeroClass.mul_zero]
+  Β· rw [z_zero]; simp only [LinearMap.map_zero, norm_zero, MulZeroClass.mul_zero]
   set z₁ := (r * β€–z‖⁻¹ : π•œ) β€’ z with hz₁
   have norm_f_z₁ : β€–f z₁‖ ≀ c := by
     apply h
Diff
@@ -78,10 +78,7 @@ theorem norm_smul_inv_norm' {r : ℝ} (r_nonneg : 0 ≀ r) {x : E} (hx : x β‰  0
 #align norm_smul_inv_norm' norm_smul_inv_norm'
 
 /- warning: linear_map.bound_of_sphere_bound -> LinearMap.bound_of_sphere_bound is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.sphere.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_boundβ‚“'. -/
 theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E β†’β‚—[π•œ] π•œ)
     (h : βˆ€ z ∈ sphere (0 : E) r, β€–f zβ€– ≀ c) (z : E) : β€–f zβ€– ≀ c / r * β€–zβ€– :=
@@ -108,10 +105,7 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
 #align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_bound
 
 /- warning: linear_map.bound_of_ball_bound' -> LinearMap.bound_of_ball_bound' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'β‚“'. -/
 /-- `linear_map.bound_of_ball_bound` is a version of this over arbitrary nontrivially normed fields.
 It produces a less precise bound so we keep both versions. -/
@@ -121,10 +115,7 @@ theorem LinearMap.bound_of_ball_bound' {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
 #align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'
 
 /- warning: continuous_linear_map.op_norm_bound_of_ball_bound -> ContinuousLinearMap.op_norm_bound_of_ball_bound is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : ContinuousLinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (ContinuousLinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (ContinuousLinearMap.toFun.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) f z)) c)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, u1} π•œ π•œ E π•œ (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) _inst_3 (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r)))
-but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : ContinuousLinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (ContinuousLinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (ContinuousLinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (ContinuousLinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) f z)) c)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (ContinuousLinearMap.hasOpNorm.{u2, u2, u1, u2} π•œ π•œ E π•œ (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) _inst_3 (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.op_norm_bound_of_ball_boundβ‚“'. -/
 theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ)
     (f : E β†’L[π•œ] π•œ) (h : βˆ€ z ∈ closedBall (0 : E) r, β€–f zβ€– ≀ c) : β€–fβ€– ≀ c / r :=
Diff
@@ -81,7 +81,7 @@ theorem norm_smul_inv_norm' {r : ℝ} (r_nonneg : 0 ≀ r) {x : E} (hx : x β‰  0
 lean 3 declaration is
   forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.sphere.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
 but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
 Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_boundβ‚“'. -/
 theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E β†’β‚—[π•œ] π•œ)
     (h : βˆ€ z ∈ sphere (0 : E) r, β€–f zβ€– ≀ c) (z : E) : β€–f zβ€– ≀ c / r * β€–zβ€– :=
@@ -111,7 +111,7 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
 lean 3 declaration is
   forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
 but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6193 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
 Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'β‚“'. -/
 /-- `linear_map.bound_of_ball_bound` is a version of this over arbitrary nontrivially normed fields.
 It produces a less precise bound so we keep both versions. -/
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kalle KytΓΆlΓ€
 
 ! This file was ported from Lean 3 source module analysis.normed_space.is_R_or_C
-! leanprover-community/mathlib commit 3f655f5297b030a87d641ad4e825af8d9679eb0b
+! leanprover-community/mathlib commit 50251fd6309cca5ca2e747882ffecd2729f38c5d
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Analysis.NormedSpace.Pointwise
 /-!
 # Normed spaces over R or C
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 This file is about results on normed spaces over the fields `ℝ` and `β„‚`.
 
 ## Main definitions
Diff
@@ -78,7 +78,7 @@ theorem norm_smul_inv_norm' {r : ℝ} (r_nonneg : 0 ≀ r) {x : E} (hx : x β‰  0
 lean 3 declaration is
   forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.sphere.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
 but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
 Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_boundβ‚“'. -/
 theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E β†’β‚—[π•œ] π•œ)
     (h : βˆ€ z ∈ sphere (0 : E) r, β€–f zβ€– ≀ c) (z : E) : β€–f zβ€– ≀ c / r * β€–zβ€– :=
@@ -108,7 +108,7 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
 lean 3 declaration is
   forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
 but is expected to have type
-  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6191 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
 Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'β‚“'. -/
 /-- `linear_map.bound_of_ball_bound` is a version of this over arbitrary nontrivially normed fields.
 It produces a less precise bound so we keep both versions. -/
Diff
@@ -36,11 +36,23 @@ open Metric
 
 variable {π•œ : Type _} [IsROrC π•œ] {E : Type _} [NormedAddCommGroup E]
 
