category_theory.adjunction.reflectiveMathlib.CategoryTheory.Adjunction.Reflective

This file has been ported!

Changes since the initial port

The following section lists changes to this file in mathlib3 and mathlib4 that occured after the initial port. Most recent changes are shown first. Hovering over a commit will show all commits associated with the same mathlib3 commit.

Changes in mathlib3

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(no changes)

(last sync)

Changes in mathlib3port

mathlib3
mathlib3port
Diff
@@ -59,7 +59,6 @@ theorem unit_obj_eq_map_unit [Reflective i] (X : C) :
 #align category_theory.unit_obj_eq_map_unit CategoryTheory.unit_obj_eq_map_unit
 -/
 
-#print CategoryTheory.isIso_unit_obj /-
 /--
 When restricted to objects in `D` given by `i : D ⥤ C`, the unit is an isomorphism. In other words,
 `η_iX` is an isomorphism for any `X` in `D`.
@@ -76,7 +75,6 @@ instance isIso_unit_obj [Reflective i] {B : D} : IsIso ((ofRightAdjoint i).Unit.
   rw [this]
   exact is_iso.inv_is_iso
 #align category_theory.is_iso_unit_obj CategoryTheory.isIso_unit_obj
--/
 
 #print CategoryTheory.Functor.essImage.unit_isIso /-
 /-- If `A` is essentially in the image of a reflective functor `i`, then `η_A` is an isomorphism.
Diff
@@ -38,7 +38,8 @@ variable [Category.{v₁} C] [Category.{v₂} D] [Category.{v₃} E]
 /--
 A functor is *reflective*, or *a reflective inclusion*, if it is fully faithful and right adjoint.
 -/
-class Reflective (R : D ⥤ C) extends IsRightAdjoint R, Full R, Faithful R
+class Reflective (R : D ⥤ C) extends IsRightAdjoint R, CategoryTheory.Functor.Full R,
+    CategoryTheory.Functor.Faithful R
 #align category_theory.reflective CategoryTheory.Reflective
 -/
 
@@ -127,7 +128,7 @@ theorem mem_essImage_of_unit_isSplitMono [Reflective i] {A : C}
 #print CategoryTheory.Reflective.comp /-
 /-- Composition of reflective functors. -/
 instance Reflective.comp (F : C ⥤ D) (G : D ⥤ E) [Fr : Reflective F] [Gr : Reflective G] :
-    Reflective (F ⋙ G) where to_faithful := Faithful.comp F G
+    Reflective (F ⋙ G) where to_faithful := CategoryTheory.Functor.Faithful.comp F G
 #align category_theory.reflective.comp CategoryTheory.Reflective.comp
 -/
 
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Bhavik Mehta
 -/
 import CategoryTheory.Adjunction.FullyFaithful
-import CategoryTheory.Functor.ReflectsIsomorphisms
+import CategoryTheory.Functor.ReflectsIso
 import CategoryTheory.EpiMono
 
 #align_import category_theory.adjunction.reflective from "leanprover-community/mathlib"@"ee05e9ce1322178f0c12004eb93c00d2c8c00ed2"
Diff
@@ -215,7 +215,7 @@ def equivEssImageOfReflective [Reflective i] : D ≌ i.EssImageSubcategory
       (by
         intro X Y f; dsimp; rw [is_iso.comp_inv_eq, assoc]
         have h := ((of_right_adjoint i).Unit.naturality f).symm
-        rw [functor.id_map] at h ; erw [← h, is_iso.inv_hom_id_assoc, functor.comp_map])
+        rw [functor.id_map] at h; erw [← h, is_iso.inv_hom_id_assoc, functor.comp_map])
 #align category_theory.equiv_ess_image_of_reflective CategoryTheory.equivEssImageOfReflective
 -/
 
Diff
@@ -3,9 +3,9 @@ Copyright (c) 2020 Bhavik Mehta. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Bhavik Mehta
 -/
-import Mathbin.CategoryTheory.Adjunction.FullyFaithful
-import Mathbin.CategoryTheory.Functor.ReflectsIsomorphisms
-import Mathbin.CategoryTheory.EpiMono
+import CategoryTheory.Adjunction.FullyFaithful
+import CategoryTheory.Functor.ReflectsIsomorphisms
+import CategoryTheory.EpiMono
 
 #align_import category_theory.adjunction.reflective from "leanprover-community/mathlib"@"ee05e9ce1322178f0c12004eb93c00d2c8c00ed2"
 
Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2020 Bhavik Mehta. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Bhavik Mehta
-
-! This file was ported from Lean 3 source module category_theory.adjunction.reflective
-! leanprover-community/mathlib commit ee05e9ce1322178f0c12004eb93c00d2c8c00ed2
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathbin.CategoryTheory.Adjunction.FullyFaithful
 import Mathbin.CategoryTheory.Functor.ReflectsIsomorphisms
 import Mathbin.CategoryTheory.EpiMono
 
+#align_import category_theory.adjunction.reflective from "leanprover-community/mathlib"@"ee05e9ce1322178f0c12004eb93c00d2c8c00ed2"
+
 /-!
 # Reflective functors
 
Diff
@@ -47,6 +47,7 @@ class Reflective (R : D ⥤ C) extends IsRightAdjoint R, Full R, Faithful R
 
 variable {i : D ⥤ C}
 
+#print CategoryTheory.unit_obj_eq_map_unit /-
 -- TODO: This holds more generally for idempotent adjunctions, not just reflective adjunctions.
 /-- For a reflective functor `i` (with left adjoint `L`), with unit `η`, we have `η_iL = iL η`.
 -/
@@ -58,7 +59,9 @@ theorem unit_obj_eq_map_unit [Reflective i] (X : C) :
     i.map_comp]
   simp
 #align category_theory.unit_obj_eq_map_unit CategoryTheory.unit_obj_eq_map_unit
+-/
 
+#print CategoryTheory.isIso_unit_obj /-
 /--
 When restricted to objects in `D` given by `i : D ⥤ C`, the unit is an isomorphism. In other words,
 `η_iX` is an isomorphism for any `X` in `D`.
@@ -75,7 +78,9 @@ instance isIso_unit_obj [Reflective i] {B : D} : IsIso ((ofRightAdjoint i).Unit.
   rw [this]
   exact is_iso.inv_is_iso
 #align category_theory.is_iso_unit_obj CategoryTheory.isIso_unit_obj
+-/
 
+#print CategoryTheory.Functor.essImage.unit_isIso /-
 /-- If `A` is essentially in the image of a reflective functor `i`, then `η_A` is an isomorphism.
 This gives that the "witness" for `A` being in the essential image can instead be given as the
 reflection of `A`, with the isomorphism as `η_A`.
@@ -95,13 +100,17 @@ theorem Functor.essImage.unit_isIso [Reflective i] {A : C} (h : A ∈ i.essImage
   rw [← nat_trans.naturality]
   simp
 #align category_theory.functor.ess_image.unit_is_iso CategoryTheory.Functor.essImage.unit_isIso
+-/
 
+#print CategoryTheory.mem_essImage_of_unit_isIso /-
 /-- If `η_A` is an isomorphism, then `A` is in the essential image of `i`. -/
 theorem mem_essImage_of_unit_isIso [IsRightAdjoint i] (A : C)
     [IsIso ((ofRightAdjoint i).Unit.app A)] : A ∈ i.essImage :=
   ⟨(leftAdjoint i).obj A, ⟨(asIso ((ofRightAdjoint i).Unit.app A)).symm⟩⟩
 #align category_theory.mem_ess_image_of_unit_is_iso CategoryTheory.mem_essImage_of_unit_isIso
+-/
 
+#print CategoryTheory.mem_essImage_of_unit_isSplitMono /-
 /-- If `η_A` is a split monomorphism, then `A` is in the reflective subcategory. -/
 theorem mem_essImage_of_unit_isSplitMono [Reflective i] {A : C}
     [IsSplitMono ((ofRightAdjoint i).Unit.app A)] : A ∈ i.essImage :=
@@ -116,6 +125,7 @@ theorem mem_essImage_of_unit_isSplitMono [Reflective i] {A : C}
   haveI := is_iso_of_epi_of_is_split_mono (η.app A)
   exact mem_ess_image_of_unit_is_iso A
 #align category_theory.mem_ess_image_of_unit_is_split_mono CategoryTheory.mem_essImage_of_unit_isSplitMono
+-/
 
 #print CategoryTheory.Reflective.comp /-
 /-- Composition of reflective functors. -/
@@ -124,19 +134,24 @@ instance Reflective.comp (F : C ⥤ D) (G : D ⥤ E) [Fr : Reflective F] [Gr : R
 #align category_theory.reflective.comp CategoryTheory.Reflective.comp
 -/
 
