analysis.special_functions.trigonometric.chebyshev
⟷
Mathlib.Analysis.SpecialFunctions.Trigonometric.Chebyshev
The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(no changes)
(last sync)
mathlib commit https://github.com/leanprover-community/mathlib/commit/65a1391a0106c9204fe45bc73a039f056558cb83
@@ -5,7 +5,7 @@ Authors: Johan Commelin
-/
import Data.Complex.Exponential
import Data.Complex.Module
-import Data.Polynomial.AlgebraMap
+import Algebra.Polynomial.AlgebraMap
import RingTheory.Polynomial.Chebyshev
#align_import analysis.special_functions.trigonometric.chebyshev from "leanprover-community/mathlib"@"fe8d0ff42c3c24d789f491dc2622b6cac3d61564"
mathlib commit https://github.com/leanprover-community/mathlib/commit/ce64cd319bb6b3e82f31c2d38e79080d377be451
@@ -3,10 +3,10 @@ Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
-import Mathbin.Data.Complex.Exponential
-import Mathbin.Data.Complex.Module
-import Mathbin.Data.Polynomial.AlgebraMap
-import Mathbin.RingTheory.Polynomial.Chebyshev
+import Data.Complex.Exponential
+import Data.Complex.Module
+import Data.Polynomial.AlgebraMap
+import RingTheory.Polynomial.Chebyshev
#align_import analysis.special_functions.trigonometric.chebyshev from "leanprover-community/mathlib"@"fe8d0ff42c3c24d789f491dc2622b6cac3d61564"
mathlib commit https://github.com/leanprover-community/mathlib/commit/8ea5598db6caeddde6cb734aa179cc2408dbd345
@@ -2,17 +2,14 @@
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-
-! This file was ported from Lean 3 source module analysis.special_functions.trigonometric.chebyshev
-! leanprover-community/mathlib commit fe8d0ff42c3c24d789f491dc2622b6cac3d61564
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathbin.Data.Complex.Exponential
import Mathbin.Data.Complex.Module
import Mathbin.Data.Polynomial.AlgebraMap
import Mathbin.RingTheory.Polynomial.Chebyshev
+#align_import analysis.special_functions.trigonometric.chebyshev from "leanprover-community/mathlib"@"fe8d0ff42c3c24d789f491dc2622b6cac3d61564"
+
/-!
# Multiple angle formulas in terms of Chebyshev polynomials
mathlib commit https://github.com/leanprover-community/mathlib/commit/9fb8964792b4237dac6200193a0d533f1b3f7423
@@ -30,37 +30,49 @@ open Polynomial
variable {R A : Type _} [CommRing R] [CommRing A] [Algebra R A]
+#print Polynomial.Chebyshev.aeval_T /-
@[simp]
theorem aeval_T (x : A) (n : ℕ) : aeval x (T R n) = (T A n).eval x := by
rw [aeval_def, eval₂_eq_eval_map, map_T]
#align polynomial.chebyshev.aeval_T Polynomial.Chebyshev.aeval_T
+-/
+#print Polynomial.Chebyshev.aeval_U /-
@[simp]
theorem aeval_U (x : A) (n : ℕ) : aeval x (U R n) = (U A n).eval x := by
rw [aeval_def, eval₂_eq_eval_map, map_U]
#align polynomial.chebyshev.aeval_U Polynomial.Chebyshev.aeval_U
+-/
+#print Polynomial.Chebyshev.algebraMap_eval_T /-
@[simp]
theorem algebraMap_eval_T (x : R) (n : ℕ) :
algebraMap R A ((T R n).eval x) = (T A n).eval (algebraMap R A x) := by
rw [← aeval_algebra_map_apply_eq_algebra_map_eval, aeval_T]
#align polynomial.chebyshev.algebra_map_eval_T Polynomial.Chebyshev.algebraMap_eval_T
+-/
+#print Polynomial.Chebyshev.algebraMap_eval_U /-
@[simp]
theorem algebraMap_eval_U (x : R) (n : ℕ) :
algebraMap R A ((U R n).eval x) = (U A n).eval (algebraMap R A x) := by
rw [← aeval_algebra_map_apply_eq_algebra_map_eval, aeval_U]
#align polynomial.chebyshev.algebra_map_eval_U Polynomial.Chebyshev.algebraMap_eval_U
+-/
+#print Polynomial.Chebyshev.complex_ofReal_eval_T /-
@[simp, norm_cast]
theorem complex_ofReal_eval_T : ∀ x n, ((T ℝ n).eval x : ℂ) = (T ℂ n).eval x :=
@algebraMap_eval_T ℝ ℂ _ _ _
#align polynomial.chebyshev.complex_of_real_eval_T Polynomial.Chebyshev.complex_ofReal_eval_T
+-/
+#print Polynomial.Chebyshev.complex_ofReal_eval_U /-
@[simp, norm_cast]
theorem complex_ofReal_eval_U : ∀ x n, ((U ℝ n).eval x : ℂ) = (U ℂ n).eval x :=
@algebraMap_eval_U ℝ ℂ _ _ _
#align polynomial.chebyshev.complex_of_real_eval_U Polynomial.Chebyshev.complex_ofReal_eval_U
+-/
/-! ### Complex versions -/
@@ -88,6 +100,7 @@ theorem T_complex_cos : ∀ n, (T ℂ n).eval (cos θ) = cos (n * θ)
#align polynomial.chebyshev.T_complex_cos Polynomial.Chebyshev.T_complex_cos
-/
+#print Polynomial.Chebyshev.U_complex_cos /-
/-- The `n`-th Chebyshev polynomial of the second kind evaluates on `cos θ` to the
value `sin ((n + 1) * θ) / sin θ`. -/
@[simp]
@@ -101,6 +114,7 @@ theorem U_complex_cos (n : ℕ) : (U ℂ n).eval (cos θ) * sin θ = sin ((n + 1
push_cast
simp only [add_mul, one_mul]
#align polynomial.chebyshev.U_complex_cos Polynomial.Chebyshev.U_complex_cos
+-/
end Complex
@@ -119,12 +133,14 @@ theorem T_real_cos : (T ℝ n).eval (cos θ) = cos (n * θ) := by exact_mod_cast
#align polynomial.chebyshev.T_real_cos Polynomial.Chebyshev.T_real_cos
-/
+#print Polynomial.Chebyshev.U_real_cos /-
/-- The `n`-th Chebyshev polynomial of the second kind evaluates on `cos θ` to the
value `sin ((n + 1) * θ) / sin θ`. -/
@[simp]
theorem U_real_cos : (U ℝ n).eval (cos θ) * sin θ = sin ((n + 1) * θ) := by
exact_mod_cast U_complex_cos θ n
#align polynomial.chebyshev.U_real_cos Polynomial.Chebyshev.U_real_cos
+-/
end Real
mathlib commit https://github.com/leanprover-community/mathlib/commit/a3e83f0fa4391c8740f7d773a7a9b74e311ae2a3
@@ -53,14 +53,14 @@ theorem algebraMap_eval_U (x : R) (n : ℕ) :
#align polynomial.chebyshev.algebra_map_eval_U Polynomial.Chebyshev.algebraMap_eval_U
@[simp, norm_cast]
-theorem complex_of_real_eval_T : ∀ x n, ((T ℝ n).eval x : ℂ) = (T ℂ n).eval x :=
+theorem complex_ofReal_eval_T : ∀ x n, ((T ℝ n).eval x : ℂ) = (T ℂ n).eval x :=
@algebraMap_eval_T ℝ ℂ _ _ _
-#align polynomial.chebyshev.complex_of_real_eval_T Polynomial.Chebyshev.complex_of_real_eval_T
+#align polynomial.chebyshev.complex_of_real_eval_T Polynomial.Chebyshev.complex_ofReal_eval_T
@[simp, norm_cast]
-theorem complex_of_real_eval_U : ∀ x n, ((U ℝ n).eval x : ℂ) = (U ℂ n).eval x :=
+theorem complex_ofReal_eval_U : ∀ x n, ((U ℝ n).eval x : ℂ) = (U ℂ n).eval x :=
@algebraMap_eval_U ℝ ℂ _ _ _
-#align polynomial.chebyshev.complex_of_real_eval_U Polynomial.Chebyshev.complex_of_real_eval_U
+#align polynomial.chebyshev.complex_of_real_eval_U Polynomial.Chebyshev.complex_ofReal_eval_U
/-! ### Complex versions -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/cca40788df1b8755d5baf17ab2f27dacc2e17acb
@@ -30,19 +30,15 @@ open Polynomial
variable {R A : Type _} [CommRing R] [CommRing A] [Algebra R A]
-#print Polynomial.Chebyshev.aeval_T /-
@[simp]
theorem aeval_T (x : A) (n : ℕ) : aeval x (T R n) = (T A n).eval x := by
rw [aeval_def, eval₂_eq_eval_map, map_T]
#align polynomial.chebyshev.aeval_T Polynomial.Chebyshev.aeval_T
--/
-#print Polynomial.Chebyshev.aeval_U /-
@[simp]
theorem aeval_U (x : A) (n : ℕ) : aeval x (U R n) = (U A n).eval x := by
rw [aeval_def, eval₂_eq_eval_map, map_U]
#align polynomial.chebyshev.aeval_U Polynomial.Chebyshev.aeval_U
--/
@[simp]