+/- warning: is_R_or_C.norm_coe_norm -> IsROrC.norm_coe_norm is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] {z : E}, Eq.{1} Real (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π•œ (HasLiftT.mk.{1, succ u1} Real π•œ (CoeTCβ‚“.coe.{1, succ u1} Real π•œ (IsROrC.algebraMapCoe.{u1} π•œ _inst_1))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z)
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] {z : E}, Eq.{1} Real (Norm.norm.{u2} π•œ (NormedField.toNorm.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))) (IsROrC.ofReal.{u2} π•œ _inst_1 (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z)
+Case conversion may be inaccurate. Consider using '#align is_R_or_C.norm_coe_norm IsROrC.norm_coe_normβ‚“'. -/
 theorem IsROrC.norm_coe_norm {z : E} : β€–(β€–zβ€– : π•œ)β€– = β€–zβ€– := by simp
 #align is_R_or_C.norm_coe_norm IsROrC.norm_coe_norm
 
 variable [NormedSpace π•œ E]
 
+/- warning: norm_smul_inv_norm -> norm_smul_inv_norm is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (SMul.smul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (Inv.inv.{u1} π•œ (DivInvMonoid.toHasInv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π•œ (HasLiftT.mk.{1, succ u1} Real π•œ (CoeTCβ‚“.coe.{1, succ u1} Real π•œ (IsROrC.algebraMapCoe.{u1} π•œ _inst_1))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) x))) x)) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSMul.hSMul.{u1, u2, u2} π•œ E E (instHSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))))) (Inv.inv.{u1} π•œ (Field.toInv.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (IsROrC.ofReal.{u1} π•œ _inst_1 (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) x))) x)) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal)))
+Case conversion may be inaccurate. Consider using '#align norm_smul_inv_norm norm_smul_inv_normβ‚“'. -/
 /-- Lemma to normalize a vector in a normed space `E` over either `β„‚` or `ℝ` to unit length. -/
 @[simp]
 theorem norm_smul_inv_norm {x : E} (hx : x β‰  0) : β€–(β€–x‖⁻¹ : π•œ) β€’ xβ€– = 1 :=
@@ -49,6 +61,12 @@ theorem norm_smul_inv_norm {x : E} (hx : x β‰  0) : β€–(β€–x‖⁻¹ : π•œ) β€’
   field_simp [norm_smul]
 #align norm_smul_inv_norm norm_smul_inv_norm
 
+/- warning: norm_smul_inv_norm' -> norm_smul_inv_norm' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2)))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) (SMul.smul.{u1, u2} π•œ E (SMulZeroClass.toHasSmul.{u1, u2} π•œ E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSmulZeroClass.{u1, u2} π•œ E (MulZeroClass.toHasZero.{u1} π•œ (MulZeroOneClass.toMulZeroClass.{u1} π•œ (MonoidWithZero.toMulZeroOneClass.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (AddCommMonoid.toAddMonoid.{u2} E (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (SeminormedAddCommGroup.toAddCommGroup.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3))))) (HMul.hMul.{u1, u1, u1} π•œ π•œ π•œ (instHMul.{u1} π•œ (Distrib.toHasMul.{u1} π•œ (Ring.toDistrib.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π•œ (HasLiftT.mk.{1, succ u1} Real π•œ (CoeTCβ‚“.coe.{1, succ u1} Real π•œ (IsROrC.algebraMapCoe.{u1} π•œ _inst_1))) r) (Inv.inv.{u1} π•œ (DivInvMonoid.toHasInv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) ((fun (a : Type) (b : Type.{u1}) [self : HasLiftT.{1, succ u1} a b] => self.0) Real π•œ (HasLiftT.mk.{1, succ u1} Real π•œ (CoeTCβ‚“.coe.{1, succ u1} Real π•œ (IsROrC.algebraMapCoe.{u1} π•œ _inst_1))) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) x)))) x)) r))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall {x : E}, (Ne.{succ u2} E x (OfNat.ofNat.{u2} E 0 (Zero.toOfNat0.{u2} E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2))))))))) -> (Eq.{1} Real (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) (HSMul.hSMul.{u1, u2, u2} π•œ E E (instHSMul.{u1, u2} π•œ E (SMulZeroClass.toSMul.{u1, u2} π•œ E (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (SMulWithZero.toSMulZeroClass.{u1, u2} π•œ E (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (MulActionWithZero.toSMulWithZero.{u1, u2} π•œ E (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NegZeroClass.toZero.{u2} E (SubNegZeroMonoid.toNegZeroClass.{u2} E (SubtractionMonoid.toSubNegZeroMonoid.{u2} E (SubtractionCommMonoid.toSubtractionMonoid.{u2} E (AddCommGroup.toDivisionAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)))))) (Module.toMulActionWithZero.{u1, u2} π•œ E (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (Field.toSemifield.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3)))))) (HMul.hMul.{u1, u1, u1} π•œ π•œ π•œ (instHMul.{u1} π•œ (NonUnitalNonAssocRing.toMul.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) (IsROrC.ofReal.{u1} π•œ _inst_1 r) (Inv.inv.{u1} π•œ (Field.toInv.{u1} π•œ (NormedField.toField.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (IsROrC.ofReal.{u1} π•œ _inst_1 (Norm.norm.{u2} E (NormedAddCommGroup.toNorm.{u2} E _inst_2) x)))) x)) r))
+Case conversion may be inaccurate. Consider using '#align norm_smul_inv_norm' norm_smul_inv_norm'β‚“'. -/
 /-- Lemma to normalize a vector in a normed space `E` over either `β„‚` or `ℝ` to length `r`. -/
 theorem norm_smul_inv_norm' {r : ℝ} (r_nonneg : 0 ≀ r) {x : E} (hx : x β‰  0) :
     β€–(r * β€–x‖⁻¹ : π•œ) β€’ xβ€– = r := by
@@ -56,6 +74,12 @@ theorem norm_smul_inv_norm' {r : ℝ} (r_nonneg : 0 ≀ r) {x : E} (hx : x β‰  0
   field_simp [norm_smul, r_nonneg, is_R_or_C_simps]
 #align norm_smul_inv_norm' norm_smul_inv_norm'
 