+#print CategoryTheory.unitCompPartialBijectiveAux /-
 /-- (Implementation) Auxiliary definition for `unit_comp_partial_bijective`. -/
 def unitCompPartialBijectiveAux [Reflective i] (A : C) (B : D) :
     (A ⟶ i.obj B) ≃ (i.obj ((leftAdjoint i).obj A) ⟶ i.obj B) :=
   ((Adjunction.ofRightAdjoint i).homEquiv _ _).symm.trans (equivOfFullyFaithful i)
 #align category_theory.unit_comp_partial_bijective_aux CategoryTheory.unitCompPartialBijectiveAux
+-/
 
+#print CategoryTheory.unitCompPartialBijectiveAux_symm_apply /-
 /-- The description of the inverse of the bijection `unit_comp_partial_bijective_aux`. -/
 theorem unitCompPartialBijectiveAux_symm_apply [Reflective i] {A : C} {B : D}
     (f : i.obj ((leftAdjoint i).obj A) ⟶ i.obj B) :
     (unitCompPartialBijectiveAux _ _).symm f = (ofRightAdjoint i).Unit.app A ≫ f := by
   simp [unit_comp_partial_bijective_aux]
 #align category_theory.unit_comp_partial_bijective_aux_symm_apply CategoryTheory.unitCompPartialBijectiveAux_symm_apply
+-/
 
+#print CategoryTheory.unitCompPartialBijective /-
 /-- If `i` has a reflector `L`, then the function `(i.obj (L.obj A) ⟶ B) → (A ⟶ B)` given by
 precomposing with `η.app A` is a bijection provided `B` is in the essential image of `i`.
 That is, the function `λ (f : i.obj (L.obj A) ⟶ B), η.app A ≫ f` is bijective, as long as `B` is in
@@ -155,25 +170,33 @@ def unitCompPartialBijective [Reflective i] (A : C) {B : C} (hB : B ∈ i.essIma
     _ ≃ (i.obj _ ⟶ i.obj hB.witness) := (unitCompPartialBijectiveAux _ _)
     _ ≃ (i.obj ((leftAdjoint i).obj A) ⟶ B) := Iso.homCongr (Iso.refl _) hB.getIso
 #align category_theory.unit_comp_partial_bijective CategoryTheory.unitCompPartialBijective
+-/
 
+#print CategoryTheory.unitCompPartialBijective_symm_apply /-
 @[simp]
 theorem unitCompPartialBijective_symm_apply [Reflective i] (A : C) {B : C} (hB : B ∈ i.essImage)
     (f) : (unitCompPartialBijective A hB).symm f = (ofRightAdjoint i).Unit.app A ≫ f := by
   simp [unit_comp_partial_bijective, unit_comp_partial_bijective_aux_symm_apply]
 #align category_theory.unit_comp_partial_bijective_symm_apply CategoryTheory.unitCompPartialBijective_symm_apply
+-/
 
+#print CategoryTheory.unitCompPartialBijective_symm_natural /-
 theorem unitCompPartialBijective_symm_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
     (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : i.obj ((leftAdjoint i).obj A) ⟶ B) :
     (unitCompPartialBijective A hB').symm (f ≫ h) = (unitCompPartialBijective A hB).symm f ≫ h := by
   simp
 #align category_theory.unit_comp_partial_bijective_symm_natural CategoryTheory.unitCompPartialBijective_symm_natural
+-/
 
+#print CategoryTheory.unitCompPartialBijective_natural /-
 theorem unitCompPartialBijective_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
     (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : A ⟶ B) :
     (unitCompPartialBijective A hB') (f ≫ h) = unitCompPartialBijective A hB f ≫ h := by
   rw [← Equiv.eq_symm_apply, unit_comp_partial_bijective_symm_natural A h, Equiv.symm_apply_apply]
 #align category_theory.unit_comp_partial_bijective_natural CategoryTheory.unitCompPartialBijective_natural
+-/
 
+#print CategoryTheory.equivEssImageOfReflective /-
 /-- If `i : D ⥤ C` is reflective, the inverse functor of `i ≌ F.ess_image` can be explicitly
 defined by the reflector. -/
 @[simps]
@@ -197,6 +220,7 @@ def equivEssImageOfReflective [Reflective i] : D ≌ i.EssImageSubcategory
         have h := ((of_right_adjoint i).Unit.naturality f).symm
         rw [functor.id_map] at h ; erw [← h, is_iso.inv_hom_id_assoc, functor.comp_map])
 #align category_theory.equiv_ess_image_of_reflective CategoryTheory.equivEssImageOfReflective
+-/
 
 end CategoryTheory
 
Diff
@@ -154,7 +154,6 @@ def unitCompPartialBijective [Reflective i] (A : C) {B : C} (hB : B ∈ i.essIma
     (A ⟶ B) ≃ (A ⟶ i.obj hB.witness) := Iso.homCongr (Iso.refl _) hB.getIso.symm
     _ ≃ (i.obj _ ⟶ i.obj hB.witness) := (unitCompPartialBijectiveAux _ _)
     _ ≃ (i.obj ((leftAdjoint i).obj A) ⟶ B) := Iso.homCongr (Iso.refl _) hB.getIso
-    
 #align category_theory.unit_comp_partial_bijective CategoryTheory.unitCompPartialBijective
 
 @[simp]
Diff
@@ -196,7 +196,7 @@ def equivEssImageOfReflective [Reflective i] : D ≌ i.EssImageSubcategory
       (by
         intro X Y f; dsimp; rw [is_iso.comp_inv_eq, assoc]
         have h := ((of_right_adjoint i).Unit.naturality f).symm
-        rw [functor.id_map] at h; erw [← h, is_iso.inv_hom_id_assoc, functor.comp_map])
+        rw [functor.id_map] at h ; erw [← h, is_iso.inv_hom_id_assoc, functor.comp_map])
 #align category_theory.equiv_ess_image_of_reflective CategoryTheory.equivEssImageOfReflective
 
 end CategoryTheory
Diff
@@ -47,9 +47,6 @@ class Reflective (R : D ⥤ C) extends IsRightAdjoint R, Full R, Faithful R
 
 variable {i : D ⥤ C}
 
-/- warning: category_theory.unit_obj_eq_map_unit -> CategoryTheory.unit_obj_eq_map_unit is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.unit_obj_eq_map_unit CategoryTheory.unit_obj_eq_map_unitₓ'. -/
 -- TODO: This holds more generally for idempotent adjunctions, not just reflective adjunctions.
 /-- For a reflective functor `i` (with left adjoint `L`), with unit `η`, we have `η_iL = iL η`.
 -/
@@ -62,12 +59,6 @@ theorem unit_obj_eq_map_unit [Reflective i] (X : C) :
   simp
 #align category_theory.unit_obj_eq_map_unit CategoryTheory.unit_obj_eq_map_unit
 
-/- warning: category_theory.is_iso_unit_obj -> CategoryTheory.isIso_unit_obj is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {B : D}, CategoryTheory.IsIso.{u1, u3} C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))
-but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {B : D}, CategoryTheory.IsIso.{u1, u3} C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))
-Case conversion may be inaccurate. Consider using '#align category_theory.is_iso_unit_obj CategoryTheory.isIso_unit_objₓ'. -/
 /--
 When restricted to objects in `D` given by `i : D ⥤ C`, the unit is an isomorphism. In other words,
 `η_iX` is an isomorphism for any `X` in `D`.
@@ -85,12 +76,6 @@ instance isIso_unit_obj [Reflective i] {B : D} : IsIso ((ofRightAdjoint i).Unit.
   exact is_iso.inv_is_iso
 #align category_theory.is_iso_unit_obj CategoryTheory.isIso_unit_obj
 
-/- warning: category_theory.functor.ess_image.unit_is_iso -> CategoryTheory.Functor.essImage.unit_isIso is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C}, (Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) A (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) -> (CategoryTheory.IsIso.{u1, u3} C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) A) (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) A) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A))
-but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C}, (Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) A (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) -> (CategoryTheory.IsIso.{u1, u3} C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A))
-Case conversion may be inaccurate. Consider using '#align category_theory.functor.ess_image.unit_is_iso CategoryTheory.Functor.essImage.unit_isIsoₓ'. -/
 /-- If `A` is essentially in the image of a reflective functor `i`, then `η_A` is an isomorphism.
 This gives that the "witness" for `A` being in the essential image can instead be given as the
 reflection of `A`, with the isomorphism as `η_A`.
@@ -111,24 +96,12 @@ theorem Functor.essImage.unit_isIso [Reflective i] {A : C} (h : A ∈ i.essImage
   simp
 #align category_theory.functor.ess_image.unit_is_iso CategoryTheory.Functor.essImage.unit_isIso
 
