analysis.special_functions.polynomials ⟷ Mathlib.Analysis.SpecialFunctions.Polynomials

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -5,7 +5,7 @@ Authors: Anatole Dedecker, Devon Tuma
 -/
 import Analysis.Asymptotics.AsymptoticEquivalent
 import Analysis.Asymptotics.SpecificAsymptotics
-import Data.Polynomial.RingDivision
+import Algebra.Polynomial.RingDivision
 
 #align_import analysis.special_functions.polynomials from "leanprover-community/mathlib"@"ce38d86c0b2d427ce208c3cee3159cb421d2b3c4"
 
Diff
@@ -78,7 +78,7 @@ theorem tendsto_atTop_iff_leadingCoeff_nonneg :
   refine' ⟨fun h => _, fun h => tendsto_at_top_of_leading_coeff_nonneg P h.1 h.2⟩
   have : tendsto (fun x => P.leading_coeff * x ^ P.nat_degree) at_top at_top :=
     (is_equivalent_at_top_lead P).tendsto_atTop h
-  rw [tendsto_const_mul_pow_at_top_iff, ← pos_iff_ne_zero, nat_degree_pos_iff_degree_pos] at this 
+  rw [tendsto_const_mul_pow_at_top_iff, ← pos_iff_ne_zero, nat_degree_pos_iff_degree_pos] at this
   exact ⟨this.1, this.2.le⟩
 #align polynomial.tendsto_at_top_iff_leading_coeff_nonneg Polynomial.tendsto_atTop_iff_leadingCoeff_nonneg
 -/
@@ -137,9 +137,9 @@ theorem tendsto_nhds_iff {c : π•œ} :
   refine' ⟨fun h => _, fun h => _⟩
   Β· have := P.is_equivalent_at_top_lead.tendsto_nhds h
     by_cases hP : P.leading_coeff = 0
-    Β· simp only [hP, MulZeroClass.zero_mul, tendsto_const_nhds_iff] at this 
+    Β· simp only [hP, MulZeroClass.zero_mul, tendsto_const_nhds_iff] at this
       refine' ⟨trans hP this, by simp [leading_coeff_eq_zero.1 hP]⟩
-    Β· rw [tendsto_const_mul_pow_nhds_iff hP, nat_degree_eq_zero_iff_degree_le_zero] at this 
+    Β· rw [tendsto_const_mul_pow_nhds_iff hP, nat_degree_eq_zero_iff_degree_le_zero] at this
       exact this.symm
   Β· refine' P.is_equivalent_at_top_lead.symm.tendsto_nhds _
     have : P.nat_degree = 0 := nat_degree_eq_zero_iff_degree_le_zero.2 h.2
@@ -174,7 +174,7 @@ theorem div_tendsto_zero_of_degree_lt (hdeg : P.degree < Q.degree) :
   by
   by_cases hP : P = 0
   Β· simp [hP, tendsto_const_nhds]
-  rw [← nat_degree_lt_nat_degree_iff hP] at hdeg 
+  rw [← nat_degree_lt_nat_degree_iff hP] at hdeg
   refine' (is_equivalent_at_top_div P Q).symm.tendsto_nhds _
   rw [← MulZeroClass.mul_zero]
   refine' (tendsto_zpow_atTop_zero _).const_mul _
@@ -188,16 +188,16 @@ theorem div_tendsto_zero_iff_degree_lt (hQ : Q β‰  0) :
   by
   refine' ⟨fun h => _, div_tendsto_zero_of_degree_lt P Q⟩
   by_cases hPQ : P.leading_coeff / Q.leading_coeff = 0
-  Β· simp only [div_eq_mul_inv, inv_eq_zero, mul_eq_zero] at hPQ 
+  Β· simp only [div_eq_mul_inv, inv_eq_zero, mul_eq_zero] at hPQ
     cases' hPQ with hP0 hQ0
     Β· rw [leading_coeff_eq_zero.1 hP0, degree_zero]
       exact bot_lt_iff_ne_bot.2 fun hQ' => hQ (degree_eq_bot.1 hQ')
     Β· exact absurd (leading_coeff_eq_zero.1 hQ0) hQ
   Β· have := (is_equivalent_at_top_div P Q).tendsto_nhds h
-    rw [tendsto_const_mul_zpow_atTop_nhds_iff hPQ] at this 
+    rw [tendsto_const_mul_zpow_atTop_nhds_iff hPQ] at this
     cases' this with h h
     Β· exact absurd h.2 hPQ
-    Β· rw [sub_lt_iff_lt_add, zero_add, Int.ofNat_lt] at h 
+    Β· rw [sub_lt_iff_lt_add, zero_add, Int.ofNat_lt] at h
       exact degree_lt_degree h.1
 #align polynomial.div_tendsto_zero_iff_degree_lt Polynomial.div_tendsto_zero_iff_degree_lt
 -/
@@ -217,8 +217,8 @@ theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
     (hpos : 0 < P.leadingCoeff / Q.leadingCoeff) :
     Tendsto (fun x => eval x P / eval x Q) atTop atTop :=
   by
-  have hQ : Q β‰  0 := fun h => by simp only [h, div_zero, leading_coeff_zero] at hpos ; linarith
-  rw [← nat_degree_lt_nat_degree_iff hQ] at hdeg 
+  have hQ : Q β‰  0 := fun h => by simp only [h, div_zero, leading_coeff_zero] at hpos; linarith
+  rw [← nat_degree_lt_nat_degree_iff hQ] at hdeg
   refine' (is_equivalent_at_top_div P Q).symm.tendsto_atTop _
   apply tendsto.const_mul_at_top hpos
   apply Filter.tendsto_zpow_atTop_atTop
@@ -243,8 +243,8 @@ theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
     (hneg : P.leadingCoeff / Q.leadingCoeff < 0) :
     Tendsto (fun x => eval x P / eval x Q) atTop atBot :=
   by
-  have hQ : Q β‰  0 := fun h => by simp only [h, div_zero, leading_coeff_zero] at hneg ; linarith
-  rw [← nat_degree_lt_nat_degree_iff hQ] at hdeg 
+  have hQ : Q β‰  0 := fun h => by simp only [h, div_zero, leading_coeff_zero] at hneg; linarith
+  rw [← nat_degree_lt_nat_degree_iff hQ] at hdeg
   refine' (is_equivalent_at_top_div P Q).symm.tendsto_atBot _
   apply tendsto.neg_const_mul_at_top hneg
   apply Filter.tendsto_zpow_atTop_atTop
@@ -270,7 +270,7 @@ theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q
   by
   by_cases h : 0 ≀ P.leading_coeff / Q.leading_coeff
   Β· exact tendsto_abs_at_top_at_top.comp (P.div_tendsto_at_top_of_degree_gt Q hdeg hQ h)
-  Β· push_neg at h 
+  Β· push_neg at h
     exact tendsto_abs_at_bot_at_top.comp (P.div_tendsto_at_bot_of_degree_gt Q hdeg hQ h.le)
 #align polynomial.abs_div_tendsto_at_top_of_degree_gt Polynomial.abs_div_tendsto_atTop_of_degree_gt
 -/
Diff
@@ -221,7 +221,7 @@ theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
   rw [← nat_degree_lt_nat_degree_iff hQ] at hdeg 
   refine' (is_equivalent_at_top_div P Q).symm.tendsto_atTop _
   apply tendsto.const_mul_at_top hpos
-  apply tendsto_zpow_atTop_atTop
+  apply Filter.tendsto_zpow_atTop_atTop
   linarith
 #align polynomial.div_tendsto_at_top_of_degree_gt' Polynomial.div_tendsto_atTop_of_degree_gt'
 -/
@@ -247,7 +247,7 @@ theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
   rw [← nat_degree_lt_nat_degree_iff hQ] at hdeg 
   refine' (is_equivalent_at_top_div P Q).symm.tendsto_atBot _
   apply tendsto.neg_const_mul_at_top hneg
-  apply tendsto_zpow_atTop_atTop
+  apply Filter.tendsto_zpow_atTop_atTop
   linarith
 #align polynomial.div_tendsto_at_bot_of_degree_gt' Polynomial.div_tendsto_atBot_of_degree_gt'
 -/
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2020 Anatole Dedecker. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker, Devon Tuma
 -/
-import Mathbin.Analysis.Asymptotics.AsymptoticEquivalent
-import Mathbin.Analysis.Asymptotics.SpecificAsymptotics
-import Mathbin.Data.Polynomial.RingDivision
+import Analysis.Asymptotics.AsymptoticEquivalent
+import Analysis.Asymptotics.SpecificAsymptotics
+import Data.Polynomial.RingDivision
 
 #align_import analysis.special_functions.polynomials from "leanprover-community/mathlib"@"ce38d86c0b2d427ce208c3cee3159cb421d2b3c4"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2020 Anatole Dedecker. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker, Devon Tuma
-
-! This file was ported from Lean 3 source module analysis.special_functions.polynomials
-! leanprover-community/mathlib commit ce38d86c0b2d427ce208c3cee3159cb421d2b3c4
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.Analysis.Asymptotics.AsymptoticEquivalent
 import Mathbin.Analysis.Asymptotics.SpecificAsymptotics
 import Mathbin.Data.Polynomial.RingDivision
 
+#align_import analysis.special_functions.polynomials from "leanprover-community/mathlib"@"ce38d86c0b2d427ce208c3cee3159cb421d2b3c4"
+
 /-!
 # Limits related to polynomial and rational functions
 
Diff
@@ -47,6 +47,7 @@ variable [OrderTopology π•œ]
 
 section PolynomialAtTop
 
+#print Polynomial.isEquivalent_atTop_lead /-
 theorem isEquivalent_atTop_lead :
     (fun x => eval x P) ~[atTop] fun x => P.leadingCoeff * x ^ P.natDegree :=
   by
@@ -62,14 +63,18 @@ theorem isEquivalent_atTop_lead :
             _)
         is_equivalent.refl
 #align polynomial.is_equivalent_at_top_lead Polynomial.isEquivalent_atTop_lead
+-/
 
+#print Polynomial.tendsto_atTop_of_leadingCoeff_nonneg /-
 theorem tendsto_atTop_of_leadingCoeff_nonneg (hdeg : 0 < P.degree) (hnng : 0 ≀ P.leadingCoeff) :
     Tendsto (fun x => eval x P) atTop atTop :=
   P.isEquivalent_atTop_lead.symm.tendsto_atTop <|
     tendsto_const_mul_pow_atTop (natDegree_pos_iff_degree_pos.2 hdeg).ne' <|
       hnng.lt_of_ne' <| leadingCoeff_ne_zero.mpr <| ne_zero_of_degree_gt hdeg
 #align polynomial.tendsto_at_top_of_leading_coeff_nonneg Polynomial.tendsto_atTop_of_leadingCoeff_nonneg
+-/
 
+#print Polynomial.tendsto_atTop_iff_leadingCoeff_nonneg /-
 theorem tendsto_atTop_iff_leadingCoeff_nonneg :
     Tendsto (fun x => eval x P) atTop atTop ↔ 0 < P.degree ∧ 0 ≀ P.leadingCoeff :=
   by
@@ -79,25 +84,33 @@ theorem tendsto_atTop_iff_leadingCoeff_nonneg :
   rw [tendsto_const_mul_pow_at_top_iff, ← pos_iff_ne_zero, nat_degree_pos_iff_degree_pos] at this 
   exact ⟨this.1, this.2.le⟩
 #align polynomial.tendsto_at_top_iff_leading_coeff_nonneg Polynomial.tendsto_atTop_iff_leadingCoeff_nonneg
+-/
 
+#print Polynomial.tendsto_atBot_iff_leadingCoeff_nonpos /-
 theorem tendsto_atBot_iff_leadingCoeff_nonpos :
     Tendsto (fun x => eval x P) atTop atBot ↔ 0 < P.degree ∧ P.leadingCoeff ≀ 0 := by
   simp only [← tendsto_neg_at_top_iff, ← eval_neg, tendsto_at_top_iff_leading_coeff_nonneg,
     degree_neg, leading_coeff_neg, neg_nonneg]
 #align polynomial.tendsto_at_bot_iff_leading_coeff_nonpos Polynomial.tendsto_atBot_iff_leadingCoeff_nonpos
+-/
 