+/- warning: linear_map.bound_of_sphere_bound -> LinearMap.bound_of_sphere_bound is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.sphere.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_boundβ‚“'. -/
 theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E β†’β‚—[π•œ] π•œ)
     (h : βˆ€ z ∈ sphere (0 : E) r, β€–f zβ€– ≀ c) (z : E) : β€–f zβ€– ≀ c / r * β€–zβ€– :=
   by
@@ -80,6 +104,12 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
   apply mul_le_mul norm_f_z₁ rfl.le (norm_nonneg z) ((norm_nonneg _).trans norm_f_z₁)
 #align linear_map.bound_of_sphere_bound LinearMap.bound_of_sphere_bound
 
+/- warning: linear_map.bound_of_ball_bound' -> LinearMap.bound_of_ball_bound' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : LinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (LinearMap.hasCoeToFun.{u1, u1, u2, u1} π•œ π•œ E π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r) (Norm.norm.{u2} E (NormedAddCommGroup.toHasNorm.{u2} E _inst_2) z))))
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) c)) -> (forall (z : E), LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (LinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E π•œ (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Algebra.Module.LinearMap._hyg.6190 : E) => π•œ) _x) (LinearMap.instFunLikeLinearMap.{u2, u2, u1, u2} π•œ π•œ E π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f z)) (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r) (Norm.norm.{u1} E (NormedAddCommGroup.toNorm.{u1} E _inst_2) z))))
+Case conversion may be inaccurate. Consider using '#align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'β‚“'. -/
 /-- `linear_map.bound_of_ball_bound` is a version of this over arbitrary nontrivially normed fields.
 It produces a less precise bound so we keep both versions. -/
 theorem LinearMap.bound_of_ball_bound' {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E β†’β‚—[π•œ] π•œ)
@@ -87,6 +117,12 @@ theorem LinearMap.bound_of_ball_bound' {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
   f.bound_of_sphere_bound r_pos c (fun z hz => h z hz.le) z
 #align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'
 