-/- warning: category_theory.mem_ess_image_of_unit_is_iso -> CategoryTheory.mem_essImage_of_unit_isIso is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.IsRightAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i] (A : C) [_inst_5 : CategoryTheory.IsIso.{u1, u3} C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) A) (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i _inst_4) i) A) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i _inst_4) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i _inst_4) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i _inst_4)) A)], Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) A (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)
-but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.IsRightAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i] (A : C) [_inst_5 : CategoryTheory.IsIso.{u1, u3} C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i _inst_4) i)) A) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i _inst_4) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i _inst_4) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i _inst_4)) A)], Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) A (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)
-Case conversion may be inaccurate. Consider using '#align category_theory.mem_ess_image_of_unit_is_iso CategoryTheory.mem_essImage_of_unit_isIsoₓ'. -/
 /-- If `η_A` is an isomorphism, then `A` is in the essential image of `i`. -/
 theorem mem_essImage_of_unit_isIso [IsRightAdjoint i] (A : C)
     [IsIso ((ofRightAdjoint i).Unit.app A)] : A ∈ i.essImage :=
   ⟨(leftAdjoint i).obj A, ⟨(asIso ((ofRightAdjoint i).Unit.app A)).symm⟩⟩
 #align category_theory.mem_ess_image_of_unit_is_iso CategoryTheory.mem_essImage_of_unit_isIso
 
-/- warning: category_theory.mem_ess_image_of_unit_is_split_mono -> CategoryTheory.mem_essImage_of_unit_isSplitMono is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} [_inst_5 : CategoryTheory.IsSplitMono.{u1, u3} C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) A) (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) A) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)], Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) A (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)
-but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} [_inst_5 : CategoryTheory.IsSplitMono.{u1, u3} C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)], Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) A (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)
-Case conversion may be inaccurate. Consider using '#align category_theory.mem_ess_image_of_unit_is_split_mono CategoryTheory.mem_essImage_of_unit_isSplitMonoₓ'. -/
 /-- If `η_A` is a split monomorphism, then `A` is in the reflective subcategory. -/
 theorem mem_essImage_of_unit_isSplitMono [Reflective i] {A : C}
     [IsSplitMono ((ofRightAdjoint i).Unit.app A)] : A ∈ i.essImage :=
@@ -151,21 +124,12 @@ instance Reflective.comp (F : C ⥤ D) (G : D ⥤ E) [Fr : Reflective F] [Gr : R
 #align category_theory.reflective.comp CategoryTheory.Reflective.comp
 -/
 
-/- warning: category_theory.unit_comp_partial_bijective_aux -> CategoryTheory.unitCompPartialBijectiveAux is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) (B : D), Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))
-but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) (B : D), Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))
-Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_aux CategoryTheory.unitCompPartialBijectiveAuxₓ'. -/
 /-- (Implementation) Auxiliary definition for `unit_comp_partial_bijective`. -/
 def unitCompPartialBijectiveAux [Reflective i] (A : C) (B : D) :
     (A ⟶ i.obj B) ≃ (i.obj ((leftAdjoint i).obj A) ⟶ i.obj B) :=
   ((Adjunction.ofRightAdjoint i).homEquiv _ _).symm.trans (equivOfFullyFaithful i)
 #align category_theory.unit_comp_partial_bijective_aux CategoryTheory.unitCompPartialBijectiveAux
 
-/- warning: category_theory.unit_comp_partial_bijective_aux_symm_apply -> CategoryTheory.unitCompPartialBijectiveAux_symm_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_aux_symm_apply CategoryTheory.unitCompPartialBijectiveAux_symm_applyₓ'. -/
 /-- The description of the inverse of the bijection `unit_comp_partial_bijective_aux`. -/
 theorem unitCompPartialBijectiveAux_symm_apply [Reflective i] {A : C} {B : D}
     (f : i.obj ((leftAdjoint i).obj A) ⟶ i.obj B) :
@@ -173,12 +137,6 @@ theorem unitCompPartialBijectiveAux_symm_apply [Reflective i] {A : C} {B : D}
   simp [unit_comp_partial_bijective_aux]
 #align category_theory.unit_comp_partial_bijective_aux_symm_apply CategoryTheory.unitCompPartialBijectiveAux_symm_apply
 
-/- warning: category_theory.unit_comp_partial_bijective -> CategoryTheory.unitCompPartialBijective is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C}, (Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) -> (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B))
-but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C}, (Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) -> (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B))
-Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective CategoryTheory.unitCompPartialBijectiveₓ'. -/
 /-- If `i` has a reflector `L`, then the function `(i.obj (L.obj A) ⟶ B) → (A ⟶ B)` given by
 precomposing with `η.app A` is a bijection provided `B` is in the essential image of `i`.
 That is, the function `λ (f : i.obj (L.obj A) ⟶ B), η.app A ≫ f` is bijective, as long as `B` is in
@@ -199,39 +157,24 @@ def unitCompPartialBijective [Reflective i] (A : C) {B : C} (hB : B ∈ i.essIma
     
 #align category_theory.unit_comp_partial_bijective CategoryTheory.unitCompPartialBijective
 
-/- warning: category_theory.unit_comp_partial_bijective_symm_apply -> CategoryTheory.unitCompPartialBijective_symm_apply is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_symm_apply CategoryTheory.unitCompPartialBijective_symm_applyₓ'. -/
 @[simp]
 theorem unitCompPartialBijective_symm_apply [Reflective i] (A : C) {B : C} (hB : B ∈ i.essImage)
     (f) : (unitCompPartialBijective A hB).symm f = (ofRightAdjoint i).Unit.app A ≫ f := by
   simp [unit_comp_partial_bijective, unit_comp_partial_bijective_aux_symm_apply]
 #align category_theory.unit_comp_partial_bijective_symm_apply CategoryTheory.unitCompPartialBijective_symm_apply
 
-/- warning: category_theory.unit_comp_partial_bijective_symm_natural -> CategoryTheory.unitCompPartialBijective_symm_natural is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_symm_natural CategoryTheory.unitCompPartialBijective_symm_naturalₓ'. -/
 theorem unitCompPartialBijective_symm_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
     (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : i.obj ((leftAdjoint i).obj A) ⟶ B) :
     (unitCompPartialBijective A hB').symm (f ≫ h) = (unitCompPartialBijective A hB).symm f ≫ h := by
   simp
 #align category_theory.unit_comp_partial_bijective_symm_natural CategoryTheory.unitCompPartialBijective_symm_natural
 
-/- warning: category_theory.unit_comp_partial_bijective_natural -> CategoryTheory.unitCompPartialBijective_natural is a dubious translation:
-<too large>
-Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_natural CategoryTheory.unitCompPartialBijective_naturalₓ'. -/
 theorem unitCompPartialBijective_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
     (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : A ⟶ B) :
     (unitCompPartialBijective A hB') (f ≫ h) = unitCompPartialBijective A hB f ≫ h := by
   rw [← Equiv.eq_symm_apply, unit_comp_partial_bijective_symm_natural A h, Equiv.symm_apply_apply]
 #align category_theory.unit_comp_partial_bijective_natural CategoryTheory.unitCompPartialBijective_natural
 
-/- warning: category_theory.equiv_ess_image_of_reflective -> CategoryTheory.equivEssImageOfReflective is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i], CategoryTheory.Equivalence.{u2, u1, u4, u3} D _inst_2 (CategoryTheory.Functor.EssImageSubcategory.{u2, u1, u4, u3} D C _inst_2 _inst_1 i) (CategoryTheory.Functor.EssImageSubcategory.category.{u1, u3, u4, u2} D C _inst_2 _inst_1 i)
-but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i], CategoryTheory.Equivalence.{u2, u1, u4, u3} D (CategoryTheory.Functor.EssImageSubcategory.{u2, u1, u4, u3} D C _inst_2 _inst_1 i) _inst_2 (CategoryTheory.Functor.instCategoryEssImageSubcategory.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)
-Case conversion may be inaccurate. Consider using '#align category_theory.equiv_ess_image_of_reflective CategoryTheory.equivEssImageOfReflectiveₓ'. -/
 /-- If `i : D ⥤ C` is reflective, the inverse functor of `i ≌ F.ess_image` can be explicitly
 defined by the reflector. -/
 @[simps]
Diff
@@ -242,24 +242,18 @@ def equivEssImageOfReflective [Reflective i] : D ≌ i.EssImageSubcategory
   unitIso :=
     NatIso.ofComponents (fun X => (asIso <| (ofRightAdjoint i).counit.app X).symm)
       (by
-        intro X Y f
-        dsimp
-        simp only [is_iso.eq_inv_comp, is_iso.comp_inv_eq, category.assoc]
+        intro X Y f; dsimp; simp only [is_iso.eq_inv_comp, is_iso.comp_inv_eq, category.assoc]
         exact ((of_right_adjoint i).counit.naturality _).symm)
   counitIso :=
     NatIso.ofComponents
       (fun X => by
-        refine' iso.symm <| as_iso _
-        exact (of_right_adjoint i).Unit.app X.obj
+        refine' iso.symm <| as_iso _; exact (of_right_adjoint i).Unit.app X.obj
         apply (config := { instances := false }) is_iso_of_reflects_iso _ i.ess_image_inclusion
         exact functor.ess_image.unit_is_iso X.property)
       (by
-        intro X Y f
-        dsimp
-        rw [is_iso.comp_inv_eq, assoc]
+        intro X Y f; dsimp; rw [is_iso.comp_inv_eq, assoc]
         have h := ((of_right_adjoint i).Unit.naturality f).symm
-        rw [functor.id_map] at h
-        erw [← h, is_iso.inv_hom_id_assoc, functor.comp_map])
+        rw [functor.id_map] at h; erw [← h, is_iso.inv_hom_id_assoc, functor.comp_map])
 #align category_theory.equiv_ess_image_of_reflective CategoryTheory.equivEssImageOfReflective
 
 end CategoryTheory
Diff
@@ -48,10 +48,7 @@ class Reflective (R : D ⥤ C) extends IsRightAdjoint R, Full R, Faithful R
 variable {i : D ⥤ C}
 