theorem algebraMap_eval_T (x : R) (n : ℕ) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -44,47 +44,23 @@ theorem aeval_U (x : A) (n : ℕ) : aeval x (U R n) = (U A n).eval x := by
#align polynomial.chebyshev.aeval_U Polynomial.Chebyshev.aeval_U
-/
-/- warning: polynomial.chebyshev.algebra_map_eval_T -> Polynomial.Chebyshev.algebraMap_eval_T is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} A (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (Polynomial.eval.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.T.{u2} A _inst_2 n))
-but is expected to have type
- forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (Polynomial.eval.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) x) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.T.{u2} A _inst_2 n))
-Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.algebra_map_eval_T Polynomial.Chebyshev.algebraMap_eval_Tₓ'. -/
@[simp]
theorem algebraMap_eval_T (x : R) (n : ℕ) :
algebraMap R A ((T R n).eval x) = (T A n).eval (algebraMap R A x) := by
rw [← aeval_algebra_map_apply_eq_algebra_map_eval, aeval_T]
#align polynomial.chebyshev.algebra_map_eval_T Polynomial.Chebyshev.algebraMap_eval_T
-/- warning: polynomial.chebyshev.algebra_map_eval_U -> Polynomial.Chebyshev.algebraMap_eval_U is a dubious translation:
-lean 3 declaration is
- forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} A (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (Polynomial.eval.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.U.{u2} A _inst_2 n))
-but is expected to have type
- forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (Polynomial.eval.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) x) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.U.{u2} A _inst_2 n))
-Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.algebra_map_eval_U Polynomial.Chebyshev.algebraMap_eval_Uₓ'. -/
@[simp]
theorem algebraMap_eval_U (x : R) (n : ℕ) :
algebraMap R A ((U R n).eval x) = (U A n).eval (algebraMap R A x) := by
rw [← aeval_algebra_map_apply_eq_algebra_map_eval, aeval_U]
#align polynomial.chebyshev.algebra_map_eval_U Polynomial.Chebyshev.algebraMap_eval_U
-/- warning: polynomial.chebyshev.complex_of_real_eval_T -> Polynomial.Chebyshev.complex_of_real_eval_T is a dubious translation:
-lean 3 declaration is
- forall (x : Real) (n : Nat), Eq.{1} Complex ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Real Complex (HasLiftT.mk.{1, 1} Real Complex (CoeTCₓ.coe.{1, 1} Real Complex (coeBase.{1, 1} Real Complex Complex.hasCoe))) (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) x (Polynomial.Chebyshev.T.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Real Complex (HasLiftT.mk.{1, 1} Real Complex (CoeTCₓ.coe.{1, 1} Real Complex (coeBase.{1, 1} Real Complex Complex.hasCoe))) x) (Polynomial.Chebyshev.T.{0} Complex Complex.commRing n))
-but is expected to have type
- forall (x : Real) (n : Nat), Eq.{1} Complex (Complex.ofReal' (Polynomial.eval.{0} Real (CommSemiring.toSemiring.{0} Real (CommRing.toCommSemiring.{0} Real Real.commRing)) x (Polynomial.Chebyshev.T.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (CommSemiring.toSemiring.{0} Complex (CommRing.toCommSemiring.{0} Complex Complex.commRing)) (Complex.ofReal' x) (Polynomial.Chebyshev.T.{0} Complex Complex.commRing n))
-Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.complex_of_real_eval_T Polynomial.Chebyshev.complex_of_real_eval_Tₓ'. -/
@[simp, norm_cast]
theorem complex_of_real_eval_T : ∀ x n, ((T ℝ n).eval x : ℂ) = (T ℂ n).eval x :=
@algebraMap_eval_T ℝ ℂ _ _ _
#align polynomial.chebyshev.complex_of_real_eval_T Polynomial.Chebyshev.complex_of_real_eval_T
-/- warning: polynomial.chebyshev.complex_of_real_eval_U -> Polynomial.Chebyshev.complex_of_real_eval_U is a dubious translation:
-lean 3 declaration is
- forall (x : Real) (n : Nat), Eq.{1} Complex ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Real Complex (HasLiftT.mk.{1, 1} Real Complex (CoeTCₓ.coe.{1, 1} Real Complex (coeBase.{1, 1} Real Complex Complex.hasCoe))) (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) x (Polynomial.Chebyshev.U.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Real Complex (HasLiftT.mk.{1, 1} Real Complex (CoeTCₓ.coe.{1, 1} Real Complex (coeBase.{1, 1} Real Complex Complex.hasCoe))) x) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n))
-but is expected to have type
- forall (x : Real) (n : Nat), Eq.{1} Complex (Complex.ofReal' (Polynomial.eval.{0} Real (CommSemiring.toSemiring.{0} Real (CommRing.toCommSemiring.{0} Real Real.commRing)) x (Polynomial.Chebyshev.U.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (CommSemiring.toSemiring.{0} Complex (CommRing.toCommSemiring.{0} Complex Complex.commRing)) (Complex.ofReal' x) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n))
-Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.complex_of_real_eval_U Polynomial.Chebyshev.complex_of_real_eval_Uₓ'. -/
@[simp, norm_cast]
theorem complex_of_real_eval_U : ∀ x n, ((U ℝ n).eval x : ℂ) = (U ℂ n).eval x :=
@algebraMap_eval_U ℝ ℂ _ _ _
@@ -116,12 +92,6 @@ theorem T_complex_cos : ∀ n, (T ℂ n).eval (cos θ) = cos (n * θ)
#align polynomial.chebyshev.T_complex_cos Polynomial.Chebyshev.T_complex_cos
-/
-/- warning: polynomial.chebyshev.U_complex_cos -> Polynomial.Chebyshev.U_complex_cos is a dubious translation:
-lean 3 declaration is
- forall (θ : Complex) (n : Nat), Eq.{1} Complex (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.hasMul) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) (Complex.cos θ) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n)) (Complex.sin θ)) (Complex.sin (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.hasMul) (HAdd.hAdd.{0, 0, 0} Complex Complex Complex (instHAdd.{0} Complex Complex.hasAdd) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Complex (HasLiftT.mk.{1, 1} Nat Complex (CoeTCₓ.coe.{1, 1} Nat Complex (Nat.castCoe.{0} Complex (AddMonoidWithOne.toNatCast.{0} Complex (AddGroupWithOne.toAddMonoidWithOne.{0} Complex Complex.addGroupWithOne))))) n) (OfNat.ofNat.{0} Complex 1 (OfNat.mk.{0} Complex 1 (One.one.{0} Complex Complex.hasOne)))) θ))
-but is expected to have type
- forall (θ : Complex) (n : Nat), Eq.{1} Complex (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.instMulComplex) (Polynomial.eval.{0} Complex (CommSemiring.toSemiring.{0} Complex (CommRing.toCommSemiring.{0} Complex Complex.commRing)) (Complex.cos θ) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n)) (Complex.sin θ)) (Complex.sin (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.instMulComplex) (HAdd.hAdd.{0, 0, 0} Complex Complex Complex (instHAdd.{0} Complex Complex.instAddComplex) (Nat.cast.{0} Complex (Semiring.toNatCast.{0} Complex Complex.instSemiringComplex) n) (OfNat.ofNat.{0} Complex 1 (One.toOfNat1.{0} Complex Complex.instOneComplex))) θ))
-Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.U_complex_cos Polynomial.Chebyshev.U_complex_cosₓ'. -/
/-- The `n`-th Chebyshev polynomial of the second kind evaluates on `cos θ` to the