+/- warning: continuous_linear_map.op_norm_bound_of_ball_bound -> ContinuousLinearMap.op_norm_bound_of_ball_bound is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.hasLt (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (forall (c : Real) (f : ContinuousLinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))), (forall (z : E), (Membership.Mem.{u2, u2} E (Set.{u2} E) (Set.hasMem.{u2} E) z (Metric.closedBall.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{u1} π•œ (NormedField.toHasNorm.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))) (coeFn.{max (succ u2) (succ u1), max (succ u2) (succ u1)} (ContinuousLinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (fun (_x : ContinuousLinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) => E -> π•œ) (ContinuousLinearMap.toFun.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) f z)) c)) -> (LE.le.{0} Real Real.hasLe (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u1, u1, u2, u1} π•œ π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u2} E (PseudoMetricSpace.toUniformSpace.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u2} E (NormedAddCommGroup.toAddCommGroup.{u2} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (AddCommGroup.toAddCommMonoid.{u1} π•œ (NormedAddCommGroup.toAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))))))) (NormedSpace.toModule.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) _inst_3) (NormedSpace.toModule.{u1, u1} π•œ π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))) (ContinuousLinearMap.hasOpNorm.{u1, u1, u2, u1} π•œ π•œ E π•œ (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u1} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) _inst_3 (NormedField.toNormedSpace.{u1} π•œ (NontriviallyNormedField.toNormedField.{u1} π•œ (DenselyNormedField.toNontriviallyNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)))) (RingHom.id.{u1} π•œ (Semiring.toNonAssocSemiring.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1))))))))) f) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (DivInvMonoid.toHasDiv.{0} Real (DivisionRing.toDivInvMonoid.{0} Real Real.divisionRing))) c r)))
+but is expected to have type
+  forall {π•œ : Type.{u2}} [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] {r : Real}, (LT.lt.{0} Real Real.instLTReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (forall (c : Real) (f : ContinuousLinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))), (forall (z : E), (Membership.mem.{u1, u1} E (Set.{u1} E) (Set.instMembershipSet.{u1} E) z (Metric.closedBall.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π•œ) z) (NormedField.toNorm.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π•œ) z) (DenselyNormedField.toNormedField.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π•œ) z) (IsROrC.toDenselyNormedField.{u2} ((fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π•œ) z) _inst_1))) (FunLike.coe.{max (succ u2) (succ u1), succ u1, succ u2} (ContinuousLinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E (fun (_x : E) => (fun (x._@.Mathlib.Topology.ContinuousFunction.Basic._hyg.699 : E) => π•œ) _x) (ContinuousMapClass.toFunLike.{max u2 u1, u1, u2} (ContinuousLinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) E π•œ (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (ContinuousSemilinearMapClass.toContinuousMapClass.{max u2 u1, u2, u2, u1, u2} (ContinuousLinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (ContinuousLinearMap.continuousSemilinearMapClass.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) f z)) c)) -> (LE.le.{0} Real Real.instLEReal (Norm.norm.{max u2 u1} (ContinuousLinearMap.{u2, u2, u1, u2} π•œ π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) E (UniformSpace.toTopologicalSpace.{u1} E (PseudoMetricSpace.toUniformSpace.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)))) (AddCommGroup.toAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)) π•œ (UniformSpace.toTopologicalSpace.{u2} π•œ (PseudoMetricSpace.toUniformSpace.{u2} π•œ (SeminormedRing.toPseudoMetricSpace.{u2} π•œ (SeminormedCommRing.toSeminormedRing.{u2} π•œ (NormedCommRing.toSeminormedCommRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))))))) (NonUnitalNonAssocSemiring.toAddCommMonoid.{u2} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u2} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u2} π•œ (Ring.toNonAssocRing.{u2} π•œ (NormedRing.toRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) (NormedSpace.toModule.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) _inst_3) (NormedSpace.toModule.{u2, u2} π•œ π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (NormedField.toNormedSpace.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))) (ContinuousLinearMap.hasOpNorm.{u2, u2, u1, u2} π•œ π•œ E π•œ (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2) (NonUnitalSeminormedRing.toSeminormedAddCommGroup.{u2} π•œ (NonUnitalNormedRing.toNonUnitalSeminormedRing.{u2} π•œ (NormedRing.toNonUnitalNormedRing.{u2} π•œ (NormedCommRing.toNormedRing.{u2} π•œ (NormedField.toNormedCommRing.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))) (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) _inst_3 (NormedField.toNormedSpace.{u2} π•œ (NontriviallyNormedField.toNormedField.{u2} π•œ (DenselyNormedField.toNontriviallyNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)))) (RingHom.id.{u2} π•œ (Semiring.toNonAssocSemiring.{u2} π•œ (DivisionSemiring.toSemiring.{u2} π•œ (Semifield.toDivisionSemiring.{u2} π•œ (Field.toSemifield.{u2} π•œ (NormedField.toField.{u2} π•œ (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1))))))))) f) (HDiv.hDiv.{0, 0, 0} Real Real Real (instHDiv.{0} Real (LinearOrderedField.toDiv.{0} Real Real.instLinearOrderedFieldReal)) c r)))
+Case conversion may be inaccurate. Consider using '#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.op_norm_bound_of_ball_boundβ‚“'. -/
 theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ)
     (f : E β†’L[π•œ] π•œ) (h : βˆ€ z ∈ closedBall (0 : E) r, β€–f zβ€– ≀ c) : β€–fβ€– ≀ c / r :=
   by
@@ -103,6 +139,12 @@ variable (π•œ)
 