 /- warning: category_theory.unit_obj_eq_map_unit -> CategoryTheory.unit_obj_eq_map_unit is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (X : C), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X))) (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X)))) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X))) (CategoryTheory.Functor.map.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X))) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X)) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) X)))
-but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (X : C), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) X))) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) X)))) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) X))) (Prefunctor.map.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) X)) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) X)) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) X) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) X) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) X)))
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_obj_eq_map_unit CategoryTheory.unit_obj_eq_map_unitₓ'. -/
 -- TODO: This holds more generally for idempotent adjunctions, not just reflective adjunctions.
 /-- For a reflective functor `i` (with left adjoint `L`), with unit `η`, we have `η_iL = iL η`.
@@ -167,10 +164,7 @@ def unitCompPartialBijectiveAux [Reflective i] (A : C) (B : D) :
 #align category_theory.unit_comp_partial_bijective_aux CategoryTheory.unitCompPartialBijectiveAux
 
 /- warning: category_theory.unit_comp_partial_bijective_aux_symm_apply -> CategoryTheory.unitCompPartialBijectiveAux_symm_apply is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} {B : D} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (CategoryTheory.unitCompPartialBijectiveAux.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) A) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
-but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} {B : D} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) f) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (CategoryTheory.unitCompPartialBijectiveAux.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_aux_symm_apply CategoryTheory.unitCompPartialBijectiveAux_symm_applyₓ'. -/
 /-- The description of the inverse of the bijection `unit_comp_partial_bijective_aux`. -/
 theorem unitCompPartialBijectiveAux_symm_apply [Reflective i] {A : C} {B : D}
@@ -206,10 +200,7 @@ def unitCompPartialBijective [Reflective i] (A : C) {B : C} (hB : B ∈ i.essIma
 #align category_theory.unit_comp_partial_bijective CategoryTheory.unitCompPartialBijective
 
 /- warning: category_theory.unit_comp_partial_bijective_symm_apply -> CategoryTheory.unitCompPartialBijective_symm_apply is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} (hB : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) A) B (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
-but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) f) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) B (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_symm_apply CategoryTheory.unitCompPartialBijective_symm_applyₓ'. -/
 @[simp]
 theorem unitCompPartialBijective_symm_apply [Reflective i] (A : C) {B : C} (hB : B ∈ i.essImage)
@@ -218,10 +209,7 @@ theorem unitCompPartialBijective_symm_apply [Reflective i] (A : C) {B : C} (hB :
 #align category_theory.unit_comp_partial_bijective_symm_apply CategoryTheory.unitCompPartialBijective_symm_apply
 
 /- warning: category_theory.unit_comp_partial_bijective_symm_natural -> CategoryTheory.unitCompPartialBijective_symm_natural is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB')) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) h)
-but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' f h)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB')) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) h)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_symm_natural CategoryTheory.unitCompPartialBijective_symm_naturalₓ'. -/
 theorem unitCompPartialBijective_symm_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
     (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : i.obj ((leftAdjoint i).obj A) ⟶ B) :
@@ -230,10 +218,7 @@ theorem unitCompPartialBijective_symm_natural [Reflective i] (A : C) {B B' : C}
 #align category_theory.unit_comp_partial_bijective_symm_natural CategoryTheory.unitCompPartialBijective_symm_natural
 
 /- warning: category_theory.unit_comp_partial_bijective_natural -> CategoryTheory.unitCompPartialBijective_natural is a dubious translation:
-lean 3 declaration is
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B B' (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB) f) h)
-but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B')) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B')) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B)) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB) f) h)
+<too large>
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_natural CategoryTheory.unitCompPartialBijective_naturalₓ'. -/
 theorem unitCompPartialBijective_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
     (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : A ⟶ B) :
Diff
@@ -170,7 +170,7 @@ def unitCompPartialBijectiveAux [Reflective i] (A : C) (B : D) :
 lean 3 declaration is
   forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} {B : D} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (CategoryTheory.unitCompPartialBijectiveAux.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) A) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
 but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} {B : D} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) f) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (CategoryTheory.unitCompPartialBijectiveAux.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} {B : D} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) f) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (CategoryTheory.unitCompPartialBijectiveAux.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_aux_symm_apply CategoryTheory.unitCompPartialBijectiveAux_symm_applyₓ'. -/
 /-- The description of the inverse of the bijection `unit_comp_partial_bijective_aux`. -/
 theorem unitCompPartialBijectiveAux_symm_apply [Reflective i] {A : C} {B : D}
@@ -209,7 +209,7 @@ def unitCompPartialBijective [Reflective i] (A : C) {B : C} (hB : B ∈ i.essIma
 lean 3 declaration is
   forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} (hB : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) A) B (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
 but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) f) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) B (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) f) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) B (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_symm_apply CategoryTheory.unitCompPartialBijective_symm_applyₓ'. -/
 @[simp]
 theorem unitCompPartialBijective_symm_apply [Reflective i] (A : C) {B : C} (hB : B ∈ i.essImage)
@@ -221,7 +221,7 @@ theorem unitCompPartialBijective_symm_apply [Reflective i] (A : C) {B : C} (hB :
 lean 3 declaration is
   forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB')) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) h)
 but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' f h)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB')) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) h)
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' f h)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB')) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) h)
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_symm_natural CategoryTheory.unitCompPartialBijective_symm_naturalₓ'. -/
 theorem unitCompPartialBijective_symm_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
     (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : i.obj ((leftAdjoint i).obj A) ⟶ B) :
@@ -233,7 +233,7 @@ theorem unitCompPartialBijective_symm_natural [Reflective i] (A : C) {B B' : C}
 lean 3 declaration is
   forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B B' (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB) f) h)
 but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B')) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B')) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B)) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB) f) h)
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B')) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B')) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.812 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B)) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB) f) h)
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_natural CategoryTheory.unitCompPartialBijective_naturalₓ'. -/
 theorem unitCompPartialBijective_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
     (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : A ⟶ B) :
Diff
@@ -170,7 +170,7 @@ def unitCompPartialBijectiveAux [Reflective i] (A : C) (B : D) :
 lean 3 declaration is
   forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} {B : D} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (CategoryTheory.unitCompPartialBijectiveAux.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) A) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
 but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} {B : D} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) f) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (CategoryTheory.unitCompPartialBijectiveAux.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} {B : D} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) f) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (CategoryTheory.unitCompPartialBijectiveAux.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_aux_symm_apply CategoryTheory.unitCompPartialBijectiveAux_symm_applyₓ'. -/
 /-- The description of the inverse of the bijection `unit_comp_partial_bijective_aux`. -/
 theorem unitCompPartialBijectiveAux_symm_apply [Reflective i] {A : C} {B : D}
@@ -209,7 +209,7 @@ def unitCompPartialBijective [Reflective i] (A : C) {B : C} (hB : B ∈ i.essIma
 lean 3 declaration is
   forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} (hB : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) A) B (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
 but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) f) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) B (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) f) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) B (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_symm_apply CategoryTheory.unitCompPartialBijective_symm_applyₓ'. -/
 @[simp]
 theorem unitCompPartialBijective_symm_apply [Reflective i] (A : C) {B : C} (hB : B ∈ i.essImage)
@@ -221,7 +221,7 @@ theorem unitCompPartialBijective_symm_apply [Reflective i] (A : C) {B : C} (hB :
 lean 3 declaration is
   forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB')) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) h)
 but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' f h)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB')) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) h)
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' f h)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB')) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) h)
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_symm_natural CategoryTheory.unitCompPartialBijective_symm_naturalₓ'. -/
 theorem unitCompPartialBijective_symm_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
     (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : i.obj ((leftAdjoint i).obj A) ⟶ B) :
@@ -233,7 +233,7 @@ theorem unitCompPartialBijective_symm_natural [Reflective i] (A : C) {B B' : C}
 lean 3 declaration is
   forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B B' (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB) f) h)
 but is expected to have type
-  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B')) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B')) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B)) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB) f) h)
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B')) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B')) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.808 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B)) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB) f) h)
 Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_natural CategoryTheory.unitCompPartialBijective_naturalₓ'. -/
 theorem unitCompPartialBijective_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
     (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : A ⟶ B) :
Diff
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Bhavik Mehta
 
 ! This file was ported from Lean 3 source module category_theory.adjunction.reflective
-! leanprover-community/mathlib commit 239d882c4fb58361ee8b3b39fb2091320edef10a
+! leanprover-community/mathlib commit ee05e9ce1322178f0c12004eb93c00d2c8c00ed2
 ! Please do not edit these lines, except to modify the commit id
 ! if you have ported upstream changes.
 -/
@@ -15,6 +15,9 @@ import Mathbin.CategoryTheory.EpiMono
 /-!
 # Reflective functors
 
+> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
+> Any changes to this file require a corresponding PR to mathlib4.
+
 Basic properties of reflective functors, especially those relating to their essential image.
 