value `sin ((n + 1) * θ) / sin θ`. -/
@[simp]
@@ -153,12 +123,6 @@ theorem T_real_cos : (T ℝ n).eval (cos θ) = cos (n * θ) := by exact_mod_cast
#align polynomial.chebyshev.T_real_cos Polynomial.Chebyshev.T_real_cos
-/
-/- warning: polynomial.chebyshev.U_real_cos -> Polynomial.Chebyshev.U_real_cos is a dubious translation:
-lean 3 declaration is
- forall (θ : Real) (n : Nat), Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) (Real.cos θ) (Polynomial.Chebyshev.U.{0} Real Real.commRing n)) (Real.sin θ)) (Real.sin (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) θ))
-but is expected to have type
- forall (θ : Real) (n : Nat), Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Polynomial.eval.{0} Real (CommSemiring.toSemiring.{0} Real (CommRing.toCommSemiring.{0} Real Real.commRing)) (Real.cos θ) (Polynomial.Chebyshev.U.{0} Real Real.commRing n)) (Real.sin θ)) (Real.sin (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (Nat.cast.{0} Real Real.natCast n) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) θ))
-Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.U_real_cos Polynomial.Chebyshev.U_real_cosₓ'. -/
/-- The `n`-th Chebyshev polynomial of the second kind evaluates on `cos θ` to the
value `sin ((n + 1) * θ) / sin θ`. -/
@[simp]
mathlib commit https://github.com/leanprover-community/mathlib/commit/917c3c072e487b3cccdbfeff17e75b40e45f66cb
@@ -110,10 +110,7 @@ theorem T_complex_cos : ∀ n, (T ℂ n).eval (cos θ) = cos (n * θ)
by
simp only [eval_X, eval_one, T_add_two, eval_sub, eval_bit0, Nat.cast_succ, eval_mul]
rw [T_complex_cos (n + 1), T_complex_cos n]
- have aux : sin θ * sin θ = 1 - cos θ * cos θ :=
- by
- rw [← sin_sq_add_cos_sq θ]
- ring
+ have aux : sin θ * sin θ = 1 - cos θ * cos θ := by rw [← sin_sq_add_cos_sq θ]; ring
simp only [Nat.cast_add, Nat.cast_one, add_mul, cos_add, one_mul, sin_add, mul_assoc, aux]
ring
#align polynomial.chebyshev.T_complex_cos Polynomial.Chebyshev.T_complex_cos
mathlib commit https://github.com/leanprover-community/mathlib/commit/95a87616d63b3cb49d3fe678d416fbe9c4217bf4
@@ -48,7 +48,7 @@ theorem aeval_U (x : A) (n : ℕ) : aeval x (U R n) = (U A n).eval x := by
lean 3 declaration is
forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} A (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (Polynomial.eval.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.T.{u2} A _inst_2 n))
but is expected to have type
- forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (Polynomial.eval.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) x) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.T.{u2} A _inst_2 n))
+ forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (Polynomial.eval.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) x) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.T.{u2} A _inst_2 n))
Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.algebra_map_eval_T Polynomial.Chebyshev.algebraMap_eval_Tₓ'. -/
@[simp]
theorem algebraMap_eval_T (x : R) (n : ℕ) :
@@ -60,7 +60,7 @@ theorem algebraMap_eval_T (x : R) (n : ℕ) :
lean 3 declaration is
forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} A (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (Polynomial.eval.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.U.{u2} A _inst_2 n))
but is expected to have type
- forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (Polynomial.eval.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) x) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.U.{u2} A _inst_2 n))
+ forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (Polynomial.eval.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) x) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2397 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.U.{u2} A _inst_2 n))
Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.algebra_map_eval_U Polynomial.Chebyshev.algebraMap_eval_Uₓ'. -/
@[simp]
theorem algebraMap_eval_U (x : R) (n : ℕ) :
mathlib commit https://github.com/leanprover-community/mathlib/commit/08e1d8d4d989df3a6df86f385e9053ec8a372cc1
@@ -48,7 +48,7 @@ theorem aeval_U (x : A) (n : ℕ) : aeval x (U R n) = (U A n).eval x := by
lean 3 declaration is
forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} A (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (Polynomial.eval.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.T.{u2} A _inst_2 n))
but is expected to have type
- forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (Polynomial.eval.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) x) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.T.{u2} A _inst_2 n))
+ forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (Polynomial.eval.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) x) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.T.{u2} A _inst_2 n))
Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.algebra_map_eval_T Polynomial.Chebyshev.algebraMap_eval_Tₓ'. -/
@[simp]
theorem algebraMap_eval_T (x : R) (n : ℕ) :
@@ -60,7 +60,7 @@ theorem algebraMap_eval_T (x : R) (n : ℕ) :
lean 3 declaration is
forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} A (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (Polynomial.eval.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.U.{u2} A _inst_2 n))
but is expected to have type
- forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (Polynomial.eval.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) x) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.U.{u2} A _inst_2 n))
+ forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (Polynomial.eval.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) x) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (CommSemiring.toSemiring.{u2} A (CommRing.toCommSemiring.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.U.{u2} A _inst_2 n))
Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.algebra_map_eval_U Polynomial.Chebyshev.algebraMap_eval_Uₓ'. -/
@[simp]
theorem algebraMap_eval_U (x : R) (n : ℕ) :
@@ -72,7 +72,7 @@ theorem algebraMap_eval_U (x : R) (n : ℕ) :
lean 3 declaration is
forall (x : Real) (n : Nat), Eq.{1} Complex ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Real Complex (HasLiftT.mk.{1, 1} Real Complex (CoeTCₓ.coe.{1, 1} Real Complex (coeBase.{1, 1} Real Complex Complex.hasCoe))) (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) x (Polynomial.Chebyshev.T.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Real Complex (HasLiftT.mk.{1, 1} Real Complex (CoeTCₓ.coe.{1, 1} Real Complex (coeBase.{1, 1} Real Complex Complex.hasCoe))) x) (Polynomial.Chebyshev.T.{0} Complex Complex.commRing n))
but is expected to have type
- forall (x : Real) (n : Nat), Eq.{1} Complex (Complex.ofReal' (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) x (Polynomial.Chebyshev.T.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) (Complex.ofReal' x) (Polynomial.Chebyshev.T.{0} Complex Complex.commRing n))