 include π•œ
 
+/- warning: normed_space.sphere_nonempty_is_R_or_C -> NormedSpace.sphere_nonempty_isROrC is a dubious translation:
+lean 3 declaration is
+  forall (π•œ : Type.{u1}) [_inst_1 : IsROrC.{u1} π•œ] {E : Type.{u2}} [_inst_2 : NormedAddCommGroup.{u2} E] [_inst_3 : NormedSpace.{u1, u2} π•œ E (DenselyNormedField.toNormedField.{u1} π•œ (IsROrC.toDenselyNormedField.{u1} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)] [_inst_4 : Nontrivial.{u2} E] {r : Real}, (LE.le.{0} Real Real.hasLe (OfNat.ofNat.{0} Real 0 (OfNat.mk.{0} Real 0 (Zero.zero.{0} Real Real.hasZero))) r) -> (Nonempty.{succ u2} (coeSort.{succ u2, succ (succ u2)} (Set.{u2} E) Type.{u2} (Set.hasCoeToSort.{u2} E) (Metric.sphere.{u2} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u2} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u2} E _inst_2)) (OfNat.ofNat.{u2} E 0 (OfNat.mk.{u2} E 0 (Zero.zero.{u2} E (AddZeroClass.toHasZero.{u2} E (AddMonoid.toAddZeroClass.{u2} E (SubNegMonoid.toAddMonoid.{u2} E (AddGroup.toSubNegMonoid.{u2} E (NormedAddGroup.toAddGroup.{u2} E (NormedAddCommGroup.toNormedAddGroup.{u2} E _inst_2))))))))) r)))
+but is expected to have type
+  forall (π•œ : Type.{u2}) [_inst_1 : IsROrC.{u2} π•œ] {E : Type.{u1}} [_inst_2 : NormedAddCommGroup.{u1} E] [_inst_3 : NormedSpace.{u2, u1} π•œ E (DenselyNormedField.toNormedField.{u2} π•œ (IsROrC.toDenselyNormedField.{u2} π•œ _inst_1)) (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)] [_inst_4 : Nontrivial.{u1} E] {r : Real}, (LE.le.{0} Real Real.instLEReal (OfNat.ofNat.{0} Real 0 (Zero.toOfNat0.{0} Real Real.instZeroReal)) r) -> (Nonempty.{succ u1} (Set.Elem.{u1} E (Metric.sphere.{u1} E (SeminormedAddCommGroup.toPseudoMetricSpace.{u1} E (NormedAddCommGroup.toSeminormedAddCommGroup.{u1} E _inst_2)) (OfNat.ofNat.{u1} E 0 (Zero.toOfNat0.{u1} E (NegZeroClass.toZero.{u1} E (SubNegZeroMonoid.toNegZeroClass.{u1} E (SubtractionMonoid.toSubNegZeroMonoid.{u1} E (SubtractionCommMonoid.toSubtractionMonoid.{u1} E (AddCommGroup.toDivisionAddCommMonoid.{u1} E (NormedAddCommGroup.toAddCommGroup.{u1} E _inst_2)))))))) r)))
+Case conversion may be inaccurate. Consider using '#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_isROrCβ‚“'. -/
 theorem NormedSpace.sphere_nonempty_isROrC [Nontrivial E] {r : ℝ} (hr : 0 ≀ r) :
     Nonempty (sphere (0 : E) r) :=
   letI : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ π•œ E
Diff
@@ -72,7 +72,7 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
     by
     rw [hz₁, LinearMap.map_smul, smul_eq_mul]
     rw [← mul_assoc, ← mul_assoc, div_mul_cancel _ r_ne_zero, mul_inv_cancel, one_mul]
-    simp only [z_zero, IsROrC.of_real_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
+    simp only [z_zero, IsROrC.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
   rw [Eq, norm_mul, norm_div, IsROrC.norm_coe_norm, IsROrC.norm_of_nonneg r_pos.le,
     div_mul_eq_mul_div, div_mul_eq_mul_div, mul_comm]
   apply div_le_div _ _ r_pos rfl.ge
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kalle KytΓΆlΓ€
 
 ! This file was ported from Lean 3 source module analysis.normed_space.is_R_or_C
-! leanprover-community/mathlib commit 468b141b14016d54b479eb7a0fff1e360b7e3cf6
+! leanprover-community/mathlib commit 3f655f5297b030a87d641ad4e825af8d9679eb0b
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -53,7 +53,7 @@ theorem norm_smul_inv_norm {x : E} (hx : x β‰  0) : β€–(β€–x‖⁻¹ : π•œ) β€’
 theorem norm_smul_inv_norm' {r : ℝ} (r_nonneg : 0 ≀ r) {x : E} (hx : x β‰  0) :
     β€–(r * β€–x‖⁻¹ : π•œ) β€’ xβ€– = r := by
   have : β€–xβ€– β‰  0 := by simp [hx]
-  field_simp [norm_smul, IsROrC.norm_eq_abs, r_nonneg, is_R_or_C_simps]
+  field_simp [norm_smul, r_nonneg, is_R_or_C_simps]
 #align norm_smul_inv_norm' norm_smul_inv_norm'
 
 theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E β†’β‚—[π•œ] π•œ)
Diff
@@ -61,7 +61,7 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
   by
   by_cases z_zero : z = 0
   Β· rw [z_zero]
-    simp only [LinearMap.map_zero, norm_zero, mul_zero]
+    simp only [LinearMap.map_zero, norm_zero, MulZeroClass.mul_zero]
   set z₁ := (r * β€–z‖⁻¹ : π•œ) β€’ z with hz₁
   have norm_f_z₁ : β€–f z₁‖ ≀ c := by
     apply h

Changes in mathlib4

mathlib3
mathlib4
chore: reformat deprecation warnings on one line, if possible (#12335)

Occasionally, remove a "deprecated by" or "deprecated since", to fit the line length.