 Note properties of reflective functors relating to limits and colimits are included in
Diff
@@ -197,7 +197,7 @@ def unitCompPartialBijective [Reflective i] (A : C) {B : C} (hB : B ∈ i.essIma
     (A ⟶ B) ≃ (i.obj ((leftAdjoint i).obj A) ⟶ B) :=
   calc
     (A ⟶ B) ≃ (A ⟶ i.obj hB.witness) := Iso.homCongr (Iso.refl _) hB.getIso.symm
-    _ ≃ (i.obj _ ⟶ i.obj hB.witness) := unitCompPartialBijectiveAux _ _
+    _ ≃ (i.obj _ ⟶ i.obj hB.witness) := (unitCompPartialBijectiveAux _ _)
     _ ≃ (i.obj ((leftAdjoint i).obj A) ⟶ B) := Iso.homCongr (Iso.refl _) hB.getIso
     
 #align category_theory.unit_comp_partial_bijective CategoryTheory.unitCompPartialBijective
Diff
@@ -34,14 +34,22 @@ variable {C : Type u₁} {D : Type u₂} {E : Type u₃}
 
 variable [Category.{v₁} C] [Category.{v₂} D] [Category.{v₃} E]
 
+#print CategoryTheory.Reflective /-
 /--
 A functor is *reflective*, or *a reflective inclusion*, if it is fully faithful and right adjoint.
 -/
 class Reflective (R : D ⥤ C) extends IsRightAdjoint R, Full R, Faithful R
 #align category_theory.reflective CategoryTheory.Reflective
+-/
 
 variable {i : D ⥤ C}
 
+/- warning: category_theory.unit_obj_eq_map_unit -> CategoryTheory.unit_obj_eq_map_unit is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (X : C), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X))) (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X)))) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X))) (CategoryTheory.Functor.map.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X) (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X))) (CategoryTheory.Functor.map.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) X)) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) X)))
+but is expected to have type
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (X : C), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) X))) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) X)))) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) X))) (Prefunctor.map.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) X)) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) X)) (Prefunctor.map.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) X) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) X) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) X)))
+Case conversion may be inaccurate. Consider using '#align category_theory.unit_obj_eq_map_unit CategoryTheory.unit_obj_eq_map_unitₓ'. -/
 -- TODO: This holds more generally for idempotent adjunctions, not just reflective adjunctions.
 /-- For a reflective functor `i` (with left adjoint `L`), with unit `η`, we have `η_iL = iL η`.
 -/
@@ -54,6 +62,12 @@ theorem unit_obj_eq_map_unit [Reflective i] (X : C) :
   simp
 #align category_theory.unit_obj_eq_map_unit CategoryTheory.unit_obj_eq_map_unit
 
+/- warning: category_theory.is_iso_unit_obj -> CategoryTheory.isIso_unit_obj is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {B : D}, CategoryTheory.IsIso.{u1, u3} C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))
+but is expected to have type
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {B : D}, CategoryTheory.IsIso.{u1, u3} C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))
+Case conversion may be inaccurate. Consider using '#align category_theory.is_iso_unit_obj CategoryTheory.isIso_unit_objₓ'. -/
 /--
 When restricted to objects in `D` given by `i : D ⥤ C`, the unit is an isomorphism. In other words,
 `η_iX` is an isomorphism for any `X` in `D`.
@@ -71,6 +85,12 @@ instance isIso_unit_obj [Reflective i] {B : D} : IsIso ((ofRightAdjoint i).Unit.
   exact is_iso.inv_is_iso
 #align category_theory.is_iso_unit_obj CategoryTheory.isIso_unit_obj
 
+/- warning: category_theory.functor.ess_image.unit_is_iso -> CategoryTheory.Functor.essImage.unit_isIso is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C}, (Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) A (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) -> (CategoryTheory.IsIso.{u1, u3} C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) A) (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) A) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A))
+but is expected to have type
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C}, (Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) A (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) -> (CategoryTheory.IsIso.{u1, u3} C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A))
+Case conversion may be inaccurate. Consider using '#align category_theory.functor.ess_image.unit_is_iso CategoryTheory.Functor.essImage.unit_isIsoₓ'. -/
 /-- If `A` is essentially in the image of a reflective functor `i`, then `η_A` is an isomorphism.
 This gives that the "witness" for `A` being in the essential image can instead be given as the
 reflection of `A`, with the isomorphism as `η_A`.
@@ -91,12 +111,24 @@ theorem Functor.essImage.unit_isIso [Reflective i] {A : C} (h : A ∈ i.essImage
   simp
 #align category_theory.functor.ess_image.unit_is_iso CategoryTheory.Functor.essImage.unit_isIso
 
+/- warning: category_theory.mem_ess_image_of_unit_is_iso -> CategoryTheory.mem_essImage_of_unit_isIso is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.IsRightAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i] (A : C) [_inst_5 : CategoryTheory.IsIso.{u1, u3} C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) A) (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i _inst_4) i) A) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i _inst_4) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i _inst_4) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i _inst_4)) A)], Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) A (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)
+but is expected to have type
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.IsRightAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i] (A : C) [_inst_5 : CategoryTheory.IsIso.{u1, u3} C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i _inst_4) i)) A) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i _inst_4) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i _inst_4) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i _inst_4)) A)], Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) A (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)
+Case conversion may be inaccurate. Consider using '#align category_theory.mem_ess_image_of_unit_is_iso CategoryTheory.mem_essImage_of_unit_isIsoₓ'. -/
 /-- If `η_A` is an isomorphism, then `A` is in the essential image of `i`. -/
 theorem mem_essImage_of_unit_isIso [IsRightAdjoint i] (A : C)
     [IsIso ((ofRightAdjoint i).Unit.app A)] : A ∈ i.essImage :=
   ⟨(leftAdjoint i).obj A, ⟨(asIso ((ofRightAdjoint i).Unit.app A)).symm⟩⟩
 #align category_theory.mem_ess_image_of_unit_is_iso CategoryTheory.mem_essImage_of_unit_isIso
 
+/- warning: category_theory.mem_ess_image_of_unit_is_split_mono -> CategoryTheory.mem_essImage_of_unit_isSplitMono is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} [_inst_5 : CategoryTheory.IsSplitMono.{u1, u3} C _inst_1 (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) A) (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) A) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)], Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) A (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)
+but is expected to have type
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} [_inst_5 : CategoryTheory.IsSplitMono.{u1, u3} C _inst_1 (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)], Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) A (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)
+Case conversion may be inaccurate. Consider using '#align category_theory.mem_ess_image_of_unit_is_split_mono CategoryTheory.mem_essImage_of_unit_isSplitMonoₓ'. -/
 /-- If `η_A` is a split monomorphism, then `A` is in the reflective subcategory. -/
 theorem mem_essImage_of_unit_isSplitMono [Reflective i] {A : C}
     [IsSplitMono ((ofRightAdjoint i).Unit.app A)] : A ∈ i.essImage :=
@@ -112,17 +144,31 @@ theorem mem_essImage_of_unit_isSplitMono [Reflective i] {A : C}
   exact mem_ess_image_of_unit_is_iso A
 #align category_theory.mem_ess_image_of_unit_is_split_mono CategoryTheory.mem_essImage_of_unit_isSplitMono
 
+#print CategoryTheory.Reflective.comp /-
 /-- Composition of reflective functors. -/
 instance Reflective.comp (F : C ⥤ D) (G : D ⥤ E) [Fr : Reflective F] [Gr : Reflective G] :
     Reflective (F ⋙ G) where to_faithful := Faithful.comp F G
 #align category_theory.reflective.comp CategoryTheory.Reflective.comp
+-/
 