+#print Polynomial.tendsto_atBot_of_leadingCoeff_nonpos /-
 theorem tendsto_atBot_of_leadingCoeff_nonpos (hdeg : 0 < P.degree) (hnps : P.leadingCoeff ≀ 0) :
     Tendsto (fun x => eval x P) atTop atBot :=
   P.tendsto_atBot_iff_leadingCoeff_nonpos.2 ⟨hdeg, hnps⟩
 #align polynomial.tendsto_at_bot_of_leading_coeff_nonpos Polynomial.tendsto_atBot_of_leadingCoeff_nonpos
+-/
 
+#print Polynomial.abs_tendsto_atTop /-
 theorem abs_tendsto_atTop (hdeg : 0 < P.degree) : Tendsto (fun x => abs <| eval x P) atTop atTop :=
   by
   cases' le_total 0 P.leading_coeff with hP hP
   Β· exact tendsto_abs_at_top_at_top.comp (P.tendsto_at_top_of_leading_coeff_nonneg hdeg hP)
   Β· exact tendsto_abs_at_bot_at_top.comp (P.tendsto_at_bot_of_leading_coeff_nonpos hdeg hP)
 #align polynomial.abs_tendsto_at_top Polynomial.abs_tendsto_atTop
+-/
 
+#print Polynomial.abs_isBoundedUnder_iff /-
 theorem abs_isBoundedUnder_iff :
     (IsBoundedUnder (Β· ≀ Β·) atTop fun x => |eval x P|) ↔ P.degree ≀ 0 :=
   by
@@ -111,11 +124,14 @@ theorem abs_isBoundedUnder_iff :
   contrapose! h
   exact not_is_bounded_under_of_tendsto_at_top (abs_tendsto_at_top P h)
 #align polynomial.abs_is_bounded_under_iff Polynomial.abs_isBoundedUnder_iff
+-/
 
+#print Polynomial.abs_tendsto_atTop_iff /-
 theorem abs_tendsto_atTop_iff : Tendsto (fun x => abs <| eval x P) atTop atTop ↔ 0 < P.degree :=
   ⟨fun h => not_le.mp (mt (abs_isBoundedUnder_iff P).mpr (not_isBoundedUnder_of_tendsto_atTop h)),
     abs_tendsto_atTop P⟩
 #align polynomial.abs_tendsto_at_top_iff Polynomial.abs_tendsto_atTop_iff
+-/
 
 #print Polynomial.tendsto_nhds_iff /-
 theorem tendsto_nhds_iff {c : π•œ} :
@@ -139,6 +155,7 @@ end PolynomialAtTop
 
 section PolynomialDivAtTop
 
+#print Polynomial.isEquivalent_atTop_div /-
 theorem isEquivalent_atTop_div :
     (fun x => eval x P / eval x Q) ~[atTop] fun x =>
       P.leadingCoeff / Q.leadingCoeff * x ^ (P.natDegree - Q.natDegree : β„€) :=
@@ -152,7 +169,9 @@ theorem isEquivalent_atTop_div :
       (eventually_eq.is_equivalent ((eventually_gt_at_top 0).mono fun x hx => _))
   simp [← div_mul_div_comm, hP, hQ, zpow_subβ‚€ hx.ne.symm]
 #align polynomial.is_equivalent_at_top_div Polynomial.isEquivalent_atTop_div
+-/
 
+#print Polynomial.div_tendsto_zero_of_degree_lt /-
 theorem div_tendsto_zero_of_degree_lt (hdeg : P.degree < Q.degree) :
     Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) :=
   by
@@ -164,7 +183,9 @@ theorem div_tendsto_zero_of_degree_lt (hdeg : P.degree < Q.degree) :
   refine' (tendsto_zpow_atTop_zero _).const_mul _
   linarith
 #align polynomial.div_tendsto_zero_of_degree_lt Polynomial.div_tendsto_zero_of_degree_lt
+-/
 
+#print Polynomial.div_tendsto_zero_iff_degree_lt /-
 theorem div_tendsto_zero_iff_degree_lt (hQ : Q β‰  0) :
     Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) ↔ P.degree < Q.degree :=
   by
@@ -182,7 +203,9 @@ theorem div_tendsto_zero_iff_degree_lt (hQ : Q β‰  0) :
     Β· rw [sub_lt_iff_lt_add, zero_add, Int.ofNat_lt] at h 
       exact degree_lt_degree h.1
 #align polynomial.div_tendsto_zero_iff_degree_lt Polynomial.div_tendsto_zero_iff_degree_lt
+-/
 
+#print Polynomial.div_tendsto_leadingCoeff_div_of_degree_eq /-
 theorem div_tendsto_leadingCoeff_div_of_degree_eq (hdeg : P.degree = Q.degree) :
     Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 <| P.leadingCoeff / Q.leadingCoeff) :=
   by
@@ -190,7 +213,9 @@ theorem div_tendsto_leadingCoeff_div_of_degree_eq (hdeg : P.degree = Q.degree) :
   rw [show (P.nat_degree : β„€) = Q.nat_degree by simp [hdeg, nat_degree]]
   simp [tendsto_const_nhds]
 #align polynomial.div_tendsto_leading_coeff_div_of_degree_eq Polynomial.div_tendsto_leadingCoeff_div_of_degree_eq
+-/
 
+#print Polynomial.div_tendsto_atTop_of_degree_gt' /-
 theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
     (hpos : 0 < P.leadingCoeff / Q.leadingCoeff) :
     Tendsto (fun x => eval x P / eval x Q) atTop atTop :=
@@ -202,7 +227,9 @@ theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
   apply tendsto_zpow_atTop_atTop
   linarith
 #align polynomial.div_tendsto_at_top_of_degree_gt' Polynomial.div_tendsto_atTop_of_degree_gt'
+-/
 
+#print Polynomial.div_tendsto_atTop_of_degree_gt /-
 theorem div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0)
     (hnng : 0 ≀ P.leadingCoeff / Q.leadingCoeff) :
     Tendsto (fun x => eval x P / eval x Q) atTop atTop :=
@@ -212,7 +239,9 @@ theorem div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰ 
           hQ <| leadingCoeff_eq_zero.mp h).symm
   div_tendsto_atTop_of_degree_gt' P Q hdeg ratio_pos
 #align polynomial.div_tendsto_at_top_of_degree_gt Polynomial.div_tendsto_atTop_of_degree_gt
+-/
 
+#print Polynomial.div_tendsto_atBot_of_degree_gt' /-
 theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
     (hneg : P.leadingCoeff / Q.leadingCoeff < 0) :
     Tendsto (fun x => eval x P / eval x Q) atTop atBot :=
@@ -224,7 +253,9 @@ theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
   apply tendsto_zpow_atTop_atTop
   linarith
 #align polynomial.div_tendsto_at_bot_of_degree_gt' Polynomial.div_tendsto_atBot_of_degree_gt'
+-/
 
+#print Polynomial.div_tendsto_atBot_of_degree_gt /-
 theorem div_tendsto_atBot_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0)
     (hnps : P.leadingCoeff / Q.leadingCoeff ≀ 0) :
     Tendsto (fun x => eval x P / eval x Q) atTop atBot :=
@@ -234,7 +265,9 @@ theorem div_tendsto_atBot_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰ 
         hQ <| leadingCoeff_eq_zero.mp h)
   div_tendsto_atBot_of_degree_gt' P Q hdeg ratio_neg
 #align polynomial.div_tendsto_at_bot_of_degree_gt Polynomial.div_tendsto_atBot_of_degree_gt
+-/
 
+#print Polynomial.abs_div_tendsto_atTop_of_degree_gt /-
 theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0) :
     Tendsto (fun x => |eval x P / eval x Q|) atTop atTop :=
   by
@@ -243,6 +276,7 @@ theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q
   Β· push_neg at h 
     exact tendsto_abs_at_bot_at_top.comp (P.div_tendsto_at_bot_of_degree_gt Q hdeg hQ h.le)
 #align polynomial.abs_div_tendsto_at_top_of_degree_gt Polynomial.abs_div_tendsto_atTop_of_degree_gt
+-/
 
 end PolynomialDivAtTop
 
Diff
@@ -240,7 +240,7 @@ theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q
   by
   by_cases h : 0 ≀ P.leading_coeff / Q.leading_coeff
   Β· exact tendsto_abs_at_top_at_top.comp (P.div_tendsto_at_top_of_degree_gt Q hdeg hQ h)
-  Β· push_neg  at h 
+  Β· push_neg at h 
     exact tendsto_abs_at_bot_at_top.comp (P.div_tendsto_at_bot_of_degree_gt Q hdeg hQ h.le)
 #align polynomial.abs_div_tendsto_at_top_of_degree_gt Polynomial.abs_div_tendsto_atTop_of_degree_gt
 
Diff
@@ -76,7 +76,7 @@ theorem tendsto_atTop_iff_leadingCoeff_nonneg :
   refine' ⟨fun h => _, fun h => tendsto_at_top_of_leading_coeff_nonneg P h.1 h.2⟩
   have : tendsto (fun x => P.leading_coeff * x ^ P.nat_degree) at_top at_top :=
     (is_equivalent_at_top_lead P).tendsto_atTop h
-  rw [tendsto_const_mul_pow_at_top_iff, ← pos_iff_ne_zero, nat_degree_pos_iff_degree_pos] at this
+  rw [tendsto_const_mul_pow_at_top_iff, ← pos_iff_ne_zero, nat_degree_pos_iff_degree_pos] at this 
   exact ⟨this.1, this.2.le⟩
 #align polynomial.tendsto_at_top_iff_leading_coeff_nonneg Polynomial.tendsto_atTop_iff_leadingCoeff_nonneg
 
@@ -124,9 +124,9 @@ theorem tendsto_nhds_iff {c : π•œ} :
   refine' ⟨fun h => _, fun h => _⟩
   Β· have := P.is_equivalent_at_top_lead.tendsto_nhds h
     by_cases hP : P.leading_coeff = 0
-    Β· simp only [hP, MulZeroClass.zero_mul, tendsto_const_nhds_iff] at this
+    Β· simp only [hP, MulZeroClass.zero_mul, tendsto_const_nhds_iff] at this 
       refine' ⟨trans hP this, by simp [leading_coeff_eq_zero.1 hP]⟩
-    Β· rw [tendsto_const_mul_pow_nhds_iff hP, nat_degree_eq_zero_iff_degree_le_zero] at this
+    Β· rw [tendsto_const_mul_pow_nhds_iff hP, nat_degree_eq_zero_iff_degree_le_zero] at this 
       exact this.symm
   Β· refine' P.is_equivalent_at_top_lead.symm.tendsto_nhds _
     have : P.nat_degree = 0 := nat_degree_eq_zero_iff_degree_le_zero.2 h.2
@@ -158,7 +158,7 @@ theorem div_tendsto_zero_of_degree_lt (hdeg : P.degree < Q.degree) :
   by
   by_cases hP : P = 0
   Β· simp [hP, tendsto_const_nhds]
-  rw [← nat_degree_lt_nat_degree_iff hP] at hdeg
+  rw [← nat_degree_lt_nat_degree_iff hP] at hdeg 
   refine' (is_equivalent_at_top_div P Q).symm.tendsto_nhds _
   rw [← MulZeroClass.mul_zero]
   refine' (tendsto_zpow_atTop_zero _).const_mul _
@@ -170,16 +170,16 @@ theorem div_tendsto_zero_iff_degree_lt (hQ : Q β‰  0) :
   by
   refine' ⟨fun h => _, div_tendsto_zero_of_degree_lt P Q⟩
   by_cases hPQ : P.leading_coeff / Q.leading_coeff = 0
-  Β· simp only [div_eq_mul_inv, inv_eq_zero, mul_eq_zero] at hPQ
+  Β· simp only [div_eq_mul_inv, inv_eq_zero, mul_eq_zero] at hPQ 
     cases' hPQ with hP0 hQ0
     Β· rw [leading_coeff_eq_zero.1 hP0, degree_zero]
       exact bot_lt_iff_ne_bot.2 fun hQ' => hQ (degree_eq_bot.1 hQ')
     Β· exact absurd (leading_coeff_eq_zero.1 hQ0) hQ
   Β· have := (is_equivalent_at_top_div P Q).tendsto_nhds h
-    rw [tendsto_const_mul_zpow_atTop_nhds_iff hPQ] at this
+    rw [tendsto_const_mul_zpow_atTop_nhds_iff hPQ] at this 
     cases' this with h h
     Β· exact absurd h.2 hPQ
-    Β· rw [sub_lt_iff_lt_add, zero_add, Int.ofNat_lt] at h
+    Β· rw [sub_lt_iff_lt_add, zero_add, Int.ofNat_lt] at h 
       exact degree_lt_degree h.1
 #align polynomial.div_tendsto_zero_iff_degree_lt Polynomial.div_tendsto_zero_iff_degree_lt
 