+ forall (x : Real) (n : Nat), Eq.{1} Complex (Complex.ofReal' (Polynomial.eval.{0} Real (CommSemiring.toSemiring.{0} Real (CommRing.toCommSemiring.{0} Real Real.commRing)) x (Polynomial.Chebyshev.T.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (CommSemiring.toSemiring.{0} Complex (CommRing.toCommSemiring.{0} Complex Complex.commRing)) (Complex.ofReal' x) (Polynomial.Chebyshev.T.{0} Complex Complex.commRing n))
Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.complex_of_real_eval_T Polynomial.Chebyshev.complex_of_real_eval_Tₓ'. -/
@[simp, norm_cast]
theorem complex_of_real_eval_T : ∀ x n, ((T ℝ n).eval x : ℂ) = (T ℂ n).eval x :=
@@ -83,7 +83,7 @@ theorem complex_of_real_eval_T : ∀ x n, ((T ℝ n).eval x : ℂ) = (T ℂ n).e
lean 3 declaration is
forall (x : Real) (n : Nat), Eq.{1} Complex ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Real Complex (HasLiftT.mk.{1, 1} Real Complex (CoeTCₓ.coe.{1, 1} Real Complex (coeBase.{1, 1} Real Complex Complex.hasCoe))) (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) x (Polynomial.Chebyshev.U.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Real Complex (HasLiftT.mk.{1, 1} Real Complex (CoeTCₓ.coe.{1, 1} Real Complex (coeBase.{1, 1} Real Complex Complex.hasCoe))) x) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n))
but is expected to have type
- forall (x : Real) (n : Nat), Eq.{1} Complex (Complex.ofReal' (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) x (Polynomial.Chebyshev.U.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) (Complex.ofReal' x) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n))
+ forall (x : Real) (n : Nat), Eq.{1} Complex (Complex.ofReal' (Polynomial.eval.{0} Real (CommSemiring.toSemiring.{0} Real (CommRing.toCommSemiring.{0} Real Real.commRing)) x (Polynomial.Chebyshev.U.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (CommSemiring.toSemiring.{0} Complex (CommRing.toCommSemiring.{0} Complex Complex.commRing)) (Complex.ofReal' x) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n))
Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.complex_of_real_eval_U Polynomial.Chebyshev.complex_of_real_eval_Uₓ'. -/
@[simp, norm_cast]
theorem complex_of_real_eval_U : ∀ x n, ((U ℝ n).eval x : ℂ) = (U ℂ n).eval x :=
@@ -123,7 +123,7 @@ theorem T_complex_cos : ∀ n, (T ℂ n).eval (cos θ) = cos (n * θ)
lean 3 declaration is
forall (θ : Complex) (n : Nat), Eq.{1} Complex (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.hasMul) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) (Complex.cos θ) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n)) (Complex.sin θ)) (Complex.sin (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.hasMul) (HAdd.hAdd.{0, 0, 0} Complex Complex Complex (instHAdd.{0} Complex Complex.hasAdd) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Complex (HasLiftT.mk.{1, 1} Nat Complex (CoeTCₓ.coe.{1, 1} Nat Complex (Nat.castCoe.{0} Complex (AddMonoidWithOne.toNatCast.{0} Complex (AddGroupWithOne.toAddMonoidWithOne.{0} Complex Complex.addGroupWithOne))))) n) (OfNat.ofNat.{0} Complex 1 (OfNat.mk.{0} Complex 1 (One.one.{0} Complex Complex.hasOne)))) θ))
but is expected to have type
- forall (θ : Complex) (n : Nat), Eq.{1} Complex (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.instMulComplex) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) (Complex.cos θ) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n)) (Complex.sin θ)) (Complex.sin (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.instMulComplex) (HAdd.hAdd.{0, 0, 0} Complex Complex Complex (instHAdd.{0} Complex Complex.instAddComplex) (Nat.cast.{0} Complex (NonAssocRing.toNatCast.{0} Complex (Ring.toNonAssocRing.{0} Complex Complex.instRingComplex)) n) (OfNat.ofNat.{0} Complex 1 (One.toOfNat1.{0} Complex Complex.instOneComplex))) θ))
+ forall (θ : Complex) (n : Nat), Eq.{1} Complex (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.instMulComplex) (Polynomial.eval.{0} Complex (CommSemiring.toSemiring.{0} Complex (CommRing.toCommSemiring.{0} Complex Complex.commRing)) (Complex.cos θ) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n)) (Complex.sin θ)) (Complex.sin (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.instMulComplex) (HAdd.hAdd.{0, 0, 0} Complex Complex Complex (instHAdd.{0} Complex Complex.instAddComplex) (Nat.cast.{0} Complex (Semiring.toNatCast.{0} Complex Complex.instSemiringComplex) n) (OfNat.ofNat.{0} Complex 1 (One.toOfNat1.{0} Complex Complex.instOneComplex))) θ))
Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.U_complex_cos Polynomial.Chebyshev.U_complex_cosₓ'. -/
/-- The `n`-th Chebyshev polynomial of the second kind evaluates on `cos θ` to the
value `sin ((n + 1) * θ) / sin θ`. -/
@@ -160,7 +160,7 @@ theorem T_real_cos : (T ℝ n).eval (cos θ) = cos (n * θ) := by exact_mod_cast
lean 3 declaration is
forall (θ : Real) (n : Nat), Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) (Real.cos θ) (Polynomial.Chebyshev.U.{0} Real Real.commRing n)) (Real.sin θ)) (Real.sin (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) θ))
but is expected to have type
- forall (θ : Real) (n : Nat), Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) (Real.cos θ) (Polynomial.Chebyshev.U.{0} Real Real.commRing n)) (Real.sin θ)) (Real.sin (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (Nat.cast.{0} Real Real.natCast n) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) θ))
+ forall (θ : Real) (n : Nat), Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Polynomial.eval.{0} Real (CommSemiring.toSemiring.{0} Real (CommRing.toCommSemiring.{0} Real Real.commRing)) (Real.cos θ) (Polynomial.Chebyshev.U.{0} Real Real.commRing n)) (Real.sin θ)) (Real.sin (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (Nat.cast.{0} Real Real.natCast n) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) θ))
Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.U_real_cos Polynomial.Chebyshev.U_real_cosₓ'. -/
/-- The `n`-th Chebyshev polynomial of the second kind evaluates on `cos θ` to the
value `sin ((n + 1) * θ) / sin θ`. -/
mathlib commit https://github.com/leanprover-community/mathlib/commit/738054fa93d43512da144ec45ce799d18fd44248
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
! This file was ported from Lean 3 source module analysis.special_functions.trigonometric.chebyshev
-! leanprover-community/mathlib commit 2c1d8ca2812b64f88992a5294ea3dba144755cd1
+! leanprover-community/mathlib commit fe8d0ff42c3c24d789f491dc2622b6cac3d61564
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
@@ -16,6 +16,9 @@ import Mathbin.RingTheory.Polynomial.Chebyshev
/-!
# Multiple angle formulas in terms of Chebyshev polynomials
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
This file gives the trigonometric characterizations of Chebyshev polynomials, for both the real
(`real.cos`) and complex (`complex.cos`) cosine.