+/- warning: category_theory.unit_comp_partial_bijective_aux -> CategoryTheory.unitCompPartialBijectiveAux is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) (B : D), Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))
+but is expected to have type
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) (B : D), Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))
+Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_aux CategoryTheory.unitCompPartialBijectiveAuxₓ'. -/
 /-- (Implementation) Auxiliary definition for `unit_comp_partial_bijective`. -/
 def unitCompPartialBijectiveAux [Reflective i] (A : C) (B : D) :
     (A ⟶ i.obj B) ≃ (i.obj ((leftAdjoint i).obj A) ⟶ i.obj B) :=
   ((Adjunction.ofRightAdjoint i).homEquiv _ _).symm.trans (equivOfFullyFaithful i)
 #align category_theory.unit_comp_partial_bijective_aux CategoryTheory.unitCompPartialBijectiveAux
 
+/- warning: category_theory.unit_comp_partial_bijective_aux_symm_apply -> CategoryTheory.unitCompPartialBijectiveAux_symm_apply is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} {B : D} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B))) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B)) (CategoryTheory.unitCompPartialBijectiveAux.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) A) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i B) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
+but is expected to have type
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] {A : C} {B : D} (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) f) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B))) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B)) (CategoryTheory.unitCompPartialBijectiveAux.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) B) (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
+Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_aux_symm_apply CategoryTheory.unitCompPartialBijectiveAux_symm_applyₓ'. -/
 /-- The description of the inverse of the bijection `unit_comp_partial_bijective_aux`. -/
 theorem unitCompPartialBijectiveAux_symm_apply [Reflective i] {A : C} {B : D}
     (f : i.obj ((leftAdjoint i).obj A) ⟶ i.obj B) :
@@ -130,6 +176,12 @@ theorem unitCompPartialBijectiveAux_symm_apply [Reflective i] {A : C} {B : D}
   simp [unit_comp_partial_bijective_aux]
 #align category_theory.unit_comp_partial_bijective_aux_symm_apply CategoryTheory.unitCompPartialBijectiveAux_symm_apply
 
+/- warning: category_theory.unit_comp_partial_bijective -> CategoryTheory.unitCompPartialBijective is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C}, (Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) -> (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B))
+but is expected to have type
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C}, (Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) -> (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B))
+Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective CategoryTheory.unitCompPartialBijectiveₓ'. -/
 /-- If `i` has a reflector `L`, then the function `(i.obj (L.obj A) ⟶ B) → (A ⟶ B)` given by
 precomposing with `η.app A` is a bijection provided `B` is in the essential image of `i`.
 That is, the function `λ (f : i.obj (L.obj A) ⟶ B), η.app A ≫ f` is bijective, as long as `B` is in
@@ -150,24 +202,48 @@ def unitCompPartialBijective [Reflective i] (A : C) {B : C} (hB : B ∈ i.essIma
     
 #align category_theory.unit_comp_partial_bijective CategoryTheory.unitCompPartialBijective
 
+/- warning: category_theory.unit_comp_partial_bijective_symm_apply -> CategoryTheory.unitCompPartialBijective_symm_apply is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} (hB : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A (CategoryTheory.Functor.obj.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) A) B (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
+but is expected to have type
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) f) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1)) A) (Prefunctor.obj.{succ u1, succ u1, u3, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i)) A) B (CategoryTheory.NatTrans.app.{u1, u1, u3, u3} C _inst_1 C _inst_1 (CategoryTheory.Functor.id.{u1, u3} C _inst_1) (CategoryTheory.Functor.comp.{u1, u2, u1, u3, u4, u3} C _inst_1 D _inst_2 C _inst_1 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i) (CategoryTheory.Adjunction.unit.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) i (CategoryTheory.Adjunction.ofRightAdjoint.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A) f)
+Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_symm_apply CategoryTheory.unitCompPartialBijective_symm_applyₓ'. -/
 @[simp]
 theorem unitCompPartialBijective_symm_apply [Reflective i] (A : C) {B : C} (hB : B ∈ i.essImage)
     (f) : (unitCompPartialBijective A hB).symm f = (ofRightAdjoint i).Unit.app A ≫ f := by
   simp [unit_comp_partial_bijective, unit_comp_partial_bijective_aux_symm_apply]
 #align category_theory.unit_comp_partial_bijective_symm_apply CategoryTheory.unitCompPartialBijective_symm_apply
 
+/- warning: category_theory.unit_comp_partial_bijective_symm_natural -> CategoryTheory.unitCompPartialBijective_symm_natural is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB')) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) h)
+but is expected to have type
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' f h)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B')) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB')) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B)) (Equiv.symm.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB)) f) h)
+Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_symm_natural CategoryTheory.unitCompPartialBijective_symm_naturalₓ'. -/
 theorem unitCompPartialBijective_symm_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
     (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : i.obj ((leftAdjoint i).obj A) ⟶ B) :
     (unitCompPartialBijective A hB').symm (f ≫ h) = (unitCompPartialBijective A hB).symm f ≫ h := by
   simp
 #align category_theory.unit_comp_partial_bijective_symm_natural CategoryTheory.unitCompPartialBijective_symm_natural
 
+/- warning: category_theory.unit_comp_partial_bijective_natural -> CategoryTheory.unitCompPartialBijective_natural is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.Mem.{u3, u3} C (Set.{u3} C) (Set.hasMem.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B), Eq.{succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B') (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B')) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B B' (coeFn.{succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) (fun (_x : Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) => (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) -> (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) (Equiv.hasCoeToFun.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.obj.{u2, u1, u4, u3} D _inst_2 C _inst_1 i (CategoryTheory.Functor.obj.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4)) A)) B)) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB) f) h)
+but is expected to have type
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i] (A : C) {B : C} {B' : C} (h : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) B B') (hB : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (hB' : Membership.mem.{u3, u3} C (Set.{u3} C) (Set.instMembershipSet.{u3} C) B' (CategoryTheory.Functor.essImage.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)) (f : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B), Eq.{succ u1} ((fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B')) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B') _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B') (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B')) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B' hB') (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) A B B' f h)) (CategoryTheory.CategoryStruct.comp.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B B' (FunLike.coe.{succ u1, succ u1, succ u1} (Equiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B)) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (fun (_x : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) => (fun (x._@.Mathlib.Logic.Equiv.Defs._hyg.805 : Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) => Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B) _x) (Equiv.instFunLikeEquiv.{succ u1, succ u1} (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) A B) (Quiver.Hom.{succ u1, u3} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (Prefunctor.obj.{succ u2, succ u1, u4, u3} D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) (CategoryTheory.Functor.toPrefunctor.{u2, u1, u4, u3} D _inst_2 C _inst_1 i) (Prefunctor.obj.{succ u1, succ u2, u3, u4} C (CategoryTheory.CategoryStruct.toQuiver.{u1, u3} C (CategoryTheory.Category.toCategoryStruct.{u1, u3} C _inst_1)) D (CategoryTheory.CategoryStruct.toQuiver.{u2, u4} D (CategoryTheory.Category.toCategoryStruct.{u2, u4} D _inst_2)) (CategoryTheory.Functor.toPrefunctor.{u1, u2, u3, u4} C _inst_1 D _inst_2 (CategoryTheory.leftAdjoint.{u1, u2, u3, u4} C _inst_1 D _inst_2 i (CategoryTheory.Reflective.toIsRightAdjoint.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4))) A)) B)) (CategoryTheory.unitCompPartialBijective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i _inst_4 A B hB) f) h)
+Case conversion may be inaccurate. Consider using '#align category_theory.unit_comp_partial_bijective_natural CategoryTheory.unitCompPartialBijective_naturalₓ'. -/
 theorem unitCompPartialBijective_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
     (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : A ⟶ B) :
     (unitCompPartialBijective A hB') (f ≫ h) = unitCompPartialBijective A hB f ≫ h := by
   rw [← Equiv.eq_symm_apply, unit_comp_partial_bijective_symm_natural A h, Equiv.symm_apply_apply]
 #align category_theory.unit_comp_partial_bijective_natural CategoryTheory.unitCompPartialBijective_natural
 
+/- warning: category_theory.equiv_ess_image_of_reflective -> CategoryTheory.equivEssImageOfReflective is a dubious translation:
+lean 3 declaration is
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i], CategoryTheory.Equivalence.{u2, u1, u4, u3} D _inst_2 (CategoryTheory.Functor.EssImageSubcategory.{u2, u1, u4, u3} D C _inst_2 _inst_1 i) (CategoryTheory.Functor.EssImageSubcategory.category.{u1, u3, u4, u2} D C _inst_2 _inst_1 i)
+but is expected to have type
+  forall {C : Type.{u3}} {D : Type.{u4}} [_inst_1 : CategoryTheory.Category.{u1, u3} C] [_inst_2 : CategoryTheory.Category.{u2, u4} D] {i : CategoryTheory.Functor.{u2, u1, u4, u3} D _inst_2 C _inst_1} [_inst_4 : CategoryTheory.Reflective.{u1, u2, u3, u4} C D _inst_1 _inst_2 i], CategoryTheory.Equivalence.{u2, u1, u4, u3} D (CategoryTheory.Functor.EssImageSubcategory.{u2, u1, u4, u3} D C _inst_2 _inst_1 i) _inst_2 (CategoryTheory.Functor.instCategoryEssImageSubcategory.{u2, u1, u4, u3} D C _inst_2 _inst_1 i)
+Case conversion may be inaccurate. Consider using '#align category_theory.equiv_ess_image_of_reflective CategoryTheory.equivEssImageOfReflectiveₓ'. -/
 /-- If `i : D ⥤ C` is reflective, the inverse functor of `i ≌ F.ess_image` can be explicitly
 defined by the reflector. -/
 @[simps]

Changes in mathlib4

mathlib3
mathlib4
chore: split CategoryTheory.MorphismProperty (#12393)

The file CategoryTheory.MorphismProperty is split into five files Basic, Composition, Limits, Concrete, IsInvertedBy.