@@ -195,8 +195,8 @@ theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
     (hpos : 0 < P.leadingCoeff / Q.leadingCoeff) :
     Tendsto (fun x => eval x P / eval x Q) atTop atTop :=
   by
-  have hQ : Q β‰  0 := fun h => by simp only [h, div_zero, leading_coeff_zero] at hpos; linarith
-  rw [← nat_degree_lt_nat_degree_iff hQ] at hdeg
+  have hQ : Q β‰  0 := fun h => by simp only [h, div_zero, leading_coeff_zero] at hpos ; linarith
+  rw [← nat_degree_lt_nat_degree_iff hQ] at hdeg 
   refine' (is_equivalent_at_top_div P Q).symm.tendsto_atTop _
   apply tendsto.const_mul_at_top hpos
   apply tendsto_zpow_atTop_atTop
@@ -217,8 +217,8 @@ theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
     (hneg : P.leadingCoeff / Q.leadingCoeff < 0) :
     Tendsto (fun x => eval x P / eval x Q) atTop atBot :=
   by
-  have hQ : Q β‰  0 := fun h => by simp only [h, div_zero, leading_coeff_zero] at hneg; linarith
-  rw [← nat_degree_lt_nat_degree_iff hQ] at hdeg
+  have hQ : Q β‰  0 := fun h => by simp only [h, div_zero, leading_coeff_zero] at hneg ; linarith
+  rw [← nat_degree_lt_nat_degree_iff hQ] at hdeg 
   refine' (is_equivalent_at_top_div P Q).symm.tendsto_atBot _
   apply tendsto.neg_const_mul_at_top hneg
   apply tendsto_zpow_atTop_atTop
@@ -240,7 +240,7 @@ theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q
   by
   by_cases h : 0 ≀ P.leading_coeff / Q.leading_coeff
   Β· exact tendsto_abs_at_top_at_top.comp (P.div_tendsto_at_top_of_degree_gt Q hdeg hQ h)
-  Β· push_neg  at h
+  Β· push_neg  at h 
     exact tendsto_abs_at_bot_at_top.comp (P.div_tendsto_at_bot_of_degree_gt Q hdeg hQ h.le)
 #align polynomial.abs_div_tendsto_at_top_of_degree_gt Polynomial.abs_div_tendsto_atTop_of_degree_gt
 
Diff
@@ -31,7 +31,7 @@ polynomials.
 
 open Filter Finset Asymptotics
 
-open Asymptotics Polynomial Topology
+open scoped Asymptotics Polynomial Topology
 
 namespace Polynomial
 
@@ -117,6 +117,7 @@ theorem abs_tendsto_atTop_iff : Tendsto (fun x => abs <| eval x P) atTop atTop 
     abs_tendsto_atTop P⟩
 #align polynomial.abs_tendsto_at_top_iff Polynomial.abs_tendsto_atTop_iff
 
+#print Polynomial.tendsto_nhds_iff /-
 theorem tendsto_nhds_iff {c : π•œ} :
     Tendsto (fun x => eval x P) atTop (𝓝 c) ↔ P.leadingCoeff = c ∧ P.degree ≀ 0 :=
   by
@@ -132,6 +133,7 @@ theorem tendsto_nhds_iff {c : π•œ} :
     simp only [h.1, this, pow_zero, mul_one]
     exact tendsto_const_nhds
 #align polynomial.tendsto_nhds_iff Polynomial.tendsto_nhds_iff
+-/
 
 end PolynomialAtTop
 
@@ -244,6 +246,7 @@ theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q
 
 end PolynomialDivAtTop
 
+#print Polynomial.isBigO_of_degree_le /-
 theorem isBigO_of_degree_le (h : P.degree ≀ Q.degree) :
     (fun x => eval x P) =O[atTop] fun x => eval x Q :=
   by
@@ -256,6 +259,7 @@ theorem isBigO_of_degree_le (h : P.degree ≀ Q.degree) :
     Β· exact is_O_of_div_tendsto_nhds hPQ 0 (div_tendsto_zero_of_degree_lt P Q h)
     Β· exact is_O_of_div_tendsto_nhds hPQ _ (div_tendsto_leading_coeff_div_of_degree_eq P Q h)
 #align polynomial.is_O_of_degree_le Polynomial.isBigO_of_degree_le
+-/
 
 end Polynomial
 
Diff
@@ -47,12 +47,6 @@ variable [OrderTopology π•œ]
 
 section PolynomialAtTop
 
-/- warning: polynomial.is_equivalent_at_top_lead -> Polynomial.isEquivalent_atTop_lead is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Asymptotics.IsEquivalent.{u1, u1} π•œ π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (fun (x : π•œ) => HMul.hMul.{u1, u1, u1} π•œ π•œ π•œ (instHMul.{u1} π•œ (Distrib.toHasMul.{u1} π•œ (Ring.toDistrib.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (HPow.hPow.{u1, 0, u1} π•œ Nat π•œ (instHPow.{u1, 0} π•œ Nat (Monoid.Pow.{u1} π•œ (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) x (Polynomial.natDegree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Asymptotics.IsEquivalent.{u1, u1} π•œ π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (fun (x : π•œ) => HMul.hMul.{u1, u1, u1} π•œ π•œ π•œ (instHMul.{u1} π•œ (NonUnitalNonAssocRing.toMul.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (HPow.hPow.{u1, 0, u1} π•œ Nat π•œ (instHPow.{u1, 0} π•œ Nat (Monoid.Pow.{u1} π•œ (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) x (Polynomial.natDegree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)))
-Case conversion may be inaccurate. Consider using '#align polynomial.is_equivalent_at_top_lead Polynomial.isEquivalent_atTop_leadβ‚“'. -/
 theorem isEquivalent_atTop_lead :
     (fun x => eval x P) ~[atTop] fun x => P.leadingCoeff * x ^ P.natDegree :=
   by
@@ -69,12 +63,6 @@ theorem isEquivalent_atTop_lead :
         is_equivalent.refl
 #align polynomial.is_equivalent_at_top_lead Polynomial.isEquivalent_atTop_lead
 
-/- warning: polynomial.tendsto_at_top_of_leading_coeff_nonneg -> Polynomial.tendsto_atTop_of_leadingCoeff_nonneg is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_at_top_of_leading_coeff_nonneg Polynomial.tendsto_atTop_of_leadingCoeff_nonnegβ‚“'. -/
 theorem tendsto_atTop_of_leadingCoeff_nonneg (hdeg : 0 < P.degree) (hnng : 0 ≀ P.leadingCoeff) :
     Tendsto (fun x => eval x P) atTop atTop :=
   P.isEquivalent_atTop_lead.symm.tendsto_atTop <|
@@ -82,12 +70,6 @@ theorem tendsto_atTop_of_leadingCoeff_nonneg (hdeg : 0 < P.degree) (hnng : 0 ≀
       hnng.lt_of_ne' <| leadingCoeff_ne_zero.mpr <| ne_zero_of_degree_gt hdeg
 #align polynomial.tendsto_at_top_of_leading_coeff_nonneg Polynomial.tendsto_atTop_of_leadingCoeff_nonneg
 
-/- warning: polynomial.tendsto_at_top_iff_leading_coeff_nonneg -> Polynomial.tendsto_atTop_iff_leadingCoeff_nonneg is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)))
-Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_at_top_iff_leading_coeff_nonneg Polynomial.tendsto_atTop_iff_leadingCoeff_nonnegβ‚“'. -/
 theorem tendsto_atTop_iff_leadingCoeff_nonneg :
     Tendsto (fun x => eval x P) atTop atTop ↔ 0 < P.degree ∧ 0 ≀ P.leadingCoeff :=
   by
@@ -98,35 +80,17 @@ theorem tendsto_atTop_iff_leadingCoeff_nonneg :
   exact ⟨this.1, this.2.le⟩
 #align polynomial.tendsto_at_top_iff_leading_coeff_nonneg Polynomial.tendsto_atTop_iff_leadingCoeff_nonneg
 
-/- warning: polynomial.tendsto_at_bot_iff_leading_coeff_nonpos -> Polynomial.tendsto_atBot_iff_leadingCoeff_nonpos is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_at_bot_iff_leading_coeff_nonpos Polynomial.tendsto_atBot_iff_leadingCoeff_nonposβ‚“'. -/
 theorem tendsto_atBot_iff_leadingCoeff_nonpos :
     Tendsto (fun x => eval x P) atTop atBot ↔ 0 < P.degree ∧ P.leadingCoeff ≀ 0 := by
   simp only [← tendsto_neg_at_top_iff, ← eval_neg, tendsto_at_top_iff_leading_coeff_nonneg,
     degree_neg, leading_coeff_neg, neg_nonneg]
 #align polynomial.tendsto_at_bot_iff_leading_coeff_nonpos Polynomial.tendsto_atBot_iff_leadingCoeff_nonpos
 
-/- warning: polynomial.tendsto_at_bot_of_leading_coeff_nonpos -> Polynomial.tendsto_atBot_of_leadingCoeff_nonpos is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_at_bot_of_leading_coeff_nonpos Polynomial.tendsto_atBot_of_leadingCoeff_nonposβ‚“'. -/
 theorem tendsto_atBot_of_leadingCoeff_nonpos (hdeg : 0 < P.degree) (hnps : P.leadingCoeff ≀ 0) :
     Tendsto (fun x => eval x P) atTop atBot :=
   P.tendsto_atBot_iff_leadingCoeff_nonpos.2 ⟨hdeg, hnps⟩
 #align polynomial.tendsto_at_bot_of_leading_coeff_nonpos Polynomial.tendsto_atBot_of_leadingCoeff_nonpos
 
-/- warning: polynomial.abs_tendsto_at_top -> Polynomial.abs_tendsto_atTop is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.abs_tendsto_at_top Polynomial.abs_tendsto_atTopβ‚“'. -/
 theorem abs_tendsto_atTop (hdeg : 0 < P.degree) : Tendsto (fun x => abs <| eval x P) atTop atTop :=
   by
   cases' le_total 0 P.leading_coeff with hP hP
@@ -134,12 +98,6 @@ theorem abs_tendsto_atTop (hdeg : 0 < P.degree) : Tendsto (fun x => abs <| eval
   Β· exact tendsto_abs_at_bot_at_top.comp (P.tendsto_at_bot_of_leading_coeff_nonpos hdeg hP)
 #align polynomial.abs_tendsto_at_top Polynomial.abs_tendsto_atTop
 