-/
mathlib commit https://github.com/leanprover-community/mathlib/commit/36b8aa61ea7c05727161f96a0532897bd72aedab
@@ -27,37 +27,65 @@ open Polynomial
variable {R A : Type _} [CommRing R] [CommRing A] [Algebra R A]
+#print Polynomial.Chebyshev.aeval_T /-
@[simp]
-theorem aeval_t (x : A) (n : ℕ) : aeval x (T R n) = (T A n).eval x := by
+theorem aeval_T (x : A) (n : ℕ) : aeval x (T R n) = (T A n).eval x := by
rw [aeval_def, eval₂_eq_eval_map, map_T]
-#align polynomial.chebyshev.aeval_T Polynomial.Chebyshev.aeval_t
+#align polynomial.chebyshev.aeval_T Polynomial.Chebyshev.aeval_T
+-/
+#print Polynomial.Chebyshev.aeval_U /-
@[simp]
-theorem aeval_u (x : A) (n : ℕ) : aeval x (U R n) = (U A n).eval x := by
+theorem aeval_U (x : A) (n : ℕ) : aeval x (U R n) = (U A n).eval x := by
rw [aeval_def, eval₂_eq_eval_map, map_U]
-#align polynomial.chebyshev.aeval_U Polynomial.Chebyshev.aeval_u
+#align polynomial.chebyshev.aeval_U Polynomial.Chebyshev.aeval_U
+-/
+/- warning: polynomial.chebyshev.algebra_map_eval_T -> Polynomial.Chebyshev.algebraMap_eval_T is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} A (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (Polynomial.eval.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.T.{u2} A _inst_2 n))
+but is expected to have type
+ forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.T.{u1} R _inst_1 n))) (Polynomial.eval.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) x) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.T.{u2} A _inst_2 n))
+Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.algebra_map_eval_T Polynomial.Chebyshev.algebraMap_eval_Tₓ'. -/
@[simp]
-theorem algebraMap_eval_t (x : R) (n : ℕ) :
+theorem algebraMap_eval_T (x : R) (n : ℕ) :
algebraMap R A ((T R n).eval x) = (T A n).eval (algebraMap R A x) := by
rw [← aeval_algebra_map_apply_eq_algebra_map_eval, aeval_T]
-#align polynomial.chebyshev.algebra_map_eval_T Polynomial.Chebyshev.algebraMap_eval_t
-
+#align polynomial.chebyshev.algebra_map_eval_T Polynomial.Chebyshev.algebraMap_eval_T
+
+/- warning: polynomial.chebyshev.algebra_map_eval_U -> Polynomial.Chebyshev.algebraMap_eval_U is a dubious translation:
+lean 3 declaration is
+ forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} A (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (Polynomial.eval.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) (coeFn.{max (succ u1) (succ u2), max (succ u1) (succ u2)} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (fun (_x : RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) => R -> A) (RingHom.hasCoeToFun.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.U.{u2} A _inst_2 n))
+but is expected to have type
+ forall {R : Type.{u1}} {A : Type.{u2}} [_inst_1 : CommRing.{u1} R] [_inst_2 : CommRing.{u2} A] [_inst_3 : Algebra.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))] (x : R) (n : Nat), Eq.{succ u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) (Polynomial.eval.{u1} R (Ring.toSemiring.{u1} R (CommRing.toRing.{u1} R _inst_1)) x (Polynomial.Chebyshev.U.{u1} R _inst_1 n))) (Polynomial.eval.{u2} ((fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) x) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) (FunLike.coe.{max (succ u1) (succ u2), succ u1, succ u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R (fun (_x : R) => (fun (x._@.Mathlib.Algebra.Hom.Group._hyg.2391 : R) => A) _x) (MulHomClass.toFunLike.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonUnitalNonAssocSemiring.toMul.{u1} R (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))))) (NonUnitalNonAssocSemiring.toMul.{u2} A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))) (NonUnitalRingHomClass.toMulHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u1} R (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1)))) (NonAssocSemiring.toNonUnitalNonAssocSemiring.{u2} A (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) (RingHomClass.toNonUnitalRingHomClass.{max u1 u2, u1, u2} (RingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)))) R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))) (RingHom.instRingHomClassRingHom.{u1, u2} R A (Semiring.toNonAssocSemiring.{u1} R (CommSemiring.toSemiring.{u1} R (CommRing.toCommSemiring.{u1} R _inst_1))) (Semiring.toNonAssocSemiring.{u2} A (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2))))))) (algebraMap.{u1, u2} R A (CommRing.toCommSemiring.{u1} R _inst_1) (Ring.toSemiring.{u2} A (CommRing.toRing.{u2} A _inst_2)) _inst_3) x) (Polynomial.Chebyshev.U.{u2} A _inst_2 n))
+Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.algebra_map_eval_U Polynomial.Chebyshev.algebraMap_eval_Uₓ'. -/
@[simp]
-theorem algebraMap_eval_u (x : R) (n : ℕ) :
+theorem algebraMap_eval_U (x : R) (n : ℕ) :
algebraMap R A ((U R n).eval x) = (U A n).eval (algebraMap R A x) := by
rw [← aeval_algebra_map_apply_eq_algebra_map_eval, aeval_U]
-#align polynomial.chebyshev.algebra_map_eval_U Polynomial.Chebyshev.algebraMap_eval_u
-
+#align polynomial.chebyshev.algebra_map_eval_U Polynomial.Chebyshev.algebraMap_eval_U
+
+/- warning: polynomial.chebyshev.complex_of_real_eval_T -> Polynomial.Chebyshev.complex_of_real_eval_T is a dubious translation:
+lean 3 declaration is
+ forall (x : Real) (n : Nat), Eq.{1} Complex ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Real Complex (HasLiftT.mk.{1, 1} Real Complex (CoeTCₓ.coe.{1, 1} Real Complex (coeBase.{1, 1} Real Complex Complex.hasCoe))) (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) x (Polynomial.Chebyshev.T.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Real Complex (HasLiftT.mk.{1, 1} Real Complex (CoeTCₓ.coe.{1, 1} Real Complex (coeBase.{1, 1} Real Complex Complex.hasCoe))) x) (Polynomial.Chebyshev.T.{0} Complex Complex.commRing n))
+but is expected to have type
+ forall (x : Real) (n : Nat), Eq.{1} Complex (Complex.ofReal' (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) x (Polynomial.Chebyshev.T.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) (Complex.ofReal' x) (Polynomial.Chebyshev.T.{0} Complex Complex.commRing n))
+Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.complex_of_real_eval_T Polynomial.Chebyshev.complex_of_real_eval_Tₓ'. -/
@[simp, norm_cast]
-theorem complex_of_real_eval_t : ∀ x n, ((T ℝ n).eval x : ℂ) = (T ℂ n).eval x :=
- @algebraMap_eval_t ℝ ℂ _ _ _
-#align polynomial.chebyshev.complex_of_real_eval_T Polynomial.Chebyshev.complex_of_real_eval_t
-
+theorem complex_of_real_eval_T : ∀ x n, ((T ℝ n).eval x : ℂ) = (T ℂ n).eval x :=