Diff
@@ -5,6 +5,7 @@ Authors: Bhavik Mehta
 -/
 import Mathlib.CategoryTheory.Adjunction.FullyFaithful
 import Mathlib.CategoryTheory.Conj
+import Mathlib.CategoryTheory.Functor.ReflectsIso
 
 #align_import category_theory.adjunction.reflective from "leanprover-community/mathlib"@"239d882c4fb58361ee8b3b39fb2091320edef10a"
 
chore(CategoryTheory/Adjunction): move Adjunction.restrictFullyFaithful to separate file (#12363)

Also resolves a TODO to add lemmas about Adjunction.restrictFullyFaithful

Diff
@@ -4,8 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Bhavik Mehta
 -/
 import Mathlib.CategoryTheory.Adjunction.FullyFaithful
-import Mathlib.CategoryTheory.Functor.ReflectsIso
-import Mathlib.CategoryTheory.EpiMono
+import Mathlib.CategoryTheory.Conj
 
 #align_import category_theory.adjunction.reflective from "leanprover-community/mathlib"@"239d882c4fb58361ee8b3b39fb2091320edef10a"
 
chore(CategoryTheory/Adjunction): simplify some proofs in Adjunction/Reflective (#12375)

Some results in this file can be extracted from results added in #12344

Diff
@@ -55,13 +55,8 @@ When restricted to objects in `D` given by `i : D ⥤ C`, the unit is an isomorp
 More generally this applies to objects essentially in the reflective subcategory, see
 `Functor.essImage.unit_isIso`.
 -/
-instance isIso_unit_obj [Reflective i] {B : D} : IsIso ((ofRightAdjoint i).unit.app (i.obj B)) := by
-  have : (ofRightAdjoint i).unit.app (i.obj B) = inv (i.map ((ofRightAdjoint i).counit.app B)) := by
-    rw [← comp_hom_eq_id]
-    apply (ofRightAdjoint i).right_triangle_components
-  rw [this]
-  exact IsIso.inv_isIso
-#align category_theory.is_iso_unit_obj CategoryTheory.isIso_unit_obj
+example [Reflective i] {B : D} : IsIso ((ofRightAdjoint i).unit.app (i.obj B)) :=
+  inferInstance
 
 /-- If `A` is essentially in the image of a reflective functor `i`, then `η_A` is an isomorphism.
 This gives that the "witness" for `A` being in the essential image can instead be given as the
@@ -71,13 +66,7 @@ reflection of `A`, with the isomorphism as `η_A`.
 -/
 theorem Functor.essImage.unit_isIso [Reflective i] {A : C} (h : A ∈ i.essImage) :
     IsIso ((ofRightAdjoint i).unit.app A) := by
-  suffices (ofRightAdjoint i).unit.app A = h.getIso.inv ≫
-      (ofRightAdjoint i).unit.app (i.obj (Functor.essImage.witness h)) ≫
-      (leftAdjoint i ⋙ i).map h.getIso.hom by
-    rw [this]
-    infer_instance
-  rw [← NatTrans.naturality]
-  simp
+  rwa [isIso_unit_app_iff_mem_essImage]
 #align category_theory.functor.ess_image.unit_is_iso CategoryTheory.Functor.essImage.unit_isIso
 
 /-- If `η_A` is an isomorphism, then `A` is in the essential image of `i`. -/
chore: replace refine' that already have a ?_ (#12261)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -166,7 +166,7 @@ Functor.essImage.unit_isIso X.property
 by `equivEssImageOfReflective` when the functor `i` is reflective. -/
 def equivEssImageOfReflective_counitIso_app [Reflective i] (X : Functor.EssImageSubcategory i) :
     ((Functor.essImageInclusion i ⋙ leftAdjoint i) ⋙ Functor.toEssImage i).obj X ≅ X := by
-  refine' Iso.symm (@asIso _ _ X _ ((ofRightAdjoint i).unit.app X.obj) ?_)
+  refine Iso.symm (@asIso _ _ X _ ((ofRightAdjoint i).unit.app X.obj) ?_)
   refine @isIso_of_reflects_iso _ _ _ _ _ _ _ i.essImageInclusion ?_ _
   dsimp
   exact inferInstance
chore(CategoryTheory): move Full, Faithful, EssSurj, IsEquivalence and ReflectsIsomorphisms to the Functor namespace (#11985)

These notions on functors are now Functor.Full, Functor.Faithful, Functor.EssSurj, Functor.IsEquivalence, Functor.ReflectsIsomorphisms. Deprecated aliases are introduced for the previous names.

Diff
@@ -33,7 +33,7 @@ variable [Category.{v₁} C] [Category.{v₂} D] [Category.{v₃} E]
 /--
 A functor is *reflective*, or *a reflective inclusion*, if it is fully faithful and right adjoint.
 -/
-class Reflective (R : D ⥤ C) extends IsRightAdjoint R, Full R, Faithful R
+class Reflective (R : D ⥤ C) extends IsRightAdjoint R, R.Full, R.Faithful
 #align category_theory.reflective CategoryTheory.Reflective
 
 variable {i : D ⥤ C}
@@ -102,7 +102,7 @@ theorem mem_essImage_of_unit_isSplitMono [Reflective i] {A : C}
 
 /-- Composition of reflective functors. -/
 instance Reflective.comp (F : C ⥤ D) (G : D ⥤ E) [Reflective F] [Reflective G] :
-    Reflective (F ⋙ G) where toFaithful := Faithful.comp F G
+    Reflective (F ⋙ G) where
 #align category_theory.reflective.comp CategoryTheory.Reflective.comp
 
 /-- (Implementation) Auxiliary definition for `unitCompPartialBijective`. -/
chore(*): remove empty lines between variable statements (#11418)

Empty lines were removed by executing the following Python script twice

import os
import re


# Loop through each file in the repository
for dir_path, dirs, files in os.walk('.'):
  for filename in files:
    if filename.endswith('.lean'):
      file_path = os.path.join(dir_path, filename)

      # Open the file and read its contents
      with open(file_path, 'r') as file:
        content = file.read()

      # Use a regular expression to replace sequences of "variable" lines separated by empty lines
      # with sequences without empty lines
      modified_content = re.sub(r'(variable.*\n)\n(variable(?! .* in))', r'\1\2', content)

      # Write the modified content back to the file
      with open(file_path, 'w') as file:
        file.write(modified_content)
Diff
@@ -28,7 +28,6 @@ namespace CategoryTheory
 open Category Adjunction
 
 variable {C : Type u₁} {D : Type u₂} {E : Type u₃}
-
 variable [Category.{v₁} C] [Category.{v₂} D] [Category.{v₃} E]
 
 /--
chore: remove useless tactics (#11333)

The removal of some pointless tactics flagged by #11308.

Diff
@@ -97,7 +97,6 @@ theorem mem_essImage_of_unit_isSplitMono [Reflective i] {A : C}
     refine @epi_of_epi _ _ _ _ _ (retraction (η.app A)) (η.app A) ?_
     rw [show retraction _ ≫ η.app A = _ from η.naturality (retraction (η.app A))]
     apply epi_comp (η.app (i.obj ((leftAdjoint i).obj A)))
-  skip
   haveI := isIso_of_epi_of_isSplitMono (η.app A)
   exact mem_essImage_of_unit_isIso A
 #align category_theory.mem_ess_image_of_unit_is_split_mono CategoryTheory.mem_essImage_of_unit_isSplitMono
chore: squeeze some non-terminal simps (#11247)

This PR accompanies #11246, squeezing some non-terminal simps highlighted by the linter until I decided to stop!