-/- warning: polynomial.abs_is_bounded_under_iff -> Polynomial.abs_isBoundedUnder_iff is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.IsBoundedUnder.{u1, u1} π•œ π•œ (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P))) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.IsBoundedUnder.{u1, u1} π•œ π•œ (fun (x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.587 : π•œ) (x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.589 : π•œ) => LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.587 x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.589) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P))) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
-Case conversion may be inaccurate. Consider using '#align polynomial.abs_is_bounded_under_iff Polynomial.abs_isBoundedUnder_iffβ‚“'. -/
 theorem abs_isBoundedUnder_iff :
     (IsBoundedUnder (Β· ≀ Β·) atTop fun x => |eval x P|) ↔ P.degree ≀ 0 :=
   by
@@ -154,23 +112,11 @@ theorem abs_isBoundedUnder_iff :
   exact not_is_bounded_under_of_tendsto_at_top (abs_tendsto_at_top P h)
 #align polynomial.abs_is_bounded_under_iff Polynomial.abs_isBoundedUnder_iff
 
-/- warning: polynomial.abs_tendsto_at_top_iff -> Polynomial.abs_tendsto_atTop_iff is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P))
-Case conversion may be inaccurate. Consider using '#align polynomial.abs_tendsto_at_top_iff Polynomial.abs_tendsto_atTop_iffβ‚“'. -/
 theorem abs_tendsto_atTop_iff : Tendsto (fun x => abs <| eval x P) atTop atTop ↔ 0 < P.degree :=
   ⟨fun h => not_le.mp (mt (abs_isBoundedUnder_iff P).mpr (not_isBoundedUnder_of_tendsto_atTop h)),
     abs_tendsto_atTop P⟩
 #align polynomial.abs_tendsto_at_top_iff Polynomial.abs_tendsto_atTop_iff
 
-/- warning: polynomial.tendsto_nhds_iff -> Polynomial.tendsto_nhds_iff is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))] {c : π•œ}, Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) c)) (And (Eq.{succ u1} π•œ (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) c) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))] {c : π•œ}, Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) c)) (And (Eq.{succ u1} π•œ (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) c) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_nhds_iff Polynomial.tendsto_nhds_iffβ‚“'. -/
 theorem tendsto_nhds_iff {c : π•œ} :
     Tendsto (fun x => eval x P) atTop (𝓝 c) ↔ P.leadingCoeff = c ∧ P.degree ≀ 0 :=
   by
@@ -191,12 +137,6 @@ end PolynomialAtTop
 
 section PolynomialDivAtTop
 
-/- warning: polynomial.is_equivalent_at_top_div -> Polynomial.isEquivalent_atTop_div is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Asymptotics.IsEquivalent.{u1, u1} π•œ π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (fun (x : π•œ) => HMul.hMul.{u1, u1, u1} π•œ π•œ π•œ (instHMul.{u1} π•œ (Distrib.toHasMul.{u1} π•œ (Ring.toDistrib.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) (HPow.hPow.{u1, 0, u1} π•œ Int π•œ (instHPow.{u1, 0} π•œ Int (DivInvMonoid.Pow.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCβ‚“.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) (Polynomial.natDegree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCβ‚“.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) (Polynomial.natDegree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Asymptotics.IsEquivalent.{u1, u1} π•œ π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (fun (x : π•œ) => HMul.hMul.{u1, u1, u1} π•œ π•œ π•œ (instHMul.{u1} π•œ (NonUnitalNonAssocRing.toMul.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) (HPow.hPow.{u1, 0, u1} π•œ Int π•œ (instHPow.{u1, 0} π•œ Int (DivInvMonoid.Pow.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (Nat.cast.{0} Int instNatCastInt (Polynomial.natDegree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) (Nat.cast.{0} Int instNatCastInt (Polynomial.natDegree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)))))
-Case conversion may be inaccurate. Consider using '#align polynomial.is_equivalent_at_top_div Polynomial.isEquivalent_atTop_divβ‚“'. -/
 theorem isEquivalent_atTop_div :
     (fun x => eval x P / eval x Q) ~[atTop] fun x =>
       P.leadingCoeff / Q.leadingCoeff * x ^ (P.natDegree - Q.natDegree : β„€) :=
@@ -211,12 +151,6 @@ theorem isEquivalent_atTop_div :
   simp [← div_mul_div_comm, hP, hQ, zpow_subβ‚€ hx.ne.symm]
 #align polynomial.is_equivalent_at_top_div Polynomial.isEquivalent_atTop_div
 
-/- warning: polynomial.div_tendsto_zero_of_degree_lt -> Polynomial.div_tendsto_zero_of_degree_lt is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_zero_of_degree_lt Polynomial.div_tendsto_zero_of_degree_ltβ‚“'. -/
 theorem div_tendsto_zero_of_degree_lt (hdeg : P.degree < Q.degree) :
     Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) :=
   by
@@ -229,12 +163,6 @@ theorem div_tendsto_zero_of_degree_lt (hdeg : P.degree < Q.degree) :
   linarith
 #align polynomial.div_tendsto_zero_of_degree_lt Polynomial.div_tendsto_zero_of_degree_lt
 
-/- warning: polynomial.div_tendsto_zero_iff_degree_lt -> Polynomial.div_tendsto_zero_iff_degree_lt is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (Ne.{succ u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)))
-Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_zero_iff_degree_lt Polynomial.div_tendsto_zero_iff_degree_ltβ‚“'. -/
 theorem div_tendsto_zero_iff_degree_lt (hQ : Q β‰  0) :
     Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) ↔ P.degree < Q.degree :=
   by
@@ -253,12 +181,6 @@ theorem div_tendsto_zero_iff_degree_lt (hQ : Q β‰  0) :
       exact degree_lt_degree h.1
 #align polynomial.div_tendsto_zero_iff_degree_lt Polynomial.div_tendsto_zero_iff_degree_lt
 
-/- warning: polynomial.div_tendsto_leading_coeff_div_of_degree_eq -> Polynomial.div_tendsto_leadingCoeff_div_of_degree_eq is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q))))
-Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_leading_coeff_div_of_degree_eq Polynomial.div_tendsto_leadingCoeff_div_of_degree_eqβ‚“'. -/
 theorem div_tendsto_leadingCoeff_div_of_degree_eq (hdeg : P.degree = Q.degree) :
     Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 <| P.leadingCoeff / Q.leadingCoeff) :=
   by
@@ -267,12 +189,6 @@ theorem div_tendsto_leadingCoeff_div_of_degree_eq (hdeg : P.degree = Q.degree) :
   simp [tendsto_const_nhds]
 #align polynomial.div_tendsto_leading_coeff_div_of_degree_eq Polynomial.div_tendsto_leadingCoeff_div_of_degree_eq
 
-/- warning: polynomial.div_tendsto_at_top_of_degree_gt' -> Polynomial.div_tendsto_atTop_of_degree_gt' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toHasLt.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toLT.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_top_of_degree_gt' Polynomial.div_tendsto_atTop_of_degree_gt'β‚“'. -/
 theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
     (hpos : 0 < P.leadingCoeff / Q.leadingCoeff) :
     Tendsto (fun x => eval x P / eval x Q) atTop atTop :=
@@ -285,9 +201,6 @@ theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
   linarith
 #align polynomial.div_tendsto_at_top_of_degree_gt' Polynomial.div_tendsto_atTop_of_degree_gt'
 
-/- warning: polynomial.div_tendsto_at_top_of_degree_gt -> Polynomial.div_tendsto_atTop_of_degree_gt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_top_of_degree_gt Polynomial.div_tendsto_atTop_of_degree_gtβ‚“'. -/
 theorem div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0)
     (hnng : 0 ≀ P.leadingCoeff / Q.leadingCoeff) :
     Tendsto (fun x => eval x P / eval x Q) atTop atTop :=
@@ -298,12 +211,6 @@ theorem div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰ 
   div_tendsto_atTop_of_degree_gt' P Q hdeg ratio_pos
 #align polynomial.div_tendsto_at_top_of_degree_gt Polynomial.div_tendsto_atTop_of_degree_gt
 
-/- warning: polynomial.div_tendsto_at_bot_of_degree_gt' -> Polynomial.div_tendsto_atBot_of_degree_gt' is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toHasLt.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toLT.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
-Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_bot_of_degree_gt' Polynomial.div_tendsto_atBot_of_degree_gt'β‚“'. -/
 theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
     (hneg : P.leadingCoeff / Q.leadingCoeff < 0) :
     Tendsto (fun x => eval x P / eval x Q) atTop atBot :=
@@ -316,9 +223,6 @@ theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
   linarith
 #align polynomial.div_tendsto_at_bot_of_degree_gt' Polynomial.div_tendsto_atBot_of_degree_gt'
 
-/- warning: polynomial.div_tendsto_at_bot_of_degree_gt -> Polynomial.div_tendsto_atBot_of_degree_gt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_bot_of_degree_gt Polynomial.div_tendsto_atBot_of_degree_gtβ‚“'. -/
 theorem div_tendsto_atBot_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0)
     (hnps : P.leadingCoeff / Q.leadingCoeff ≀ 0) :
     Tendsto (fun x => eval x P / eval x Q) atTop atBot :=
@@ -329,9 +233,6 @@ theorem div_tendsto_atBot_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰ 
   div_tendsto_atBot_of_degree_gt' P Q hdeg ratio_neg
 #align polynomial.div_tendsto_at_bot_of_degree_gt Polynomial.div_tendsto_atBot_of_degree_gt
 
-/- warning: polynomial.abs_div_tendsto_at_top_of_degree_gt -> Polynomial.abs_div_tendsto_atTop_of_degree_gt is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align polynomial.abs_div_tendsto_at_top_of_degree_gt Polynomial.abs_div_tendsto_atTop_of_degree_gtβ‚“'. -/
 theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0) :
     Tendsto (fun x => |eval x P / eval x Q|) atTop atTop :=
   by
@@ -343,12 +244,6 @@ theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q
 
 end PolynomialDivAtTop
 
-/- warning: polynomial.is_O_of_degree_le -> Polynomial.isBigO_of_degree_le is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) -> (Asymptotics.IsBigO.{u1, u1, u1} π•œ π•œ π•œ (NormedLinearOrderedField.toHasNorm.{u1} π•œ _inst_1) (NormedLinearOrderedField.toHasNorm.{u1} π•œ _inst_1) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) -> (Asymptotics.IsBigO.{u1, u1, u1} π•œ π•œ π•œ (NormedLinearOrderedField.toNorm.{u1} π•œ _inst_1) (NormedLinearOrderedField.toNorm.{u1} π•œ _inst_1) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q))
-Case conversion may be inaccurate. Consider using '#align polynomial.is_O_of_degree_le Polynomial.isBigO_of_degree_leβ‚“'. -/
 theorem isBigO_of_degree_le (h : P.degree ≀ Q.degree) :
     (fun x => eval x P) =O[atTop] fun x => eval x Q :=
   by
Diff
@@ -277,10 +277,7 @@ theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
     (hpos : 0 < P.leadingCoeff / Q.leadingCoeff) :
     Tendsto (fun x => eval x P / eval x Q) atTop atTop :=
   by
-  have hQ : Q β‰  0 := fun h =>
-    by
-    simp only [h, div_zero, leading_coeff_zero] at hpos
-    linarith
+  have hQ : Q β‰  0 := fun h => by simp only [h, div_zero, leading_coeff_zero] at hpos; linarith
   rw [← nat_degree_lt_nat_degree_iff hQ] at hdeg
   refine' (is_equivalent_at_top_div P Q).symm.tendsto_atTop _
   apply tendsto.const_mul_at_top hpos
@@ -311,10 +308,7 @@ theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
     (hneg : P.leadingCoeff / Q.leadingCoeff < 0) :
     Tendsto (fun x => eval x P / eval x Q) atTop atBot :=
   by
-  have hQ : Q β‰  0 := fun h =>
-    by
-    simp only [h, div_zero, leading_coeff_zero] at hneg
-    linarith
+  have hQ : Q β‰  0 := fun h => by simp only [h, div_zero, leading_coeff_zero] at hneg; linarith
   rw [← nat_degree_lt_nat_degree_iff hQ] at hdeg
   refine' (is_equivalent_at_top_div P Q).symm.tendsto_atBot _
   apply tendsto.neg_const_mul_at_top hneg
Diff
@@ -289,10 +289,7 @@ theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
 #align polynomial.div_tendsto_at_top_of_degree_gt' Polynomial.div_tendsto_atTop_of_degree_gt'
 