+ @algebraMap_eval_T ℝ ℂ _ _ _
+#align polynomial.chebyshev.complex_of_real_eval_T Polynomial.Chebyshev.complex_of_real_eval_T
+
+/- warning: polynomial.chebyshev.complex_of_real_eval_U -> Polynomial.Chebyshev.complex_of_real_eval_U is a dubious translation:
+lean 3 declaration is
+ forall (x : Real) (n : Nat), Eq.{1} Complex ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Real Complex (HasLiftT.mk.{1, 1} Real Complex (CoeTCₓ.coe.{1, 1} Real Complex (coeBase.{1, 1} Real Complex Complex.hasCoe))) (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) x (Polynomial.Chebyshev.U.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Real Complex (HasLiftT.mk.{1, 1} Real Complex (CoeTCₓ.coe.{1, 1} Real Complex (coeBase.{1, 1} Real Complex Complex.hasCoe))) x) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n))
+but is expected to have type
+ forall (x : Real) (n : Nat), Eq.{1} Complex (Complex.ofReal' (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) x (Polynomial.Chebyshev.U.{0} Real Real.commRing n))) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) (Complex.ofReal' x) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n))
+Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.complex_of_real_eval_U Polynomial.Chebyshev.complex_of_real_eval_Uₓ'. -/
@[simp, norm_cast]
-theorem complex_of_real_eval_u : ∀ x n, ((U ℝ n).eval x : ℂ) = (U ℂ n).eval x :=
- @algebraMap_eval_u ℝ ℂ _ _ _
-#align polynomial.chebyshev.complex_of_real_eval_U Polynomial.Chebyshev.complex_of_real_eval_u
+theorem complex_of_real_eval_U : ∀ x n, ((U ℝ n).eval x : ℂ) = (U ℂ n).eval x :=
+ @algebraMap_eval_U ℝ ℂ _ _ _
+#align polynomial.chebyshev.complex_of_real_eval_U Polynomial.Chebyshev.complex_of_real_eval_U
/-! ### Complex versions -/
@@ -68,10 +96,11 @@ open Complex
variable (θ : ℂ)
+#print Polynomial.Chebyshev.T_complex_cos /-
/-- The `n`-th Chebyshev polynomial of the first kind evaluates on `cos θ` to the
value `cos (n * θ)`. -/
@[simp]
-theorem t_complex_cos : ∀ n, (T ℂ n).eval (cos θ) = cos (n * θ)
+theorem T_complex_cos : ∀ n, (T ℂ n).eval (cos θ) = cos (n * θ)
| 0 => by simp only [T_zero, eval_one, Nat.cast_zero, MulZeroClass.zero_mul, cos_zero]
| 1 => by simp only [eval_X, one_mul, T_one, Nat.cast_one]
| n + 2 =>
@@ -84,12 +113,19 @@ theorem t_complex_cos : ∀ n, (T ℂ n).eval (cos θ) = cos (n * θ)
ring
simp only [Nat.cast_add, Nat.cast_one, add_mul, cos_add, one_mul, sin_add, mul_assoc, aux]
ring
-#align polynomial.chebyshev.T_complex_cos Polynomial.Chebyshev.t_complex_cos
+#align polynomial.chebyshev.T_complex_cos Polynomial.Chebyshev.T_complex_cos
+-/
+/- warning: polynomial.chebyshev.U_complex_cos -> Polynomial.Chebyshev.U_complex_cos is a dubious translation:
+lean 3 declaration is
+ forall (θ : Complex) (n : Nat), Eq.{1} Complex (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.hasMul) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) (Complex.cos θ) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n)) (Complex.sin θ)) (Complex.sin (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.hasMul) (HAdd.hAdd.{0, 0, 0} Complex Complex Complex (instHAdd.{0} Complex Complex.hasAdd) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Complex (HasLiftT.mk.{1, 1} Nat Complex (CoeTCₓ.coe.{1, 1} Nat Complex (Nat.castCoe.{0} Complex (AddMonoidWithOne.toNatCast.{0} Complex (AddGroupWithOne.toAddMonoidWithOne.{0} Complex Complex.addGroupWithOne))))) n) (OfNat.ofNat.{0} Complex 1 (OfNat.mk.{0} Complex 1 (One.one.{0} Complex Complex.hasOne)))) θ))
+but is expected to have type
+ forall (θ : Complex) (n : Nat), Eq.{1} Complex (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.instMulComplex) (Polynomial.eval.{0} Complex (Ring.toSemiring.{0} Complex (CommRing.toRing.{0} Complex Complex.commRing)) (Complex.cos θ) (Polynomial.Chebyshev.U.{0} Complex Complex.commRing n)) (Complex.sin θ)) (Complex.sin (HMul.hMul.{0, 0, 0} Complex Complex Complex (instHMul.{0} Complex Complex.instMulComplex) (HAdd.hAdd.{0, 0, 0} Complex Complex Complex (instHAdd.{0} Complex Complex.instAddComplex) (Nat.cast.{0} Complex (NonAssocRing.toNatCast.{0} Complex (Ring.toNonAssocRing.{0} Complex Complex.instRingComplex)) n) (OfNat.ofNat.{0} Complex 1 (One.toOfNat1.{0} Complex Complex.instOneComplex))) θ))
+Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.U_complex_cos Polynomial.Chebyshev.U_complex_cosₓ'. -/
/-- The `n`-th Chebyshev polynomial of the second kind evaluates on `cos θ` to the
value `sin ((n + 1) * θ) / sin θ`. -/
@[simp]
-theorem u_complex_cos (n : ℕ) : (U ℂ n).eval (cos θ) * sin θ = sin ((n + 1) * θ) :=
+theorem U_complex_cos (n : ℕ) : (U ℂ n).eval (cos θ) * sin θ = sin ((n + 1) * θ) :=
by
induction' n with d hd
· simp only [U_zero, Nat.cast_zero, eval_one, mul_one, zero_add, one_mul]
@@ -98,7 +134,7 @@ theorem u_complex_cos (n : ℕ) : (U ℂ n).eval (cos θ) * sin θ = sin ((n + 1
conv_rhs => rw [sin_add, mul_comm]
push_cast
simp only [add_mul, one_mul]
-#align polynomial.chebyshev.U_complex_cos Polynomial.Chebyshev.u_complex_cos
+#align polynomial.chebyshev.U_complex_cos Polynomial.Chebyshev.U_complex_cos
end Complex
@@ -109,18 +145,26 @@ open Real
variable (θ : ℝ) (n : ℕ)
+#print Polynomial.Chebyshev.T_real_cos /-
/-- The `n`-th Chebyshev polynomial of the first kind evaluates on `cos θ` to the
value `cos (n * θ)`. -/
@[simp]
-theorem t_real_cos : (T ℝ n).eval (cos θ) = cos (n * θ) := by exact_mod_cast T_complex_cos θ n
-#align polynomial.chebyshev.T_real_cos Polynomial.Chebyshev.t_real_cos
+theorem T_real_cos : (T ℝ n).eval (cos θ) = cos (n * θ) := by exact_mod_cast T_complex_cos θ n
+#align polynomial.chebyshev.T_real_cos Polynomial.Chebyshev.T_real_cos
+-/
+/- warning: polynomial.chebyshev.U_real_cos -> Polynomial.Chebyshev.U_real_cos is a dubious translation:
+lean 3 declaration is
+ forall (θ : Real) (n : Nat), Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) (Real.cos θ) (Polynomial.Chebyshev.U.{0} Real Real.commRing n)) (Real.sin θ)) (Real.sin (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.hasMul) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.hasAdd) ((fun (a : Type) (b : Type) [self : HasLiftT.{1, 1} a b] => self.0) Nat Real (HasLiftT.mk.{1, 1} Nat Real (CoeTCₓ.coe.{1, 1} Nat Real (Nat.castCoe.{0} Real Real.hasNatCast))) n) (OfNat.ofNat.{0} Real 1 (OfNat.mk.{0} Real 1 (One.one.{0} Real Real.hasOne)))) θ))
+but is expected to have type