This is desirable (to me) because

  • it's more compact: I don't see a good reason for these declarations taking up more space than needed; as I understand it, deprecated lemmas are not supposed to be used in mathlib anyway
  • putting the date on the same line as the attribute makes it easier to discover un-dated deprecations; they also ease writing a tool to replace these by a machine-readable version using leanprover/lean4#3968
Diff
@@ -93,9 +93,9 @@ theorem ContinuousLinearMap.opNorm_bound_of_ball_bound {r : ℝ} (r_pos : 0 < r)
   exact fun z hz => h z hz
 #align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.opNorm_bound_of_ball_bound
 
-@[deprecated]
+@[deprecated] -- 2024-02-02
 alias ContinuousLinearMap.op_norm_bound_of_ball_bound :=
-  ContinuousLinearMap.opNorm_bound_of_ball_bound -- deprecated on 2024-02-02
+  ContinuousLinearMap.opNorm_bound_of_ball_bound
 
 variable (π•œ)
 
chore: backports from #11997, adaptations for nightly-2024-04-07 (#12176)

These are changes from #11997, the latest adaptation PR for nightly-2024-04-07, which can be made directly on master.

Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Ruben Van de Velde <65514131+Ruben-VandeVelde@users.noreply.github.com>

Diff
@@ -67,7 +67,7 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
   have eq : f z = β€–zβ€– / r * f z₁ := by
     rw [hz₁, LinearMap.map_smul, smul_eq_mul]
     rw [← mul_assoc, ← mul_assoc, div_mul_cancelβ‚€ _ r_ne_zero, mul_inv_cancel, one_mul]
-    simp only [z_zero, RCLike.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
+    simp only [z_zero, RCLike.ofReal_eq_zero, norm_eq_zero, Ne, not_false_iff]
   rw [eq, norm_mul, norm_div, RCLike.norm_coe_norm, RCLike.norm_of_nonneg r_pos.le,
     div_mul_eq_mul_div, div_mul_eq_mul_div, mul_comm]
   apply div_le_div _ _ r_pos rfl.ge
move(RCLike): Move out of Data (#11753)

RCLike is an analytic typeclass, hence should be under Analysis

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Kalle KytΓΆlΓ€. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kalle KytΓΆlΓ€
 -/
-import Mathlib.Data.RCLike.Basic
+import Mathlib.Analysis.RCLike.Basic
 import Mathlib.Analysis.NormedSpace.OperatorNorm.Basic
 import Mathlib.Analysis.NormedSpace.Pointwise
 
chore: Rename IsROrC to RCLike (#10819)

IsROrC contains data, which goes against the expectation that classes prefixed with Is are prop-valued. People have been complaining about this on and off, so this PR renames IsROrC to RCLike.

Diff
@@ -3,7 +3,7 @@ Copyright (c) 2021 Kalle KytΓΆlΓ€. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kalle KytΓΆlΓ€
 -/
-import Mathlib.Data.IsROrC.Basic
+import Mathlib.Data.RCLike.Basic
 import Mathlib.Analysis.NormedSpace.OperatorNorm.Basic
 import Mathlib.Analysis.NormedSpace.Pointwise
 
@@ -25,16 +25,16 @@ None.
 
 ## Notes
 
-This file exists mainly to avoid importing `IsROrC` in the main normed space theory files.
+This file exists mainly to avoid importing `RCLike` in the main normed space theory files.
 -/
 
 
 open Metric
 
-variable {π•œ : Type*} [IsROrC π•œ] {E : Type*} [NormedAddCommGroup E]
+variable {π•œ : Type*} [RCLike π•œ] {E : Type*} [NormedAddCommGroup E]
 
-theorem IsROrC.norm_coe_norm {z : E} : β€–(β€–zβ€– : π•œ)β€– = β€–zβ€– := by simp
-#align is_R_or_C.norm_coe_norm IsROrC.norm_coe_norm
+theorem RCLike.norm_coe_norm {z : E} : β€–(β€–zβ€– : π•œ)β€– = β€–zβ€– := by simp
+#align is_R_or_C.norm_coe_norm RCLike.norm_coe_norm
 
 variable [NormedSpace π•œ E]
 