 /- warning: polynomial.div_tendsto_at_top_of_degree_gt -> Polynomial.div_tendsto_atTop_of_degree_gt is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_top_of_degree_gt Polynomial.div_tendsto_atTop_of_degree_gtβ‚“'. -/
 theorem div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0)
     (hnng : 0 ≀ P.leadingCoeff / Q.leadingCoeff) :
@@ -326,10 +323,7 @@ theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
 #align polynomial.div_tendsto_at_bot_of_degree_gt' Polynomial.div_tendsto_atBot_of_degree_gt'
 
 /- warning: polynomial.div_tendsto_at_bot_of_degree_gt -> Polynomial.div_tendsto_atBot_of_degree_gt is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_bot_of_degree_gt Polynomial.div_tendsto_atBot_of_degree_gtβ‚“'. -/
 theorem div_tendsto_atBot_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0)
     (hnps : P.leadingCoeff / Q.leadingCoeff ≀ 0) :
@@ -342,10 +336,7 @@ theorem div_tendsto_atBot_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰ 
 #align polynomial.div_tendsto_at_bot_of_degree_gt Polynomial.div_tendsto_atBot_of_degree_gt
 
 /- warning: polynomial.abs_div_tendsto_at_top_of_degree_gt -> Polynomial.abs_div_tendsto_atTop_of_degree_gt is a dubious translation:
-lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
-but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
+<too large>
 Case conversion may be inaccurate. Consider using '#align polynomial.abs_div_tendsto_at_top_of_degree_gt Polynomial.abs_div_tendsto_atTop_of_degree_gtβ‚“'. -/
 theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0) :
     Tendsto (fun x => |eval x P / eval x Q|) atTop atTop :=
Diff
@@ -71,7 +71,7 @@ theorem isEquivalent_atTop_lead :
 
 /- warning: polynomial.tendsto_at_top_of_leading_coeff_nonneg -> Polynomial.tendsto_atTop_of_leadingCoeff_nonneg is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
 Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_at_top_of_leading_coeff_nonneg Polynomial.tendsto_atTop_of_leadingCoeff_nonnegβ‚“'. -/
@@ -84,7 +84,7 @@ theorem tendsto_atTop_of_leadingCoeff_nonneg (hdeg : 0 < P.degree) (hnng : 0 ≀
 
 /- warning: polynomial.tendsto_at_top_iff_leading_coeff_nonneg -> Polynomial.tendsto_atTop_iff_leadingCoeff_nonneg is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)))
 Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_at_top_iff_leading_coeff_nonneg Polynomial.tendsto_atTop_iff_leadingCoeff_nonnegβ‚“'. -/
@@ -100,7 +100,7 @@ theorem tendsto_atTop_iff_leadingCoeff_nonneg :
 
 /- warning: polynomial.tendsto_at_bot_iff_leading_coeff_nonpos -> Polynomial.tendsto_atBot_iff_leadingCoeff_nonpos is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))))
 Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_at_bot_iff_leading_coeff_nonpos Polynomial.tendsto_atBot_iff_leadingCoeff_nonposβ‚“'. -/
@@ -112,7 +112,7 @@ theorem tendsto_atBot_iff_leadingCoeff_nonpos :
 
 /- warning: polynomial.tendsto_at_bot_of_leading_coeff_nonpos -> Polynomial.tendsto_atBot_of_leadingCoeff_nonpos is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
 Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_at_bot_of_leading_coeff_nonpos Polynomial.tendsto_atBot_of_leadingCoeff_nonposβ‚“'. -/
@@ -123,7 +123,7 @@ theorem tendsto_atBot_of_leadingCoeff_nonpos (hdeg : 0 < P.degree) (hnps : P.lea
 
 /- warning: polynomial.abs_tendsto_at_top -> Polynomial.abs_tendsto_atTop is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
 Case conversion may be inaccurate. Consider using '#align polynomial.abs_tendsto_at_top Polynomial.abs_tendsto_atTopβ‚“'. -/
@@ -136,7 +136,7 @@ theorem abs_tendsto_atTop (hdeg : 0 < P.degree) : Tendsto (fun x => abs <| eval
 
 /- warning: polynomial.abs_is_bounded_under_iff -> Polynomial.abs_isBoundedUnder_iff is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.IsBoundedUnder.{u1, u1} π•œ π•œ (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P))) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.IsBoundedUnder.{u1, u1} π•œ π•œ (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P))) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.IsBoundedUnder.{u1, u1} π•œ π•œ (fun (x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.587 : π•œ) (x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.589 : π•œ) => LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.587 x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.589) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P))) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
 Case conversion may be inaccurate. Consider using '#align polynomial.abs_is_bounded_under_iff Polynomial.abs_isBoundedUnder_iffβ‚“'. -/
@@ -156,7 +156,7 @@ theorem abs_isBoundedUnder_iff :
 
 /- warning: polynomial.abs_tendsto_at_top_iff -> Polynomial.abs_tendsto_atTop_iff is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P))
 Case conversion may be inaccurate. Consider using '#align polynomial.abs_tendsto_at_top_iff Polynomial.abs_tendsto_atTop_iffβ‚“'. -/
@@ -165,7 +165,12 @@ theorem abs_tendsto_atTop_iff : Tendsto (fun x => abs <| eval x P) atTop atTop 
     abs_tendsto_atTop P⟩
 #align polynomial.abs_tendsto_at_top_iff Polynomial.abs_tendsto_atTop_iff
 
-#print Polynomial.tendsto_nhds_iff /-
+/- warning: polynomial.tendsto_nhds_iff -> Polynomial.tendsto_nhds_iff is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))] {c : π•œ}, Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) c)) (And (Eq.{succ u1} π•œ (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) c) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))] {c : π•œ}, Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) c)) (And (Eq.{succ u1} π•œ (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) c) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_nhds_iff Polynomial.tendsto_nhds_iffβ‚“'. -/
 theorem tendsto_nhds_iff {c : π•œ} :
     Tendsto (fun x => eval x P) atTop (𝓝 c) ↔ P.leadingCoeff = c ∧ P.degree ≀ 0 :=
   by
@@ -181,7 +186,6 @@ theorem tendsto_nhds_iff {c : π•œ} :
     simp only [h.1, this, pow_zero, mul_one]
     exact tendsto_const_nhds
 #align polynomial.tendsto_nhds_iff Polynomial.tendsto_nhds_iff
--/
 
 end PolynomialAtTop
 
@@ -209,7 +213,7 @@ theorem isEquivalent_atTop_div :
 
 /- warning: polynomial.div_tendsto_zero_of_degree_lt -> Polynomial.div_tendsto_zero_of_degree_lt is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))))
 Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_zero_of_degree_lt Polynomial.div_tendsto_zero_of_degree_ltβ‚“'. -/
@@ -227,7 +231,7 @@ theorem div_tendsto_zero_of_degree_lt (hdeg : P.degree < Q.degree) :
 
 /- warning: polynomial.div_tendsto_zero_iff_degree_lt -> Polynomial.div_tendsto_zero_iff_degree_lt is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (Ne.{succ u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)))
 Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_zero_iff_degree_lt Polynomial.div_tendsto_zero_iff_degree_ltβ‚“'. -/
@@ -265,7 +269,7 @@ theorem div_tendsto_leadingCoeff_div_of_degree_eq (hdeg : P.degree = Q.degree) :
 
 /- warning: polynomial.div_tendsto_at_top_of_degree_gt' -> Polynomial.div_tendsto_atTop_of_degree_gt' is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toLT.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toHasLt.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toLT.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
 Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_top_of_degree_gt' Polynomial.div_tendsto_atTop_of_degree_gt'β‚“'. -/
@@ -286,7 +290,7 @@ theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
 
 /- warning: polynomial.div_tendsto_at_top_of_degree_gt -> Polynomial.div_tendsto_atTop_of_degree_gt is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
 Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_top_of_degree_gt Polynomial.div_tendsto_atTop_of_degree_gtβ‚“'. -/
@@ -302,7 +306,7 @@ theorem div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰ 
 
 /- warning: polynomial.div_tendsto_at_bot_of_degree_gt' -> Polynomial.div_tendsto_atBot_of_degree_gt' is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toLT.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toHasLt.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toLT.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
 Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_bot_of_degree_gt' Polynomial.div_tendsto_atBot_of_degree_gt'β‚“'. -/
@@ -323,7 +327,7 @@ theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
 
 /- warning: polynomial.div_tendsto_at_bot_of_degree_gt -> Polynomial.div_tendsto_atBot_of_degree_gt is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (LE.le.{u1} π•œ (Preorder.toHasLe.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
 Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_bot_of_degree_gt Polynomial.div_tendsto_atBot_of_degree_gtβ‚“'. -/
@@ -339,7 +343,7 @@ theorem div_tendsto_atBot_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰ 
 
 /- warning: polynomial.abs_div_tendsto_at_top_of_degree_gt -> Polynomial.abs_div_tendsto_atTop_of_degree_gt is a dubious translation:
 lean 3 declaration is
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toHasLt.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
 but is expected to have type
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
 Case conversion may be inaccurate. Consider using '#align polynomial.abs_div_tendsto_at_top_of_degree_gt Polynomial.abs_div_tendsto_atTop_of_degree_gtβ‚“'. -/
@@ -354,7 +358,12 @@ theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q
 
 end PolynomialDivAtTop
 
-#print Polynomial.isBigO_of_degree_le /-
+/- warning: polynomial.is_O_of_degree_le -> Polynomial.isBigO_of_degree_le is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LE.le.{0} (WithBot.{0} Nat) (Preorder.toHasLe.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) -> (Asymptotics.IsBigO.{u1, u1, u1} π•œ π•œ π•œ (NormedLinearOrderedField.toHasNorm.{u1} π•œ _inst_1) (NormedLinearOrderedField.toHasNorm.{u1} π•œ _inst_1) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) -> (Asymptotics.IsBigO.{u1, u1, u1} π•œ π•œ π•œ (NormedLinearOrderedField.toNorm.{u1} π•œ _inst_1) (NormedLinearOrderedField.toNorm.{u1} π•œ _inst_1) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q))
+Case conversion may be inaccurate. Consider using '#align polynomial.is_O_of_degree_le Polynomial.isBigO_of_degree_leβ‚“'. -/
 theorem isBigO_of_degree_le (h : P.degree ≀ Q.degree) :
     (fun x => eval x P) =O[atTop] fun x => eval x Q :=
   by
@@ -367,7 +376,6 @@ theorem isBigO_of_degree_le (h : P.degree ≀ Q.degree) :
     Β· exact is_O_of_div_tendsto_nhds hPQ 0 (div_tendsto_zero_of_degree_lt P Q h)
     Β· exact is_O_of_div_tendsto_nhds hPQ _ (div_tendsto_leading_coeff_div_of_degree_eq P Q h)
 #align polynomial.is_O_of_degree_le Polynomial.isBigO_of_degree_le
--/
 
 end Polynomial
 
Diff
@@ -138,7 +138,7 @@ theorem abs_tendsto_atTop (hdeg : 0 < P.degree) : Tendsto (fun x => abs <| eval
 lean 3 declaration is
   forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.IsBoundedUnder.{u1, u1} π•œ π•œ (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P))) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))))
 but is expected to have type
-  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.IsBoundedUnder.{u1, u1} π•œ π•œ (fun (x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.593 : π•œ) (x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.595 : π•œ) => LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.593 x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.595) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P))) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.IsBoundedUnder.{u1, u1} π•œ π•œ (fun (x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.587 : π•œ) (x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.589 : π•œ) => LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.587 x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.589) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P))) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
 Case conversion may be inaccurate. Consider using '#align polynomial.abs_is_bounded_under_iff Polynomial.abs_isBoundedUnder_iffβ‚“'. -/
 theorem abs_isBoundedUnder_iff :
     (IsBoundedUnder (Β· ≀ Β·) atTop fun x => |eval x P|) ↔ P.degree ≀ 0 :=
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker, Devon Tuma
 