+ forall (θ : Real) (n : Nat), Eq.{1} Real (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (Polynomial.eval.{0} Real (Ring.toSemiring.{0} Real (CommRing.toRing.{0} Real Real.commRing)) (Real.cos θ) (Polynomial.Chebyshev.U.{0} Real Real.commRing n)) (Real.sin θ)) (Real.sin (HMul.hMul.{0, 0, 0} Real Real Real (instHMul.{0} Real Real.instMulReal) (HAdd.hAdd.{0, 0, 0} Real Real Real (instHAdd.{0} Real Real.instAddReal) (Nat.cast.{0} Real Real.natCast n) (OfNat.ofNat.{0} Real 1 (One.toOfNat1.{0} Real Real.instOneReal))) θ))
+Case conversion may be inaccurate. Consider using '#align polynomial.chebyshev.U_real_cos Polynomial.Chebyshev.U_real_cosₓ'. -/
/-- The `n`-th Chebyshev polynomial of the second kind evaluates on `cos θ` to the
value `sin ((n + 1) * θ) / sin θ`. -/
@[simp]
-theorem u_real_cos : (U ℝ n).eval (cos θ) * sin θ = sin ((n + 1) * θ) := by
+theorem U_real_cos : (U ℝ n).eval (cos θ) * sin θ = sin ((n + 1) * θ) := by
exact_mod_cast U_complex_cos θ n
-#align polynomial.chebyshev.U_real_cos Polynomial.Chebyshev.u_real_cos
+#align polynomial.chebyshev.U_real_cos Polynomial.Chebyshev.U_real_cos
end Real
mathlib commit https://github.com/leanprover-community/mathlib/commit/36b8aa61ea7c05727161f96a0532897bd72aedab
@@ -4,12 +4,12 @@ Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
! This file was ported from Lean 3 source module analysis.special_functions.trigonometric.chebyshev
-! leanprover-community/mathlib commit 7aebb349fbbbf07c1b6e3867451b354730dc7799
+! leanprover-community/mathlib commit 2c1d8ca2812b64f88992a5294ea3dba144755cd1
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
-import Mathbin.Analysis.Complex.Basic
import Mathbin.Data.Complex.Exponential
+import Mathbin.Data.Complex.Module
import Mathbin.Data.Polynomial.AlgebraMap
import Mathbin.RingTheory.Polynomial.Chebyshev
mathlib commit https://github.com/leanprover-community/mathlib/commit/02ba8949f486ebecf93fe7460f1ed0564b5e442c
@@ -28,34 +28,34 @@ open Polynomial
variable {R A : Type _} [CommRing R] [CommRing A] [Algebra R A]
@[simp]
-theorem aeval_t (x : A) (n : ℕ) : aeval x (t R n) = (t A n).eval x := by
+theorem aeval_t (x : A) (n : ℕ) : aeval x (T R n) = (T A n).eval x := by
rw [aeval_def, eval₂_eq_eval_map, map_T]
#align polynomial.chebyshev.aeval_T Polynomial.Chebyshev.aeval_t
@[simp]
-theorem aeval_u (x : A) (n : ℕ) : aeval x (u R n) = (u A n).eval x := by
+theorem aeval_u (x : A) (n : ℕ) : aeval x (U R n) = (U A n).eval x := by
rw [aeval_def, eval₂_eq_eval_map, map_U]
#align polynomial.chebyshev.aeval_U Polynomial.Chebyshev.aeval_u
@[simp]
theorem algebraMap_eval_t (x : R) (n : ℕ) :
- algebraMap R A ((t R n).eval x) = (t A n).eval (algebraMap R A x) := by
+ algebraMap R A ((T R n).eval x) = (T A n).eval (algebraMap R A x) := by
rw [← aeval_algebra_map_apply_eq_algebra_map_eval, aeval_T]
#align polynomial.chebyshev.algebra_map_eval_T Polynomial.Chebyshev.algebraMap_eval_t
@[simp]
theorem algebraMap_eval_u (x : R) (n : ℕ) :
- algebraMap R A ((u R n).eval x) = (u A n).eval (algebraMap R A x) := by
+ algebraMap R A ((U R n).eval x) = (U A n).eval (algebraMap R A x) := by
rw [← aeval_algebra_map_apply_eq_algebra_map_eval, aeval_U]
#align polynomial.chebyshev.algebra_map_eval_U Polynomial.Chebyshev.algebraMap_eval_u
@[simp, norm_cast]
-theorem complex_of_real_eval_t : ∀ x n, ((t ℝ n).eval x : ℂ) = (t ℂ n).eval x :=
+theorem complex_of_real_eval_t : ∀ x n, ((T ℝ n).eval x : ℂ) = (T ℂ n).eval x :=
@algebraMap_eval_t ℝ ℂ _ _ _
#align polynomial.chebyshev.complex_of_real_eval_T Polynomial.Chebyshev.complex_of_real_eval_t
@[simp, norm_cast]
-theorem complex_of_real_eval_u : ∀ x n, ((u ℝ n).eval x : ℂ) = (u ℂ n).eval x :=
+theorem complex_of_real_eval_u : ∀ x n, ((U ℝ n).eval x : ℂ) = (U ℂ n).eval x :=
@algebraMap_eval_u ℝ ℂ _ _ _
#align polynomial.chebyshev.complex_of_real_eval_U Polynomial.Chebyshev.complex_of_real_eval_u
@@ -71,7 +71,7 @@ variable (θ : ℂ)
/-- The `n`-th Chebyshev polynomial of the first kind evaluates on `cos θ` to the
value `cos (n * θ)`. -/
@[simp]
-theorem t_complex_cos : ∀ n, (t ℂ n).eval (cos θ) = cos (n * θ)
+theorem t_complex_cos : ∀ n, (T ℂ n).eval (cos θ) = cos (n * θ)
| 0 => by simp only [T_zero, eval_one, Nat.cast_zero, MulZeroClass.zero_mul, cos_zero]
| 1 => by simp only [eval_X, one_mul, T_one, Nat.cast_one]
| n + 2 =>
@@ -89,7 +89,7 @@ theorem t_complex_cos : ∀ n, (t ℂ n).eval (cos θ) = cos (n * θ)
/-- The `n`-th Chebyshev polynomial of the second kind evaluates on `cos θ` to the
value `sin ((n + 1) * θ) / sin θ`. -/
@[simp]
-theorem u_complex_cos (n : ℕ) : (u ℂ n).eval (cos θ) * sin θ = sin ((n + 1) * θ) :=
+theorem u_complex_cos (n : ℕ) : (U ℂ n).eval (cos θ) * sin θ = sin ((n + 1) * θ) :=
by
induction' n with d hd
· simp only [U_zero, Nat.cast_zero, eval_one, mul_one, zero_add, one_mul]
@@ -112,13 +112,13 @@ variable (θ : ℝ) (n : ℕ)
/-- The `n`-th Chebyshev polynomial of the first kind evaluates on `cos θ` to the
value `cos (n * θ)`. -/
@[simp]
-theorem t_real_cos : (t ℝ n).eval (cos θ) = cos (n * θ) := by exact_mod_cast T_complex_cos θ n
+theorem t_real_cos : (T ℝ n).eval (cos θ) = cos (n * θ) := by exact_mod_cast T_complex_cos θ n
#align polynomial.chebyshev.T_real_cos Polynomial.Chebyshev.t_real_cos
/-- The `n`-th Chebyshev polynomial of the second kind evaluates on `cos θ` to the
value `sin ((n + 1) * θ) / sin θ`. -/
@[simp]
-theorem u_real_cos : (u ℝ n).eval (cos θ) * sin θ = sin ((n + 1) * θ) := by
+theorem u_real_cos : (U ℝ n).eval (cos θ) * sin θ = sin ((n + 1) * θ) := by
exact_mod_cast U_complex_cos θ n
#align polynomial.chebyshev.U_real_cos Polynomial.Chebyshev.u_real_cos
mathlib commit https://github.com/leanprover-community/mathlib/commit/3180fab693e2cee3bff62675571264cb8778b212
@@ -72,7 +72,7 @@ variable (θ : ℂ)
value `cos (n * θ)`. -/
@[simp]
theorem t_complex_cos : ∀ n, (t ℂ n).eval (cos θ) = cos (n * θ)
- | 0 => by simp only [T_zero, eval_one, Nat.cast_zero, zero_mul, cos_zero]
+ | 0 => by simp only [T_zero, eval_one, Nat.cast_zero, MulZeroClass.zero_mul, cos_zero]
| 1 => by simp only [eval_X, one_mul, T_one, Nat.cast_one]
| n + 2 =>
by
mathlib commit https://github.com/leanprover-community/mathlib/commit/bd9851ca476957ea4549eb19b40e7b5ade9428cc
nat_cast
/int_cast
/rat_cast
to natCast
/intCast
/ratCast
(#11486)
Now that I am defining NNRat.cast
, I want a definitive answer to this naming issue. Plenty of lemmas in mathlib already use natCast
/intCast
/ratCast
over nat_cast
/int_cast
/rat_cast
, and this matches with the general expectation that underscore-separated name parts correspond to a single declaration.