@@ -49,7 +49,7 @@ theorem norm_smul_inv_norm {x : E} (hx : x β‰  0) : β€–(β€–x‖⁻¹ : π•œ) β€’
 theorem norm_smul_inv_norm' {r : ℝ} (r_nonneg : 0 ≀ r) {x : E} (hx : x β‰  0) :
     β€–((r : π•œ) * (β€–xβ€– : π•œ)⁻¹) β€’ xβ€– = r := by
   have : β€–xβ€– β‰  0 := by simp [hx]
-  field_simp [norm_smul, r_nonneg, isROrC_simps]
+  field_simp [norm_smul, r_nonneg, rclike_simps]
 #align norm_smul_inv_norm' norm_smul_inv_norm'
 
 theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f : E β†’β‚—[π•œ] π•œ)
@@ -63,12 +63,12 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
     apply h
     rw [mem_sphere_zero_iff_norm]
     exact norm_smul_inv_norm' r_pos.le z_zero
-  have r_ne_zero : (r : π•œ) β‰  0 := IsROrC.ofReal_ne_zero.mpr r_pos.ne'
+  have r_ne_zero : (r : π•œ) β‰  0 := RCLike.ofReal_ne_zero.mpr r_pos.ne'
   have eq : f z = β€–zβ€– / r * f z₁ := by
     rw [hz₁, LinearMap.map_smul, smul_eq_mul]
     rw [← mul_assoc, ← mul_assoc, div_mul_cancelβ‚€ _ r_ne_zero, mul_inv_cancel, one_mul]
-    simp only [z_zero, IsROrC.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
-  rw [eq, norm_mul, norm_div, IsROrC.norm_coe_norm, IsROrC.norm_of_nonneg r_pos.le,
+    simp only [z_zero, RCLike.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
+  rw [eq, norm_mul, norm_div, RCLike.norm_coe_norm, RCLike.norm_of_nonneg r_pos.le,
     div_mul_eq_mul_div, div_mul_eq_mul_div, mul_comm]
   apply div_le_div _ _ r_pos rfl.ge
   Β· exact mul_nonneg ((norm_nonneg _).trans norm_f_z₁) (norm_nonneg z)
@@ -99,8 +99,8 @@ alias ContinuousLinearMap.op_norm_bound_of_ball_bound :=
 
 variable (π•œ)
 
-theorem NormedSpace.sphere_nonempty_isROrC [Nontrivial E] {r : ℝ} (hr : 0 ≀ r) :
+theorem NormedSpace.sphere_nonempty_rclike [Nontrivial E] {r : ℝ} (hr : 0 ≀ r) :
     Nonempty (sphere (0 : E) r) :=
   letI : NormedSpace ℝ E := NormedSpace.restrictScalars ℝ π•œ E
   (NormedSpace.sphere_nonempty.mpr hr).coe_sort
-#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_isROrC
+#align normed_space.sphere_nonempty_is_R_or_C NormedSpace.sphere_nonempty_rclike
chore: Rename mul-div cancellation lemmas (#11530)

Lemma names around cancellation of multiplication and division are a mess.

This PR renames a handful of them according to the following table (each big row contains the multiplicative statement, then the three rows contain the GroupWithZero lemma name, the Group lemma, the AddGroup lemma name).

| Statement | New name | Old name | |

Diff
@@ -66,7 +66,7 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
   have r_ne_zero : (r : π•œ) β‰  0 := IsROrC.ofReal_ne_zero.mpr r_pos.ne'
   have eq : f z = β€–zβ€– / r * f z₁ := by
     rw [hz₁, LinearMap.map_smul, smul_eq_mul]
-    rw [← mul_assoc, ← mul_assoc, div_mul_cancel _ r_ne_zero, mul_inv_cancel, one_mul]
+    rw [← mul_assoc, ← mul_assoc, div_mul_cancelβ‚€ _ r_ne_zero, mul_inv_cancel, one_mul]
     simp only [z_zero, IsROrC.ofReal_eq_zero, norm_eq_zero, Ne.def, not_false_iff]
   rw [eq, norm_mul, norm_div, IsROrC.norm_coe_norm, IsROrC.norm_of_nonneg r_pos.le,
     div_mul_eq_mul_div, div_mul_eq_mul_div, mul_comm]
chore(Analysis/NormedSpace): split up OperatorNorm.lean (#10990)

Split the 2300-line behemoth OperatorNorm.lean into 8 smaller files, of which the largest is 600 lines.

Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kalle KytΓΆlΓ€
 -/
 import Mathlib.Data.IsROrC.Basic
-import Mathlib.Analysis.NormedSpace.OperatorNorm
+import Mathlib.Analysis.NormedSpace.OperatorNorm.Basic
 import Mathlib.Analysis.NormedSpace.Pointwise
 
 #align_import analysis.normed_space.is_R_or_C from "leanprover-community/mathlib"@"3f655f5297b030a87d641ad4e825af8d9679eb0b"
Deprecate allowing auto-replacement (#10302)

Following these Zulip discussions, I realised that my deprecation script produced a deprecation syntax that did not allow for auto-replacement in SΓ©bastien's #10185.

This PR fixes the deprecation statements, allowing self-correction: 119 times I replaced

@[deprecated xxx] --> @[deprecated].