 ! This file was ported from Lean 3 source module analysis.special_functions.polynomials
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
+! leanprover-community/mathlib commit ce38d86c0b2d427ce208c3cee3159cb421d2b3c4
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.Data.Polynomial.RingDivision
 /-!
 # Limits related to polynomial and rational functions
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 This file proves basic facts about limits of polynomial and rationals functions.
 The main result is `eval_is_equivalent_at_top_eval_lead`, which states that for
 any polynomial `P` of degree `n` with leading coefficient `a`, the corresponding
Diff
@@ -34,14 +34,22 @@ namespace Polynomial
 
 variable {π•œ : Type _} [NormedLinearOrderedField π•œ] (P Q : π•œ[X])
 
+#print Polynomial.eventually_no_roots /-
 theorem eventually_no_roots (hP : P β‰  0) : βˆ€αΆ  x in atTop, Β¬P.IsRoot x :=
   atTop_le_cofinite <| (finite_setOf_isRoot hP).compl_mem_cofinite
 #align polynomial.eventually_no_roots Polynomial.eventually_no_roots
+-/
 
 variable [OrderTopology π•œ]
 
 section PolynomialAtTop
 
+/- warning: polynomial.is_equivalent_at_top_lead -> Polynomial.isEquivalent_atTop_lead is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Asymptotics.IsEquivalent.{u1, u1} π•œ π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (fun (x : π•œ) => HMul.hMul.{u1, u1, u1} π•œ π•œ π•œ (instHMul.{u1} π•œ (Distrib.toHasMul.{u1} π•œ (Ring.toDistrib.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (HPow.hPow.{u1, 0, u1} π•œ Nat π•œ (instHPow.{u1, 0} π•œ Nat (Monoid.Pow.{u1} π•œ (Ring.toMonoid.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) x (Polynomial.natDegree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Asymptotics.IsEquivalent.{u1, u1} π•œ π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (fun (x : π•œ) => HMul.hMul.{u1, u1, u1} π•œ π•œ π•œ (instHMul.{u1} π•œ (NonUnitalNonAssocRing.toMul.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (HPow.hPow.{u1, 0, u1} π•œ Nat π•œ (instHPow.{u1, 0} π•œ Nat (Monoid.Pow.{u1} π•œ (MonoidWithZero.toMonoid.{u1} π•œ (Semiring.toMonoidWithZero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) x (Polynomial.natDegree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)))
+Case conversion may be inaccurate. Consider using '#align polynomial.is_equivalent_at_top_lead Polynomial.isEquivalent_atTop_leadβ‚“'. -/
 theorem isEquivalent_atTop_lead :
     (fun x => eval x P) ~[atTop] fun x => P.leadingCoeff * x ^ P.natDegree :=
   by
@@ -58,6 +66,12 @@ theorem isEquivalent_atTop_lead :
         is_equivalent.refl
 #align polynomial.is_equivalent_at_top_lead Polynomial.isEquivalent_atTop_lead
 
+/- warning: polynomial.tendsto_at_top_of_leading_coeff_nonneg -> Polynomial.tendsto_atTop_of_leadingCoeff_nonneg is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_at_top_of_leading_coeff_nonneg Polynomial.tendsto_atTop_of_leadingCoeff_nonnegβ‚“'. -/
 theorem tendsto_atTop_of_leadingCoeff_nonneg (hdeg : 0 < P.degree) (hnng : 0 ≀ P.leadingCoeff) :
     Tendsto (fun x => eval x P) atTop atTop :=
   P.isEquivalent_atTop_lead.symm.tendsto_atTop <|
@@ -65,6 +79,12 @@ theorem tendsto_atTop_of_leadingCoeff_nonneg (hdeg : 0 < P.degree) (hnng : 0 ≀
       hnng.lt_of_ne' <| leadingCoeff_ne_zero.mpr <| ne_zero_of_degree_gt hdeg
 #align polynomial.tendsto_at_top_of_leading_coeff_nonneg Polynomial.tendsto_atTop_of_leadingCoeff_nonneg
 
+/- warning: polynomial.tendsto_at_top_iff_leading_coeff_nonneg -> Polynomial.tendsto_atTop_iff_leadingCoeff_nonneg is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)))
+Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_at_top_iff_leading_coeff_nonneg Polynomial.tendsto_atTop_iff_leadingCoeff_nonnegβ‚“'. -/
 theorem tendsto_atTop_iff_leadingCoeff_nonneg :
     Tendsto (fun x => eval x P) atTop atTop ↔ 0 < P.degree ∧ 0 ≀ P.leadingCoeff :=
   by
@@ -75,17 +95,35 @@ theorem tendsto_atTop_iff_leadingCoeff_nonneg :
   exact ⟨this.1, this.2.le⟩
 #align polynomial.tendsto_at_top_iff_leading_coeff_nonneg Polynomial.tendsto_atTop_iff_leadingCoeff_nonneg
 
+/- warning: polynomial.tendsto_at_bot_iff_leading_coeff_nonpos -> Polynomial.tendsto_atBot_iff_leadingCoeff_nonpos is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (And (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_at_bot_iff_leading_coeff_nonpos Polynomial.tendsto_atBot_iff_leadingCoeff_nonposβ‚“'. -/
 theorem tendsto_atBot_iff_leadingCoeff_nonpos :
     Tendsto (fun x => eval x P) atTop atBot ↔ 0 < P.degree ∧ P.leadingCoeff ≀ 0 := by
   simp only [← tendsto_neg_at_top_iff, ← eval_neg, tendsto_at_top_iff_leading_coeff_nonneg,
     degree_neg, leading_coeff_neg, neg_nonneg]
 #align polynomial.tendsto_at_bot_iff_leading_coeff_nonpos Polynomial.tendsto_atBot_iff_leadingCoeff_nonpos
 
+/- warning: polynomial.tendsto_at_bot_of_leading_coeff_nonpos -> Polynomial.tendsto_atBot_of_leadingCoeff_nonpos is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.tendsto_at_bot_of_leading_coeff_nonpos Polynomial.tendsto_atBot_of_leadingCoeff_nonposβ‚“'. -/
 theorem tendsto_atBot_of_leadingCoeff_nonpos (hdeg : 0 < P.degree) (hnps : P.leadingCoeff ≀ 0) :
     Tendsto (fun x => eval x P) atTop atBot :=
   P.tendsto_atBot_iff_leadingCoeff_nonpos.2 ⟨hdeg, hnps⟩
 #align polynomial.tendsto_at_bot_of_leading_coeff_nonpos Polynomial.tendsto_atBot_of_leadingCoeff_nonpos
 
+/- warning: polynomial.abs_tendsto_at_top -> Polynomial.abs_tendsto_atTop is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.abs_tendsto_at_top Polynomial.abs_tendsto_atTopβ‚“'. -/
 theorem abs_tendsto_atTop (hdeg : 0 < P.degree) : Tendsto (fun x => abs <| eval x P) atTop atTop :=
   by
   cases' le_total 0 P.leading_coeff with hP hP
@@ -93,6 +131,12 @@ theorem abs_tendsto_atTop (hdeg : 0 < P.degree) : Tendsto (fun x => abs <| eval
   Β· exact tendsto_abs_at_bot_at_top.comp (P.tendsto_at_bot_of_leading_coeff_nonpos hdeg hP)
 #align polynomial.abs_tendsto_at_top Polynomial.abs_tendsto_atTop
 
+/- warning: polynomial.abs_is_bounded_under_iff -> Polynomial.abs_isBoundedUnder_iff is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.IsBoundedUnder.{u1, u1} π•œ π•œ (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P))) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.IsBoundedUnder.{u1, u1} π•œ π•œ (fun (x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.593 : π•œ) (x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.595 : π•œ) => LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.593 x._@.Mathlib.Analysis.SpecialFunctions.Polynomials._hyg.595) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P))) (LE.le.{0} (WithBot.{0} Nat) (Preorder.toLE.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))))
+Case conversion may be inaccurate. Consider using '#align polynomial.abs_is_bounded_under_iff Polynomial.abs_isBoundedUnder_iffβ‚“'. -/
 theorem abs_isBoundedUnder_iff :
     (IsBoundedUnder (Β· ≀ Β·) atTop fun x => |eval x P|) ↔ P.degree ≀ 0 :=
   by
@@ -107,11 +151,18 @@ theorem abs_isBoundedUnder_iff :
   exact not_is_bounded_under_of_tendsto_at_top (abs_tendsto_at_top P h)
 #align polynomial.abs_is_bounded_under_iff Polynomial.abs_isBoundedUnder_iff
 
+/- warning: polynomial.abs_tendsto_at_top_iff -> Polynomial.abs_tendsto_atTop_iff is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (OfNat.mk.{0} (WithBot.{0} Nat) 0 (Zero.zero.{0} (WithBot.{0} Nat) (WithBot.hasZero.{0} Nat Nat.hasZero)))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (OfNat.ofNat.{0} (WithBot.{0} Nat) 0 (Zero.toOfNat0.{0} (WithBot.{0} Nat) (WithBot.zero.{0} Nat (LinearOrderedCommMonoidWithZero.toZero.{0} Nat Nat.linearOrderedCommMonoidWithZero)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P))
+Case conversion may be inaccurate. Consider using '#align polynomial.abs_tendsto_at_top_iff Polynomial.abs_tendsto_atTop_iffβ‚“'. -/
 theorem abs_tendsto_atTop_iff : Tendsto (fun x => abs <| eval x P) atTop atTop ↔ 0 < P.degree :=
   ⟨fun h => not_le.mp (mt (abs_isBoundedUnder_iff P).mpr (not_isBoundedUnder_of_tendsto_atTop h)),
     abs_tendsto_atTop P⟩
 #align polynomial.abs_tendsto_at_top_iff Polynomial.abs_tendsto_atTop_iff
 
+#print Polynomial.tendsto_nhds_iff /-
 theorem tendsto_nhds_iff {c : π•œ} :
     Tendsto (fun x => eval x P) atTop (𝓝 c) ↔ P.leadingCoeff = c ∧ P.degree ≀ 0 :=
   by
@@ -127,11 +178,18 @@ theorem tendsto_nhds_iff {c : π•œ} :
     simp only [h.1, this, pow_zero, mul_one]
     exact tendsto_const_nhds
 #align polynomial.tendsto_nhds_iff Polynomial.tendsto_nhds_iff
+-/
 
 end PolynomialAtTop
 
 section PolynomialDivAtTop
 
+/- warning: polynomial.is_equivalent_at_top_div -> Polynomial.isEquivalent_atTop_div is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], Asymptotics.IsEquivalent.{u1, u1} π•œ π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (fun (x : π•œ) => HMul.hMul.{u1, u1, u1} π•œ π•œ π•œ (instHMul.{u1} π•œ (Distrib.toHasMul.{u1} π•œ (Ring.toDistrib.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) (HPow.hPow.{u1, 0, u1} π•œ Int π•œ (instHPow.{u1, 0} π•œ Int (DivInvMonoid.Pow.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.hasSub) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCβ‚“.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) (Polynomial.natDegree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Int (HasLiftT.mk.{1, 1} Nat Int (CoeTCβ‚“.coe.{1, 1} Nat Int (coeBase.{1, 1} Nat Int Int.hasCoe))) (Polynomial.natDegree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], Asymptotics.IsEquivalent.{u1, u1} π•œ π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (fun (x : π•œ) => HMul.hMul.{u1, u1, u1} π•œ π•œ π•œ (instHMul.{u1} π•œ (NonUnitalNonAssocRing.toMul.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) (HPow.hPow.{u1, 0, u1} π•œ Int π•œ (instHPow.{u1, 0} π•œ Int (DivInvMonoid.Pow.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) x (HSub.hSub.{0, 0, 0} Int Int Int (instHSub.{0} Int Int.instSubInt) (Nat.cast.{0} Int instNatCastInt (Polynomial.natDegree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) (Nat.cast.{0} Int instNatCastInt (Polynomial.natDegree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)))))
+Case conversion may be inaccurate. Consider using '#align polynomial.is_equivalent_at_top_div Polynomial.isEquivalent_atTop_divβ‚“'. -/
 theorem isEquivalent_atTop_div :
     (fun x => eval x P / eval x Q) ~[atTop] fun x =>
       P.leadingCoeff / Q.leadingCoeff * x ^ (P.natDegree - Q.natDegree : β„€) :=
@@ -146,6 +204,12 @@ theorem isEquivalent_atTop_div :
   simp [← div_mul_div_comm, hP, hQ, zpow_subβ‚€ hx.ne.symm]
 #align polynomial.is_equivalent_at_top_div Polynomial.isEquivalent_atTop_div
 