@@ -77,7 +77,7 @@ theorem T_complex_cos : ∀ n, (T ℂ n).eval (cos θ) = cos (n * θ)
| n + 2 => by
-- Porting note: partially rewrote proof for lean4 numerals.
have : (2 : ℂ[X]) = (2 : ℕ) := by norm_num
- simp only [this, eval_X, eval_one, T_add_two, eval_sub, eval_mul, eval_nat_cast]
+ simp only [this, eval_X, eval_one, T_add_two, eval_sub, eval_mul, eval_natCast]
simp only [Nat.cast_ofNat, Nat.cast_add]
rw [T_complex_cos (n + 1), T_complex_cos n]
simp only [Nat.cast_add, Nat.cast_one, add_mul, cos_add, one_mul, mul_assoc, sin_two_mul,
Data
(#11751)
Polynomial
and MvPolynomial
are algebraic objects, hence should be under Algebra
(or at least not under Data
)
@@ -3,9 +3,9 @@ Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
+import Mathlib.Algebra.Polynomial.AlgebraMap
import Mathlib.Data.Complex.Exponential
import Mathlib.Data.Complex.Module
-import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.RingTheory.Polynomial.Chebyshev
#align_import analysis.special_functions.trigonometric.chebyshev from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
exact_mod_cast
tactic with mod_cast
elaborator where possible (#8404)
We still have the exact_mod_cast
tactic, used in a few places, which somehow (?) works a little bit harder to prevent the expected type influencing the elaboration of the term. I would like to get to the bottom of this, and it will be easier once the only usages of exact_mod_cast
are the ones that don't work using the term elaborator by itself.
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
@@ -114,14 +114,14 @@ variable (θ : ℝ) (n : ℕ)
/-- The `n`-th Chebyshev polynomial of the first kind evaluates on `cos θ` to the
value `cos (n * θ)`. -/
@[simp]
-theorem T_real_cos : (T ℝ n).eval (cos θ) = cos (n * θ) := by exact_mod_cast T_complex_cos θ n
+theorem T_real_cos : (T ℝ n).eval (cos θ) = cos (n * θ) := mod_cast T_complex_cos θ n
#align polynomial.chebyshev.T_real_cos Polynomial.Chebyshev.T_real_cos
/-- The `n`-th Chebyshev polynomial of the second kind evaluates on `cos θ` to the
value `sin ((n + 1) * θ) / sin θ`. -/
@[simp]
-theorem U_real_cos : (U ℝ n).eval (cos θ) * sin θ = sin ((n + 1) * θ) := by
- exact_mod_cast U_complex_cos θ n
+theorem U_real_cos : (U ℝ n).eval (cos θ) * sin θ = sin ((n + 1) * θ) :=
+ mod_cast U_complex_cos θ n
#align polynomial.chebyshev.U_real_cos Polynomial.Chebyshev.U_real_cos
end Real
@@ -103,7 +103,8 @@ theorem U_complex_cos (n : ℕ) : (U ℂ n).eval (cos θ) * sin θ = sin ((n + 1
end Complex
--- ### Real versions
+/-! ### Real versions -/
+
section Real
open Real
MulZeroClass.
in mul_zero
/zero_mul
(#6682)
Search&replace MulZeroClass.mul_zero
-> mul_zero
, MulZeroClass.zero_mul
-> zero_mul
.
These were introduced by Mathport, as the full name of mul_zero
is actually MulZeroClass.mul_zero
(it's exported with the short name).
@@ -72,7 +72,7 @@ variable (θ : ℂ)
value `cos (n * θ)`. -/
@[simp]
theorem T_complex_cos : ∀ n, (T ℂ n).eval (cos θ) = cos (n * θ)
- | 0 => by simp only [T_zero, eval_one, Nat.cast_zero, MulZeroClass.zero_mul, cos_zero]
+ | 0 => by simp only [T_zero, eval_one, Nat.cast_zero, zero_mul, cos_zero]
| 1 => by simp only [eval_X, one_mul, T_one, Nat.cast_one]
| n + 2 => by
-- Porting note: partially rewrote proof for lean4 numerals.
Type _
and Sort _
(#6499)
We remove all possible occurences of Type _
and Sort _
in favor of Type*
and Sort*
.
This has nice performance benefits.
@@ -23,7 +23,7 @@ namespace Polynomial.Chebyshev
open Polynomial
-variable {R A : Type _} [CommRing R] [CommRing A] [Algebra R A]
+variable {R A : Type*} [CommRing R] [CommRing A] [Algebra R A]
@[simp]
theorem aeval_T (x : A) (n : ℕ) : aeval x (T R n) = (T A n).eval x := by
@@ -2,17 +2,14 @@
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-
-! This file was ported from Lean 3 source module analysis.special_functions.trigonometric.chebyshev
-! leanprover-community/mathlib commit 2c1d8ca2812b64f88992a5294ea3dba144755cd1
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
-/
import Mathlib.Data.Complex.Exponential
import Mathlib.Data.Complex.Module
import Mathlib.Data.Polynomial.AlgebraMap
import Mathlib.RingTheory.Polynomial.Chebyshev
+#align_import analysis.special_functions.trigonometric.chebyshev from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
+
/-!
# Multiple angle formulas in terms of Chebyshev polynomials
@@ -52,15 +52,15 @@ theorem algebraMap_eval_U (x : R) (n : ℕ) :
-- Porting note: added type ascriptions to the statement
@[simp, norm_cast]
-theorem complex_of_real_eval_T : ∀ (x : ℝ) n, (((T ℝ n).eval x : ℝ) : ℂ) = (T ℂ n).eval (x : ℂ) :=
+theorem complex_ofReal_eval_T : ∀ (x : ℝ) n, (((T ℝ n).eval x : ℝ) : ℂ) = (T ℂ n).eval (x : ℂ) :=
@algebraMap_eval_T ℝ ℂ _ _ _
-#align polynomial.chebyshev.complex_of_real_eval_T Polynomial.Chebyshev.complex_of_real_eval_T
+#align polynomial.chebyshev.complex_of_real_eval_T Polynomial.Chebyshev.complex_ofReal_eval_T
-- Porting note: added type ascriptions to the statement
@[simp, norm_cast]
-theorem complex_of_real_eval_U : ∀ (x : ℝ) n, (((U ℝ n).eval x : ℝ) : ℂ) = (U ℂ n).eval (x : ℂ) :=
+theorem complex_ofReal_eval_U : ∀ (x : ℝ) n, (((U ℝ n).eval x : ℝ) : ℂ) = (U ℂ n).eval (x : ℂ) :=
@algebraMap_eval_U ℝ ℂ _ _ _
-#align polynomial.chebyshev.complex_of_real_eval_U Polynomial.Chebyshev.complex_of_real_eval_U
+#align polynomial.chebyshev.complex_of_real_eval_U Polynomial.Chebyshev.complex_ofReal_eval_U
/-! ### Complex versions -/
The unported dependencies are
algebra.order.module
init.core
linear_algebra.free_module.finite.rank
algebra.order.monoid.cancel.defs
algebra.abs
algebra.group_power.lemmas
init.data.list.basic
linear_algebra.free_module.rank
algebra.order.monoid.cancel.basic
init.data.list.default
topology.subset_properties
init.logic
The following 1 dependencies have changed in mathlib3 since they were ported, which may complicate porting this file