Diff
@@ -93,7 +93,7 @@ theorem ContinuousLinearMap.opNorm_bound_of_ball_bound {r : ℝ} (r_pos : 0 < r)
   exact fun z hz => h z hz
 #align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.opNorm_bound_of_ball_bound
 
-@[deprecated ContinuousLinearMap.opNorm_bound_of_ball_bound]
+@[deprecated]
 alias ContinuousLinearMap.op_norm_bound_of_ball_bound :=
   ContinuousLinearMap.opNorm_bound_of_ball_bound -- deprecated on 2024-02-02
 
chore: rename op_norm to opNorm (#10185)

Co-authored-by: adomani <adomani@gmail.com>

Diff
@@ -20,7 +20,7 @@ None.
 
 ## Main theorems
 
-* `ContinuousLinearMap.op_norm_bound_of_ball_bound`: A bound on the norms of values of a linear
+* `ContinuousLinearMap.opNorm_bound_of_ball_bound`: A bound on the norms of values of a linear
   map in a ball yields a bound on the operator norm.
 
 ## Notes
@@ -82,16 +82,20 @@ theorem LinearMap.bound_of_ball_bound' {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
   f.bound_of_sphere_bound r_pos c (fun z hz => h z hz.le) z
 #align linear_map.bound_of_ball_bound' LinearMap.bound_of_ball_bound'
 
-theorem ContinuousLinearMap.op_norm_bound_of_ball_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ)
+theorem ContinuousLinearMap.opNorm_bound_of_ball_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ)
     (f : E β†’L[π•œ] π•œ) (h : βˆ€ z ∈ closedBall (0 : E) r, β€–f zβ€– ≀ c) : β€–fβ€– ≀ c / r := by
-  apply ContinuousLinearMap.op_norm_le_bound
+  apply ContinuousLinearMap.opNorm_le_bound
   Β· apply div_nonneg _ r_pos.le
     exact
       (norm_nonneg _).trans
         (h 0 (by simp only [norm_zero, mem_closedBall, dist_zero_left, r_pos.le]))
   apply LinearMap.bound_of_ball_bound' r_pos
   exact fun z hz => h z hz
-#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.op_norm_bound_of_ball_bound
+#align continuous_linear_map.op_norm_bound_of_ball_bound ContinuousLinearMap.opNorm_bound_of_ball_bound
+
+@[deprecated ContinuousLinearMap.opNorm_bound_of_ball_bound]
+alias ContinuousLinearMap.op_norm_bound_of_ball_bound :=
+  ContinuousLinearMap.opNorm_bound_of_ball_bound -- deprecated on 2024-02-02
 
 variable (π•œ)
 
chore: drop MulZeroClass. in mul_zero/zero_mul (#6682)

Search&replace MulZeroClass.mul_zero -> mul_zero, MulZeroClass.zero_mul -> zero_mul.

These were introduced by Mathport, as the full name of mul_zero is actually MulZeroClass.mul_zero (it's exported with the short name).

Diff
@@ -56,7 +56,7 @@ theorem LinearMap.bound_of_sphere_bound {r : ℝ} (r_pos : 0 < r) (c : ℝ) (f :
     (h : βˆ€ z ∈ sphere (0 : E) r, β€–f zβ€– ≀ c) (z : E) : β€–f zβ€– ≀ c / r * β€–zβ€– := by
   by_cases z_zero : z = 0
   Β· rw [z_zero]
-    simp only [LinearMap.map_zero, norm_zero, MulZeroClass.mul_zero]
+    simp only [LinearMap.map_zero, norm_zero, mul_zero]
     exact le_rfl
   set z₁ := ((r : π•œ) * (β€–zβ€– : π•œ)⁻¹) β€’ z with hz₁
   have norm_f_z₁ : β€–f z₁‖ ≀ c := by
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -31,7 +31,7 @@ This file exists mainly to avoid importing `IsROrC` in the main normed space the
 
 open Metric
 
-variable {π•œ : Type _} [IsROrC π•œ] {E : Type _} [NormedAddCommGroup E]
+variable {π•œ : Type*} [IsROrC π•œ] {E : Type*} [NormedAddCommGroup E]
 
 theorem IsROrC.norm_coe_norm {z : E} : β€–(β€–zβ€– : π•œ)β€– = β€–zβ€– := by simp
 #align is_R_or_C.norm_coe_norm IsROrC.norm_coe_norm
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2021 Kalle KytΓΆlΓ€. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Kalle KytΓΆlΓ€
-
-! This file was ported from Lean 3 source module analysis.normed_space.is_R_or_C
-! leanprover-community/mathlib commit 3f655f5297b030a87d641ad4e825af8d9679eb0b
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Data.IsROrC.Basic
 import Mathlib.Analysis.NormedSpace.OperatorNorm
 import Mathlib.Analysis.NormedSpace.Pointwise
 
+#align_import analysis.normed_space.is_R_or_C from "leanprover-community/mathlib"@"3f655f5297b030a87d641ad4e825af8d9679eb0b"
+
 /-!
 # Normed spaces over R or C
 
feat: port Analysis.NormedSpace.IsROrC (#4055)

Dependencies 10 + 658

659 files ported (98.5%)
292173 lines ported (98.2%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file