+/- warning: polynomial.div_tendsto_zero_of_degree_lt -> Polynomial.div_tendsto_zero_of_degree_lt is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_zero_of_degree_lt Polynomial.div_tendsto_zero_of_degree_ltβ‚“'. -/
 theorem div_tendsto_zero_of_degree_lt (hdeg : P.degree < Q.degree) :
     Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) :=
   by
@@ -158,6 +222,12 @@ theorem div_tendsto_zero_of_degree_lt (hdeg : P.degree < Q.degree) :
   linarith
 #align polynomial.div_tendsto_zero_of_degree_lt Polynomial.div_tendsto_zero_of_degree_lt
 
+/- warning: polynomial.div_tendsto_zero_iff_degree_lt -> Polynomial.div_tendsto_zero_iff_degree_lt is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (Ne.{succ u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Iff (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))) (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)))
+Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_zero_iff_degree_lt Polynomial.div_tendsto_zero_iff_degree_ltβ‚“'. -/
 theorem div_tendsto_zero_iff_degree_lt (hQ : Q β‰  0) :
     Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 0) ↔ P.degree < Q.degree :=
   by
@@ -176,6 +246,12 @@ theorem div_tendsto_zero_iff_degree_lt (hQ : Q β‰  0) :
       exact degree_lt_degree h.1
 #align polynomial.div_tendsto_zero_iff_degree_lt Polynomial.div_tendsto_zero_iff_degree_lt
 
+/- warning: polynomial.div_tendsto_leading_coeff_div_of_degree_eq -> Polynomial.div_tendsto_leadingCoeff_div_of_degree_eq is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (Eq.{1} (WithBot.{0} Nat) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (nhds.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q))))
+Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_leading_coeff_div_of_degree_eq Polynomial.div_tendsto_leadingCoeff_div_of_degree_eqβ‚“'. -/
 theorem div_tendsto_leadingCoeff_div_of_degree_eq (hdeg : P.degree = Q.degree) :
     Tendsto (fun x => eval x P / eval x Q) atTop (𝓝 <| P.leadingCoeff / Q.leadingCoeff) :=
   by
@@ -184,6 +260,12 @@ theorem div_tendsto_leadingCoeff_div_of_degree_eq (hdeg : P.degree = Q.degree) :
   simp [tendsto_const_nhds]
 #align polynomial.div_tendsto_leading_coeff_div_of_degree_eq Polynomial.div_tendsto_leadingCoeff_div_of_degree_eq
 
+/- warning: polynomial.div_tendsto_at_top_of_degree_gt' -> Polynomial.div_tendsto_atTop_of_degree_gt' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toLT.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toLT.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_top_of_degree_gt' Polynomial.div_tendsto_atTop_of_degree_gt'β‚“'. -/
 theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
     (hpos : 0 < P.leadingCoeff / Q.leadingCoeff) :
     Tendsto (fun x => eval x P / eval x Q) atTop atTop :=
@@ -199,6 +281,12 @@ theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
   linarith
 #align polynomial.div_tendsto_at_top_of_degree_gt' Polynomial.div_tendsto_atTop_of_degree_gt'
 
+/- warning: polynomial.div_tendsto_at_top_of_degree_gt -> Polynomial.div_tendsto_atTop_of_degree_gt is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_top_of_degree_gt Polynomial.div_tendsto_atTop_of_degree_gtβ‚“'. -/
 theorem div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0)
     (hnng : 0 ≀ P.leadingCoeff / Q.leadingCoeff) :
     Tendsto (fun x => eval x P / eval x Q) atTop atTop :=
@@ -209,6 +297,12 @@ theorem div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰ 
   div_tendsto_atTop_of_degree_gt' P Q hdeg ratio_pos
 #align polynomial.div_tendsto_at_top_of_degree_gt Polynomial.div_tendsto_atTop_of_degree_gt
 
+/- warning: polynomial.div_tendsto_at_bot_of_degree_gt' -> Polynomial.div_tendsto_atBot_of_degree_gt' is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toLT.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (LT.lt.{u1} π•œ (Preorder.toLT.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_bot_of_degree_gt' Polynomial.div_tendsto_atBot_of_degree_gt'β‚“'. -/
 theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
     (hneg : P.leadingCoeff / Q.leadingCoeff < 0) :
     Tendsto (fun x => eval x P / eval x Q) atTop atBot :=
@@ -224,6 +318,12 @@ theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
   linarith
 #align polynomial.div_tendsto_at_bot_of_degree_gt' Polynomial.div_tendsto_atBot_of_degree_gt'
 
+/- warning: polynomial.div_tendsto_at_bot_of_degree_gt -> Polynomial.div_tendsto_atBot_of_degree_gt is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (OfNat.mk.{u1} π•œ 0 (Zero.zero.{u1} π•œ (MulZeroClass.toHasZero.{u1} π•œ (NonUnitalNonAssocSemiring.toMulZeroClass.{u1} π•œ (NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring.{u1} π•œ (NonAssocRing.toNonUnitalNonAssocRing.{u1} π•œ (Ring.toNonAssocRing.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (LE.le.{u1} π•œ (Preorder.toLE.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P) (Polynomial.leadingCoeff.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q)) (OfNat.ofNat.{u1} π•œ 0 (Zero.toOfNat0.{u1} π•œ (CommMonoidWithZero.toZero.{u1} π•œ (CommGroupWithZero.toCommMonoidWithZero.{u1} π•œ (Semifield.toCommGroupWithZero.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q)) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atBot.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.div_tendsto_at_bot_of_degree_gt Polynomial.div_tendsto_atBot_of_degree_gtβ‚“'. -/
 theorem div_tendsto_atBot_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0)
     (hnps : P.leadingCoeff / Q.leadingCoeff ≀ 0) :
     Tendsto (fun x => eval x P / eval x Q) atTop atBot :=
@@ -234,6 +334,12 @@ theorem div_tendsto_atBot_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰ 
   div_tendsto_atBot_of_degree_gt' P Q hdeg ratio_neg
 #align polynomial.div_tendsto_at_bot_of_degree_gt Polynomial.div_tendsto_atBot_of_degree_gt
 
+/- warning: polynomial.abs_div_tendsto_at_top_of_degree_gt -> Polynomial.abs_div_tendsto_atTop_of_degree_gt is a dubious translation:
+lean 3 declaration is
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSemiNormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (OrderedCancelAddCommMonoid.toPartialOrder.{0} Nat (StrictOrderedSemiring.toOrderedCancelAddCommMonoid.{0} Nat Nat.strictOrderedSemiring))))) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (OfNat.mk.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) 0 (Zero.zero.{u1} (Polynomial.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (SubNegMonoid.toHasNeg.{u1} π•œ (AddGroup.toSubNegMonoid.{u1} π•œ (NormedAddGroup.toAddGroup.{u1} π•œ (NormedAddCommGroup.toNormedAddGroup.{u1} π•œ (NonUnitalNormedRing.toNormedAddCommGroup.{u1} π•œ (NormedRing.toNonUnitalNormedRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))))) (SemilatticeSup.toHasSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (LinearOrder.toLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (DivInvMonoid.toHasDiv.{u1} π•œ (DivisionRing.toDivInvMonoid.{u1} π•œ (NormedDivisionRing.toDivisionRing.{u1} π•œ (NormedField.toNormedDivisionRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1)))))) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (Ring.toSemiring.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) x Q))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (OrderedAddCommGroup.toPartialOrder.{u1} π•œ (StrictOrderedRing.toOrderedAddCommGroup.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))))))
+but is expected to have type
+  forall {π•œ : Type.{u1}} [_inst_1 : NormedLinearOrderedField.{u1} π•œ] (P : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Q : Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) [_inst_2 : OrderTopology.{u1} π•œ (UniformSpace.toTopologicalSpace.{u1} π•œ (PseudoMetricSpace.toUniformSpace.{u1} π•œ (SeminormedRing.toPseudoMetricSpace.{u1} π•œ (SeminormedCommRing.toSeminormedRing.{u1} π•œ (NormedCommRing.toSeminormedCommRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))))) (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))], (LT.lt.{0} (WithBot.{0} Nat) (Preorder.toLT.{0} (WithBot.{0} Nat) (WithBot.preorder.{0} Nat (PartialOrder.toPreorder.{0} Nat (StrictOrderedSemiring.toPartialOrder.{0} Nat Nat.strictOrderedSemiring)))) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) Q) (Polynomial.degree.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) P)) -> (Ne.{succ u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) Q (OfNat.ofNat.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) 0 (Zero.toOfNat0.{u1} (Polynomial.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1)))))) (Polynomial.zero.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) -> (Filter.Tendsto.{u1, u1} π•œ π•œ (fun (x : π•œ) => Abs.abs.{u1} π•œ (Neg.toHasAbs.{u1} π•œ (Ring.toNeg.{u1} π•œ (NormedRing.toRing.{u1} π•œ (NormedCommRing.toNormedRing.{u1} π•œ (NormedField.toNormedCommRing.{u1} π•œ (NormedLinearOrderedField.toNormedField.{u1} π•œ _inst_1))))) (SemilatticeSup.toSup.{u1} π•œ (Lattice.toSemilatticeSup.{u1} π•œ (DistribLattice.toLattice.{u1} π•œ (instDistribLattice.{u1} π•œ (LinearOrderedRing.toLinearOrder.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))) (HDiv.hDiv.{u1, u1, u1} π•œ π•œ π•œ (instHDiv.{u1} π•œ (LinearOrderedField.toDiv.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x P) (Polynomial.eval.{u1} π•œ (DivisionSemiring.toSemiring.{u1} π•œ (Semifield.toDivisionSemiring.{u1} π•œ (LinearOrderedSemifield.toSemifield.{u1} π•œ (LinearOrderedField.toLinearOrderedSemifield.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))) x Q))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))) (Filter.atTop.{u1} π•œ (PartialOrder.toPreorder.{u1} π•œ (StrictOrderedRing.toPartialOrder.{u1} π•œ (LinearOrderedRing.toStrictOrderedRing.{u1} π•œ (LinearOrderedCommRing.toLinearOrderedRing.{u1} π•œ (LinearOrderedField.toLinearOrderedCommRing.{u1} π•œ (NormedLinearOrderedField.toLinearOrderedField.{u1} π•œ _inst_1))))))))
+Case conversion may be inaccurate. Consider using '#align polynomial.abs_div_tendsto_at_top_of_degree_gt Polynomial.abs_div_tendsto_atTop_of_degree_gtβ‚“'. -/
 theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0) :
     Tendsto (fun x => |eval x P / eval x Q|) atTop atTop :=
   by
@@ -245,6 +351,7 @@ theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q
 
 end PolynomialDivAtTop
 
+#print Polynomial.isBigO_of_degree_le /-
 theorem isBigO_of_degree_le (h : P.degree ≀ Q.degree) :
     (fun x => eval x P) =O[atTop] fun x => eval x Q :=
   by
@@ -257,6 +364,7 @@ theorem isBigO_of_degree_le (h : P.degree ≀ Q.degree) :
     Β· exact is_O_of_div_tendsto_nhds hPQ 0 (div_tendsto_zero_of_degree_lt P Q h)
     Β· exact is_O_of_div_tendsto_nhds hPQ _ (div_tendsto_leading_coeff_div_of_degree_eq P Q h)
 #align polynomial.is_O_of_degree_le Polynomial.isBigO_of_degree_le
+-/
 