Diff
@@ -177,7 +177,9 @@ lemma equivEssImageOfReflective_map_counitIso_app_hom [Reflective i]
     (X : Functor.EssImageSubcategory i) :
   (Functor.essImageInclusion i).map (equivEssImageOfReflective_counitIso_app X).hom =
     inv (NatTrans.app (ofRightAdjoint i).unit X.obj) := by
-    simp [equivEssImageOfReflective_counitIso_app, asIso]
+    simp only [Functor.comp_obj, Functor.essImageInclusion_obj, Functor.toEssImage_obj_obj,
+      equivEssImageOfReflective_counitIso_app, asIso, Iso.symm_mk, Functor.essImageInclusion_map,
+      Functor.id_obj]
     rfl
 
 lemma equivEssImageOfReflective_map_counitIso_app_inv [Reflective i]
style: homogenise porting notes (#11145)

Homogenises porting notes via capitalisation and addition of whitespace.

It makes the following changes:

  • converts "--porting note" into "-- Porting note";
  • converts "porting note" into "Porting note".
Diff
@@ -162,7 +162,7 @@ instance [Reflective i] (X : Functor.EssImageSubcategory i) :
   IsIso (NatTrans.app (ofRightAdjoint i).unit X.obj) :=
 Functor.essImage.unit_isIso X.property
 
--- porting note: the following auxiliary definition and the next two lemmas were
+-- Porting note: the following auxiliary definition and the next two lemmas were
 -- introduced in order to ease the port
 /-- The counit isomorphism of the equivalence `D ≌ i.EssImageSubcategory` given
 by `equivEssImageOfReflective` when the functor `i` is reflective. -/
@@ -211,7 +211,7 @@ def equivEssImageOfReflective [Reflective i] : D ≌ i.EssImageSubcategory
           equivEssImageOfReflective_map_counitIso_app_hom,
           IsIso.comp_inv_eq, assoc, ← h, IsIso.inv_hom_id_assoc, Functor.comp_map])
   functor_unitIso_comp := fun X => by
-    -- porting note: this proof was automatically handled by the automation in mathlib
+    -- Porting note: this proof was automatically handled by the automation in mathlib
     apply (Functor.essImageInclusion i).map_injective
     erw [Functor.map_comp, equivEssImageOfReflective_map_counitIso_app_hom]
     aesop_cat
chore: replace Lean 3 syntax λ x, in doc comments (#10727)

Use Lean 4 syntax fun x ↦ instead, matching the style guide. This is close to exhaustive for doc comments; mathlib has about 460 remaining uses of λ (not all in Lean 3 syntax).

Diff
@@ -122,8 +122,8 @@ theorem unitCompPartialBijectiveAux_symm_apply [Reflective i] {A : C} {B : D}
 
 /-- If `i` has a reflector `L`, then the function `(i.obj (L.obj A) ⟶ B) → (A ⟶ B)` given by
 precomposing with `η.app A` is a bijection provided `B` is in the essential image of `i`.
-That is, the function `λ (f : i.obj (L.obj A) ⟶ B), η.app A ≫ f` is bijective, as long as `B` is in
-the essential image of `i`.
+That is, the function `fun (f : i.obj (L.obj A) ⟶ B) ↦ η.app A ≫ f` is bijective,
+as long as `B` is in the essential image of `i`.
 This definition gives an equivalence: the key property that the inverse can be described
 nicely is shown in `unitCompPartialBijective_symm_apply`.
 
chore: exactly 4 spaces in subsequent lines for def (#7321)

Co-authored-by: Moritz Firsching <firsching@google.com>

Diff
@@ -167,21 +167,21 @@ Functor.essImage.unit_isIso X.property
 /-- The counit isomorphism of the equivalence `D ≌ i.EssImageSubcategory` given
 by `equivEssImageOfReflective` when the functor `i` is reflective. -/
 def equivEssImageOfReflective_counitIso_app [Reflective i] (X : Functor.EssImageSubcategory i) :
-  ((Functor.essImageInclusion i ⋙ leftAdjoint i) ⋙ Functor.toEssImage i).obj X ≅ X := by
+    ((Functor.essImageInclusion i ⋙ leftAdjoint i) ⋙ Functor.toEssImage i).obj X ≅ X := by
   refine' Iso.symm (@asIso _ _ X _ ((ofRightAdjoint i).unit.app X.obj) ?_)
   refine @isIso_of_reflects_iso _ _ _ _ _ _ _ i.essImageInclusion ?_ _
   dsimp
   exact inferInstance
 
 lemma equivEssImageOfReflective_map_counitIso_app_hom [Reflective i]
-  (X : Functor.EssImageSubcategory i) :
+    (X : Functor.EssImageSubcategory i) :
   (Functor.essImageInclusion i).map (equivEssImageOfReflective_counitIso_app X).hom =
     inv (NatTrans.app (ofRightAdjoint i).unit X.obj) := by
     simp [equivEssImageOfReflective_counitIso_app, asIso]
     rfl
 
 lemma equivEssImageOfReflective_map_counitIso_app_inv [Reflective i]
-  (X : Functor.EssImageSubcategory i) :
+    (X : Functor.EssImageSubcategory i) :
   (Functor.essImageInclusion i).map (equivEssImageOfReflective_counitIso_app X).inv =
     (NatTrans.app (ofRightAdjoint i).unit X.obj) := rfl
 
chore: script to replace headers with #align_import statements (#5979)

Open in Gitpod

Co-authored-by: Eric Wieser <wieser.eric@gmail.com> Co-authored-by: Scott Morrison <scott.morrison@gmail.com>

Diff
@@ -2,16 +2,13 @@
 Copyright (c) 2020 Bhavik Mehta. All rights reserved.
 Released under Apache 2.0 license as described in the file LICENSE.
 Authors: Bhavik Mehta
-
-! This file was ported from Lean 3 source module category_theory.adjunction.reflective
-! leanprover-community/mathlib commit 239d882c4fb58361ee8b3b39fb2091320edef10a
-! Please do not edit these lines, except to modify the commit id
-! if you have ported upstream changes.
 -/
 import Mathlib.CategoryTheory.Adjunction.FullyFaithful
 import Mathlib.CategoryTheory.Functor.ReflectsIso
 import Mathlib.CategoryTheory.EpiMono
 
+#align_import category_theory.adjunction.reflective from "leanprover-community/mathlib"@"239d882c4fb58361ee8b3b39fb2091320edef10a"
+
 /-!
 # Reflective functors
 
chore: bye-bye, solo bys! (#3825)

This PR puts, with one exception, every single remaining by that lies all by itself on its own line to the previous line, thus matching the current behaviour of start-port.sh. The exception is when the by begins the second or later argument to a tuple or anonymous constructor; see https://github.com/leanprover-community/mathlib4/pull/3825#discussion_r1186702599.

Essentially this is s/\n *by$/ by/g, but with manual editing to satisfy the linter's max-100-char-line requirement. The Python style linter is also modified to catch these "isolated bys".

Diff
@@ -60,9 +60,7 @@ More generally this applies to objects essentially in the reflective subcategory
 `Functor.essImage.unit_isIso`.
 -/
 instance isIso_unit_obj [Reflective i] {B : D} : IsIso ((ofRightAdjoint i).unit.app (i.obj B)) := by
-  have :
-    (ofRightAdjoint i).unit.app (i.obj B) = inv (i.map ((ofRightAdjoint i).counit.app B)) :=
-    by
+  have : (ofRightAdjoint i).unit.app (i.obj B) = inv (i.map ((ofRightAdjoint i).counit.app B)) := by
     rw [← comp_hom_eq_id]
     apply (ofRightAdjoint i).right_triangle_components
   rw [this]
@@ -77,12 +75,9 @@ reflection of `A`, with the isomorphism as `η_A`.
 -/
 theorem Functor.essImage.unit_isIso [Reflective i] {A : C} (h : A ∈ i.essImage) :
     IsIso ((ofRightAdjoint i).unit.app A) := by
-  suffices
-    (ofRightAdjoint i).unit.app A =
-      h.getIso.inv ≫
-        (ofRightAdjoint i).unit.app (i.obj (Functor.essImage.witness h)) ≫
-          (leftAdjoint i ⋙ i).map h.getIso.hom
-    by
+  suffices (ofRightAdjoint i).unit.app A = h.getIso.inv ≫
+      (ofRightAdjoint i).unit.app (i.obj (Functor.essImage.witness h)) ≫
+      (leftAdjoint i ⋙ i).map h.getIso.hom by
     rw [this]
     infer_instance
   rw [← NatTrans.naturality]
feat: port CategoryTheory.Adjunction.Reflective (#2467)

Dependencies 88

89 files ported (100.0%)
30165 lines ported (100.0%)

All dependencies are ported!