 end Polynomial
 
Diff
@@ -245,7 +245,7 @@ theorem abs_div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q
 
 end PolynomialDivAtTop
 
-theorem isO_of_degree_le (h : P.degree ≀ Q.degree) :
+theorem isBigO_of_degree_le (h : P.degree ≀ Q.degree) :
     (fun x => eval x P) =O[atTop] fun x => eval x Q :=
   by
   by_cases hp : P = 0
@@ -256,7 +256,7 @@ theorem isO_of_degree_le (h : P.degree ≀ Q.degree) :
     cases' le_iff_lt_or_eq.mp h with h h
     Β· exact is_O_of_div_tendsto_nhds hPQ 0 (div_tendsto_zero_of_degree_lt P Q h)
     Β· exact is_O_of_div_tendsto_nhds hPQ _ (div_tendsto_leading_coeff_div_of_degree_eq P Q h)
-#align polynomial.is_O_of_degree_le Polynomial.isO_of_degree_le
+#align polynomial.is_O_of_degree_le Polynomial.isBigO_of_degree_le
 
 end Polynomial
 
Diff
@@ -118,7 +118,7 @@ theorem tendsto_nhds_iff {c : π•œ} :
   refine' ⟨fun h => _, fun h => _⟩
   Β· have := P.is_equivalent_at_top_lead.tendsto_nhds h
     by_cases hP : P.leading_coeff = 0
-    Β· simp only [hP, zero_mul, tendsto_const_nhds_iff] at this
+    Β· simp only [hP, MulZeroClass.zero_mul, tendsto_const_nhds_iff] at this
       refine' ⟨trans hP this, by simp [leading_coeff_eq_zero.1 hP]⟩
     Β· rw [tendsto_const_mul_pow_nhds_iff hP, nat_degree_eq_zero_iff_degree_le_zero] at this
       exact this.symm
@@ -153,7 +153,7 @@ theorem div_tendsto_zero_of_degree_lt (hdeg : P.degree < Q.degree) :
   Β· simp [hP, tendsto_const_nhds]
   rw [← nat_degree_lt_nat_degree_iff hP] at hdeg
   refine' (is_equivalent_at_top_div P Q).symm.tendsto_nhds _
-  rw [← mul_zero]
+  rw [← MulZeroClass.mul_zero]
   refine' (tendsto_zpow_atTop_zero _).const_mul _
   linarith
 #align polynomial.div_tendsto_zero_of_degree_lt Polynomial.div_tendsto_zero_of_degree_lt

Changes in mathlib4

mathlib3
mathlib4
move(Polynomial): Move out of Data (#11751)

Polynomial and MvPolynomial are algebraic objects, hence should be under Algebra (or at least not under Data)

Diff
@@ -3,9 +3,9 @@ Copyright (c) 2020 Anatole Dedecker. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker, Devon Tuma
 -/
+import Mathlib.Algebra.Polynomial.RingDivision
 import Mathlib.Analysis.Asymptotics.AsymptoticEquivalent
 import Mathlib.Analysis.Asymptotics.SpecificAsymptotics
-import Mathlib.Data.Polynomial.RingDivision
 
 #align_import analysis.special_functions.polynomials from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
 
refactor: optimize proofs with omega (#11093)

I ran tryAtEachStep on all files under Mathlib to find all locations where omega succeeds. For each that was a linarith without an only, I tried replacing it with omega, and I verified that elaboration time got smaller. (In almost all cases, there was a noticeable speedup.) I also replaced some slow aesops along the way.

Diff
@@ -142,7 +142,7 @@ theorem div_tendsto_zero_of_degree_lt (hdeg : P.degree < Q.degree) :
   refine' (isEquivalent_atTop_div P Q).symm.tendsto_nhds _
   rw [← mul_zero]
   refine' (tendsto_zpow_atTop_zero _).const_mul _
-  linarith
+  omega
 #align polynomial.div_tendsto_zero_of_degree_lt Polynomial.div_tendsto_zero_of_degree_lt
 
 theorem div_tendsto_zero_iff_degree_lt (hQ : Q β‰  0) :
@@ -179,7 +179,7 @@ theorem div_tendsto_atTop_of_degree_gt' (hdeg : Q.degree < P.degree)
   refine' (isEquivalent_atTop_div P Q).symm.tendsto_atTop _
   apply Tendsto.const_mul_atTop hpos
   apply tendsto_zpow_atTop_atTop
-  linarith
+  omega
 #align polynomial.div_tendsto_at_top_of_degree_gt' Polynomial.div_tendsto_atTop_of_degree_gt'
 
 theorem div_tendsto_atTop_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0)
@@ -202,7 +202,7 @@ theorem div_tendsto_atBot_of_degree_gt' (hdeg : Q.degree < P.degree)
   refine' (isEquivalent_atTop_div P Q).symm.tendsto_atBot _
   apply Tendsto.neg_const_mul_atTop hneg
   apply tendsto_zpow_atTop_atTop
-  linarith
+  omega
 #align polynomial.div_tendsto_at_bot_of_degree_gt' Polynomial.div_tendsto_atBot_of_degree_gt'
 
 theorem div_tendsto_atBot_of_degree_gt (hdeg : Q.degree < P.degree) (hQ : Q β‰  0)
chore: remove terminal, terminal refines (#10762)

I replaced a few "terminal" refine/refine's with exact.

The strategy was very simple-minded: essentially any refine whose following line had smaller indentation got replaced by exact and then I cleaned up the mess.

This PR certainly leaves some further terminal refines, but maybe the current change is beneficial.

Diff
@@ -108,7 +108,7 @@ theorem tendsto_nhds_iff {c : π•œ} :
   Β· have := P.isEquivalent_atTop_lead.tendsto_nhds h
     by_cases hP : P.leadingCoeff = 0
     Β· simp only [hP, zero_mul, tendsto_const_nhds_iff] at this
-      refine' ⟨_root_.trans hP this, by simp [leadingCoeff_eq_zero.1 hP]⟩
+      exact ⟨_root_.trans hP this, by simp [leadingCoeff_eq_zero.1 hP]⟩
     Β· rw [tendsto_const_mul_pow_nhds_iff hP, natDegree_eq_zero_iff_degree_le_zero] at this
       exact this.symm
   Β· refine' P.isEquivalent_atTop_lead.symm.tendsto_nhds _
chore: remove uses of cases' (#9171)

I literally went through and regex'd some uses of cases', replacing them with rcases; this is meant to be a low effort PR as I hope that tools can do this in the future.

rcases is an easier replacement than cases, though with better tools we could in future do a second pass converting simple rcases added here (and existing ones) to cases.

Diff
@@ -83,7 +83,7 @@ theorem tendsto_atBot_of_leadingCoeff_nonpos (hdeg : 0 < P.degree) (hnps : P.lea
 
 theorem abs_tendsto_atTop (hdeg : 0 < P.degree) :
     Tendsto (fun x => abs <| eval x P) atTop atTop := by
-  cases' le_total 0 P.leadingCoeff with hP hP
+  rcases le_total 0 P.leadingCoeff with hP | hP
   Β· exact tendsto_abs_atTop_atTop.comp (P.tendsto_atTop_of_leadingCoeff_nonneg hdeg hP)
   Β· exact tendsto_abs_atBot_atTop.comp (P.tendsto_atBot_of_leadingCoeff_nonpos hdeg hP)
 #align polynomial.abs_tendsto_at_top Polynomial.abs_tendsto_atTop
chore: drop MulZeroClass. in mul_zero/zero_mul (#6682)

Search&replace MulZeroClass.mul_zero -> mul_zero, MulZeroClass.zero_mul -> zero_mul.

These were introduced by Mathport, as the full name of mul_zero is actually MulZeroClass.mul_zero (it's exported with the short name).

Diff
@@ -107,7 +107,7 @@ theorem tendsto_nhds_iff {c : π•œ} :
   refine' ⟨fun h => _, fun h => _⟩
   Β· have := P.isEquivalent_atTop_lead.tendsto_nhds h
     by_cases hP : P.leadingCoeff = 0
-    Β· simp only [hP, MulZeroClass.zero_mul, tendsto_const_nhds_iff] at this
+    Β· simp only [hP, zero_mul, tendsto_const_nhds_iff] at this
       refine' ⟨_root_.trans hP this, by simp [leadingCoeff_eq_zero.1 hP]⟩
     Β· rw [tendsto_const_mul_pow_nhds_iff hP, natDegree_eq_zero_iff_degree_le_zero] at this
       exact this.symm
@@ -140,7 +140,7 @@ theorem div_tendsto_zero_of_degree_lt (hdeg : P.degree < Q.degree) :
   Β· simp [hP, tendsto_const_nhds]
   rw [← natDegree_lt_natDegree_iff hP] at hdeg
   refine' (isEquivalent_atTop_div P Q).symm.tendsto_nhds _
-  rw [← MulZeroClass.mul_zero]
+  rw [← mul_zero]
   refine' (tendsto_zpow_atTop_zero _).const_mul _
   linarith
 #align polynomial.div_tendsto_zero_of_degree_lt Polynomial.div_tendsto_zero_of_degree_lt
chore: banish Type _ and Sort _ (#6499)

We remove all possible occurences of Type _ and Sort _ in favor of Type* and Sort*.

This has nice performance benefits.

Diff
@@ -29,7 +29,7 @@ open Asymptotics Polynomial Topology
 
 namespace Polynomial
 
-variable {π•œ : Type _} [NormedLinearOrderedField π•œ] (P Q : π•œ[X])
+variable {π•œ : Type*} [NormedLinearOrderedField π•œ] (P Q : π•œ[X])
 
 theorem eventually_no_roots (hP : P β‰  0) : βˆ€αΆ  x in atTop, Β¬P.IsRoot x :=
   atTop_le_cofinite <| (finite_setOf_isRoot hP).compl_mem_cofinite
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2020 Anatole Dedecker. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Anatole Dedecker, Devon Tuma
-
-! This file was ported from Lean 3 source module analysis.special_functions.polynomials
-! leanprover-community/mathlib commit f2ce6086713c78a7f880485f7917ea547a215982
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.Analysis.Asymptotics.AsymptoticEquivalent
 import Mathlib.Analysis.Asymptotics.SpecificAsymptotics
 import Mathlib.Data.Polynomial.RingDivision
 
+#align_import analysis.special_functions.polynomials from "leanprover-community/mathlib"@"f2ce6086713c78a7f880485f7917ea547a215982"
+
 /-!
 # Limits related to polynomial and rational functions
 
chore: reenable eta, bump to nightly 2023-05-16 (#3414)

Now that leanprover/lean4#2210 has been merged, this PR:

  • removes all the set_option synthInstance.etaExperiment true commands (and some etaExperiment% term elaborators)
  • removes many but not quite all set_option maxHeartbeats commands
  • makes various other changes required to cope with leanprover/lean4#2210.

Co-authored-by: Scott Morrison <scott.morrison@anu.edu.au> Co-authored-by: Scott Morrison <scott.morrison@gmail.com> Co-authored-by: Matthew Ballard <matt@mrb.email>

Diff
@@ -34,7 +34,6 @@ namespace Polynomial
 
 variable {π•œ : Type _} [NormedLinearOrderedField π•œ] (P Q : π•œ[X])
 
-set_option synthInstance.etaExperiment true in -- Porting note: needed to synthesize `IsDomain π•œ`
 theorem eventually_no_roots (hP : P β‰  0) : βˆ€αΆ  x in atTop, Β¬P.IsRoot x :=
   atTop_le_cofinite <| (finite_setOf_isRoot hP).compl_mem_cofinite
 #align polynomial.eventually_no_roots Polynomial.eventually_no_roots
feat: port Analysis.SpecialFunctions.Polynomials (#3478)

Dependencies 10 + 646

647 files ported (98.5%)
287014 lines ported (98.2%)
Show graph

The unported dependencies are

The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file